home *** CD-ROM | disk | FTP | other *** search
- /* Subroutines for manipulating rtx's in semantically interesting ways.
- Copyright (C) 1987, 1991 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- #include "config.h"
- #include "rtl.h"
- #include "tree.h"
- #include "flags.h"
- #include "expr.h"
- #include "hard-reg-set.h"
- #include "insn-config.h"
- #include "recog.h"
- #include "insn-flags.h"
- #include "insn-codes.h"
-
- /* Return an rtx for the sum of X and the integer C.
-
- This fucntion should be used via the `plus_constant' macro. */
-
- rtx
- plus_constant_wide (x, c)
- register rtx x;
- register HOST_WIDE_INT c;
- {
- register RTX_CODE code;
- register enum machine_mode mode;
- register rtx tem;
- int all_constant = 0;
-
- if (c == 0)
- return x;
-
- restart:
-
- code = GET_CODE (x);
- mode = GET_MODE (x);
- switch (code)
- {
- case CONST_INT:
- return GEN_INT (INTVAL (x) + c);
-
- case CONST_DOUBLE:
- {
- HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
- HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
- HOST_WIDE_INT l2 = c;
- HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
- HOST_WIDE_INT lv, hv;
-
- add_double (l1, h1, l2, h2, &lv, &hv);
-
- return immed_double_const (lv, hv, VOIDmode);
- }
-
- case MEM:
- /* If this is a reference to the constant pool, try replacing it with
- a reference to a new constant. If the resulting address isn't
- valid, don't return it because we have no way to validize it. */
- if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
- {
- tem
- = force_const_mem (GET_MODE (x),
- plus_constant (get_pool_constant (XEXP (x, 0)),
- c));
- if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
- return tem;
- }
- break;
-
- case CONST:
- /* If adding to something entirely constant, set a flag
- so that we can add a CONST around the result. */
- x = XEXP (x, 0);
- all_constant = 1;
- goto restart;
-
- case SYMBOL_REF:
- case LABEL_REF:
- all_constant = 1;
- break;
-
- case PLUS:
- /* The interesting case is adding the integer to a sum.
- Look for constant term in the sum and combine
- with C. For an integer constant term, we make a combined
- integer. For a constant term that is not an explicit integer,
- we cannot really combine, but group them together anyway.
-
- Use a recursive call in case the remaining operand is something
- that we handle specially, such as a SYMBOL_REF. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
- else if (CONSTANT_P (XEXP (x, 0)))
- return gen_rtx (PLUS, mode,
- plus_constant (XEXP (x, 0), c),
- XEXP (x, 1));
- else if (CONSTANT_P (XEXP (x, 1)))
- return gen_rtx (PLUS, mode,
- XEXP (x, 0),
- plus_constant (XEXP (x, 1), c));
- }
-
- if (c != 0)
- x = gen_rtx (PLUS, mode, x, GEN_INT (c));
-
- if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
- return x;
- else if (all_constant)
- return gen_rtx (CONST, mode, x);
- else
- return x;
- }
-
- /* This is the same as `plus_constant', except that it handles LO_SUM.
-
- This function should be used via the `plus_constant_for_output' macro. */
-
- rtx
- plus_constant_for_output_wide (x, c)
- register rtx x;
- register HOST_WIDE_INT c;
- {
- register RTX_CODE code = GET_CODE (x);
- register enum machine_mode mode = GET_MODE (x);
- int all_constant = 0;
-
- if (GET_CODE (x) == LO_SUM)
- return gen_rtx (LO_SUM, mode, XEXP (x, 0),
- plus_constant_for_output (XEXP (x, 1), c));
-
- else
- return plus_constant (x, c);
- }
-
- /* If X is a sum, return a new sum like X but lacking any constant terms.
- Add all the removed constant terms into *CONSTPTR.
- X itself is not altered. The result != X if and only if
- it is not isomorphic to X. */
-
- rtx
- eliminate_constant_term (x, constptr)
- rtx x;
- rtx *constptr;
- {
- register rtx x0, x1;
- rtx tem;
-
- if (GET_CODE (x) != PLUS)
- return x;
-
- /* First handle constants appearing at this level explicitly. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
- XEXP (x, 1)))
- && GET_CODE (tem) == CONST_INT)
- {
- *constptr = tem;
- return eliminate_constant_term (XEXP (x, 0), constptr);
- }
-
- tem = const0_rtx;
- x0 = eliminate_constant_term (XEXP (x, 0), &tem);
- x1 = eliminate_constant_term (XEXP (x, 1), &tem);
- if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
- && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
- *constptr, tem))
- && GET_CODE (tem) == CONST_INT)
- {
- *constptr = tem;
- return gen_rtx (PLUS, GET_MODE (x), x0, x1);
- }
-
- return x;
- }
-
- /* Returns the insn that next references REG after INSN, or 0
- if REG is clobbered before next referenced or we cannot find
- an insn that references REG in a straight-line piece of code. */
-
- rtx
- find_next_ref (reg, insn)
- rtx reg;
- rtx insn;
- {
- rtx next;
-
- for (insn = NEXT_INSN (insn); insn; insn = next)
- {
- next = NEXT_INSN (insn);
- if (GET_CODE (insn) == NOTE)
- continue;
- if (GET_CODE (insn) == CODE_LABEL
- || GET_CODE (insn) == BARRIER)
- return 0;
- if (GET_CODE (insn) == INSN
- || GET_CODE (insn) == JUMP_INSN
- || GET_CODE (insn) == CALL_INSN)
- {
- if (reg_set_p (reg, insn))
- return 0;
- if (reg_mentioned_p (reg, PATTERN (insn)))
- return insn;
- if (GET_CODE (insn) == JUMP_INSN)
- {
- if (simplejump_p (insn))
- next = JUMP_LABEL (insn);
- else
- return 0;
- }
- if (GET_CODE (insn) == CALL_INSN
- && REGNO (reg) < FIRST_PSEUDO_REGISTER
- && call_used_regs[REGNO (reg)])
- return 0;
- }
- else
- abort ();
- }
- return 0;
- }
-
- /* Return an rtx for the size in bytes of the value of EXP. */
-
- rtx
- expr_size (exp)
- tree exp;
- {
- return expand_expr (size_in_bytes (TREE_TYPE (exp)),
- NULL_RTX, TYPE_MODE (sizetype), 0);
- }
-
- /* Return a copy of X in which all memory references
- and all constants that involve symbol refs
- have been replaced with new temporary registers.
- Also emit code to load the memory locations and constants
- into those registers.
-
- If X contains no such constants or memory references,
- X itself (not a copy) is returned.
-
- If a constant is found in the address that is not a legitimate constant
- in an insn, it is left alone in the hope that it might be valid in the
- address.
-
- X may contain no arithmetic except addition, subtraction and multiplication.
- Values returned by expand_expr with 1 for sum_ok fit this constraint. */
-
- static rtx
- break_out_memory_refs (x)
- register rtx x;
- {
- if (GET_CODE (x) == MEM
- || (CONSTANT_P (x) && LEGITIMATE_CONSTANT_P (x)
- && GET_MODE (x) != VOIDmode))
- {
- register rtx temp = force_reg (GET_MODE (x), x);
- mark_reg_pointer (temp);
- x = temp;
- }
- else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
- || GET_CODE (x) == MULT)
- {
- register rtx op0 = break_out_memory_refs (XEXP (x, 0));
- register rtx op1 = break_out_memory_refs (XEXP (x, 1));
- if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
- }
- return x;
- }
-
- /* Given a memory address or facsimile X, construct a new address,
- currently equivalent, that is stable: future stores won't change it.
-
- X must be composed of constants, register and memory references
- combined with addition, subtraction and multiplication:
- in other words, just what you can get from expand_expr if sum_ok is 1.
-
- Works by making copies of all regs and memory locations used
- by X and combining them the same way X does.
- You could also stabilize the reference to this address
- by copying the address to a register with copy_to_reg;
- but then you wouldn't get indexed addressing in the reference. */
-
- rtx
- copy_all_regs (x)
- register rtx x;
- {
- if (GET_CODE (x) == REG)
- {
- if (REGNO (x) != FRAME_POINTER_REGNUM)
- x = copy_to_reg (x);
- }
- else if (GET_CODE (x) == MEM)
- x = copy_to_reg (x);
- else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
- || GET_CODE (x) == MULT)
- {
- register rtx op0 = copy_all_regs (XEXP (x, 0));
- register rtx op1 = copy_all_regs (XEXP (x, 1));
- if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
- }
- return x;
- }
-
- /* Return something equivalent to X but valid as a memory address
- for something of mode MODE. When X is not itself valid, this
- works by copying X or subexpressions of it into registers. */
-
- rtx
- memory_address (mode, x)
- enum machine_mode mode;
- register rtx x;
- {
- register rtx oldx;
-
- /* By passing constant addresses thru registers
- we get a chance to cse them. */
- if (! cse_not_expected && CONSTANT_P (x) && LEGITIMATE_CONSTANT_P (x))
- return force_reg (Pmode, x);
-
- /* Accept a QUEUED that refers to a REG
- even though that isn't a valid address.
- On attempting to put this in an insn we will call protect_from_queue
- which will turn it into a REG, which is valid. */
- if (GET_CODE (x) == QUEUED
- && GET_CODE (QUEUED_VAR (x)) == REG)
- return x;
-
- /* We get better cse by rejecting indirect addressing at this stage.
- Let the combiner create indirect addresses where appropriate.
- For now, generate the code so that the subexpressions useful to share
- are visible. But not if cse won't be done! */
- oldx = x;
- if (! cse_not_expected && GET_CODE (x) != REG)
- x = break_out_memory_refs (x);
-
- /* At this point, any valid address is accepted. */
- GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
-
- /* If it was valid before but breaking out memory refs invalidated it,
- use it the old way. */
- if (memory_address_p (mode, oldx))
- goto win2;
-
- /* Perform machine-dependent transformations on X
- in certain cases. This is not necessary since the code
- below can handle all possible cases, but machine-dependent
- transformations can make better code. */
- LEGITIMIZE_ADDRESS (x, oldx, mode, win);
-
- /* PLUS and MULT can appear in special ways
- as the result of attempts to make an address usable for indexing.
- Usually they are dealt with by calling force_operand, below.
- But a sum containing constant terms is special
- if removing them makes the sum a valid address:
- then we generate that address in a register
- and index off of it. We do this because it often makes
- shorter code, and because the addresses thus generated
- in registers often become common subexpressions. */
- if (GET_CODE (x) == PLUS)
- {
- rtx constant_term = const0_rtx;
- rtx y = eliminate_constant_term (x, &constant_term);
- if (constant_term == const0_rtx
- || ! memory_address_p (mode, y))
- return force_operand (x, NULL_RTX);
-
- y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
- if (! memory_address_p (mode, y))
- return force_operand (x, NULL_RTX);
- return y;
- }
- if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
- return force_operand (x, NULL_RTX);
-
- /* If we have a register that's an invalid address,
- it must be a hard reg of the wrong class. Copy it to a pseudo. */
- if (GET_CODE (x) == REG)
- return copy_to_reg (x);
-
- /* Last resort: copy the value to a register, since
- the register is a valid address. */
- return force_reg (Pmode, x);
-
- win2:
- x = oldx;
- win:
- if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
- /* Don't copy an addr via a reg if it is one of our stack slots. */
- && ! (GET_CODE (x) == PLUS
- && (XEXP (x, 0) == virtual_stack_vars_rtx
- || XEXP (x, 0) == virtual_incoming_args_rtx)))
- {
- if (general_operand (x, Pmode))
- return force_reg (Pmode, x);
- else
- return force_operand (x, NULL_RTX);
- }
- return x;
- }
-
- /* Like `memory_address' but pretend `flag_force_addr' is 0. */
-
- rtx
- memory_address_noforce (mode, x)
- enum machine_mode mode;
- rtx x;
- {
- int ambient_force_addr = flag_force_addr;
- rtx val;
-
- flag_force_addr = 0;
- val = memory_address (mode, x);
- flag_force_addr = ambient_force_addr;
- return val;
- }
-
- /* Convert a mem ref into one with a valid memory address.
- Pass through anything else unchanged. */
-
- rtx
- validize_mem (ref)
- rtx ref;
- {
- if (GET_CODE (ref) != MEM)
- return ref;
- if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
- return ref;
- /* Don't alter REF itself, since that is probably a stack slot. */
- return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
- }
-
- /* Return a modified copy of X with its memory address copied
- into a temporary register to protect it from side effects.
- If X is not a MEM, it is returned unchanged (and not copied).
- Perhaps even if it is a MEM, if there is no need to change it. */
-
- rtx
- stabilize (x)
- rtx x;
- {
- register rtx addr;
- if (GET_CODE (x) != MEM)
- return x;
- addr = XEXP (x, 0);
- if (rtx_unstable_p (addr))
- {
- rtx temp = copy_all_regs (addr);
- rtx mem;
- if (GET_CODE (temp) != REG)
- temp = copy_to_reg (temp);
- mem = gen_rtx (MEM, GET_MODE (x), temp);
-
- /* Mark returned memref with in_struct if it's in an array or
- structure. Copy const and volatile from original memref. */
-
- MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
- RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
- MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
- return mem;
- }
- return x;
- }
-
- /* Copy the value or contents of X to a new temp reg and return that reg. */
-
- rtx
- copy_to_reg (x)
- rtx x;
- {
- register rtx temp = gen_reg_rtx (GET_MODE (x));
-
- /* If not an operand, must be an address with PLUS and MULT so
- do the computation. */
- if (! general_operand (x, VOIDmode))
- x = force_operand (x, temp);
-
- if (x != temp)
- emit_move_insn (temp, x);
-
- return temp;
- }
-
- /* Like copy_to_reg but always give the new register mode Pmode
- in case X is a constant. */
-
- rtx
- copy_addr_to_reg (x)
- rtx x;
- {
- return copy_to_mode_reg (Pmode, x);
- }
-
- /* Like copy_to_reg but always give the new register mode MODE
- in case X is a constant. */
-
- rtx
- copy_to_mode_reg (mode, x)
- enum machine_mode mode;
- rtx x;
- {
- register rtx temp = gen_reg_rtx (mode);
-
- /* If not an operand, must be an address with PLUS and MULT so
- do the computation. */
- if (! general_operand (x, VOIDmode))
- x = force_operand (x, temp);
-
- if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
- abort ();
- if (x != temp)
- emit_move_insn (temp, x);
- return temp;
- }
-
- /* Load X into a register if it is not already one.
- Use mode MODE for the register.
- X should be valid for mode MODE, but it may be a constant which
- is valid for all integer modes; that's why caller must specify MODE.
-
- The caller must not alter the value in the register we return,
- since we mark it as a "constant" register. */
-
- rtx
- force_reg (mode, x)
- enum machine_mode mode;
- rtx x;
- {
- register rtx temp, insn;
-
- if (GET_CODE (x) == REG)
- return x;
- temp = gen_reg_rtx (mode);
- insn = emit_move_insn (temp, x);
- /* Let optimizers know that TEMP's value never changes
- and that X can be substituted for it. */
- if (CONSTANT_P (x))
- {
- rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
-
- if (note)
- XEXP (note, 0) = x;
- else
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
- }
- return temp;
- }
-
- /* If X is a memory ref, copy its contents to a new temp reg and return
- that reg. Otherwise, return X. */
-
- rtx
- force_not_mem (x)
- rtx x;
- {
- register rtx temp;
- if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
- return x;
- temp = gen_reg_rtx (GET_MODE (x));
- emit_move_insn (temp, x);
- return temp;
- }
-
- /* Copy X to TARGET (if it's nonzero and a reg)
- or to a new temp reg and return that reg.
- MODE is the mode to use for X in case it is a constant. */
-
- rtx
- copy_to_suggested_reg (x, target, mode)
- rtx x, target;
- enum machine_mode mode;
- {
- register rtx temp;
-
- if (target && GET_CODE (target) == REG)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- emit_move_insn (temp, x);
- return temp;
- }
-
- /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
- This pops when ADJUST is positive. ADJUST need not be constant. */
-
- void
- adjust_stack (adjust)
- rtx adjust;
- {
- rtx temp;
- adjust = protect_from_queue (adjust, 0);
-
- if (adjust == const0_rtx)
- return;
-
- temp = expand_binop (Pmode,
- #ifdef STACK_GROWS_DOWNWARD
- add_optab,
- #else
- sub_optab,
- #endif
- stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
- OPTAB_LIB_WIDEN);
-
- if (temp != stack_pointer_rtx)
- emit_move_insn (stack_pointer_rtx, temp);
- }
-
- /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
- This pushes when ADJUST is positive. ADJUST need not be constant. */
-
- void
- anti_adjust_stack (adjust)
- rtx adjust;
- {
- rtx temp;
- adjust = protect_from_queue (adjust, 0);
-
- if (adjust == const0_rtx)
- return;
-
- temp = expand_binop (Pmode,
- #ifdef STACK_GROWS_DOWNWARD
- sub_optab,
- #else
- add_optab,
- #endif
- stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
- OPTAB_LIB_WIDEN);
-
- if (temp != stack_pointer_rtx)
- emit_move_insn (stack_pointer_rtx, temp);
- }
-
- /* Round the size of a block to be pushed up to the boundary required
- by this machine. SIZE is the desired size, which need not be constant. */
-
- rtx
- round_push (size)
- rtx size;
- {
- #ifdef STACK_BOUNDARY
- int align = STACK_BOUNDARY / BITS_PER_UNIT;
- if (align == 1)
- return size;
- if (GET_CODE (size) == CONST_INT)
- {
- int new = (INTVAL (size) + align - 1) / align * align;
- if (INTVAL (size) != new)
- size = GEN_INT (new);
- }
- else
- {
- size = expand_divmod (0, CEIL_DIV_EXPR, Pmode, size, GEN_INT (align),
- NULL_RTX, 1);
- size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
- }
- #endif /* STACK_BOUNDARY */
- return size;
- }
-
- /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
- to a previously-created save area. If no save area has been allocated,
- this function will allocate one. If a save area is specified, it
- must be of the proper mode.
-
- The insns are emitted after insn AFTER, if nonzero, otherwise the insns
- are emitted at the current position. */
-
- void
- emit_stack_save (save_level, psave, after)
- enum save_level save_level;
- rtx *psave;
- rtx after;
- {
- rtx sa = *psave;
- /* The default is that we use a move insn and save in a Pmode object. */
- rtx (*fcn) () = gen_move_insn;
- enum machine_mode mode = Pmode;
-
- /* See if this machine has anything special to do for this kind of save. */
- switch (save_level)
- {
- #ifdef HAVE_save_stack_block
- case SAVE_BLOCK:
- if (HAVE_save_stack_block)
- {
- fcn = gen_save_stack_block;
- mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
- }
- break;
- #endif
- #ifdef HAVE_save_stack_function
- case SAVE_FUNCTION:
- if (HAVE_save_stack_function)
- {
- fcn = gen_save_stack_function;
- mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
- }
- break;
- #endif
- #ifdef HAVE_save_stack_nonlocal
- case SAVE_NONLOCAL:
- if (HAVE_save_stack_nonlocal)
- {
- fcn = gen_save_stack_nonlocal;
- mode = insn_operand_mode[CODE_FOR_save_stack_nonlocal][0];
- }
- break;
- #endif
- }
-
- /* If there is no save area and we have to allocate one, do so. Otherwise
- verify the save area is the proper mode. */
-
- if (sa == 0)
- {
- if (mode != VOIDmode)
- {
- if (save_level == SAVE_NONLOCAL)
- *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
- else
- *psave = sa = gen_reg_rtx (mode);
- }
- }
- else
- {
- if (mode == VOIDmode || GET_MODE (sa) != mode)
- abort ();
- }
-
- if (sa != 0)
- sa = validize_mem (sa);
-
- if (after)
- {
- rtx seq;
-
- start_sequence ();
- emit_insn (fcn (sa, stack_pointer_rtx));
- seq = gen_sequence ();
- end_sequence ();
- emit_insn_after (seq, after);
- }
- else
- emit_insn (fcn (sa, stack_pointer_rtx));
- }
-
- /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
- area made by emit_stack_save. If it is zero, we have nothing to do.
-
- Put any emitted insns after insn AFTER, if nonzero, otherwise at
- current position. */
-
- void
- emit_stack_restore (save_level, sa, after)
- enum save_level save_level;
- rtx after;
- rtx sa;
- {
- /* The default is that we use a move insn. */
- rtx (*fcn) () = gen_move_insn;
-
- /* See if this machine has anything special to do for this kind of save. */
- switch (save_level)
- {
- #ifdef HAVE_restore_stack_block
- case SAVE_BLOCK:
- if (HAVE_restore_stack_block)
- fcn = gen_restore_stack_block;
- break;
- #endif
- #ifdef HAVE_restore_stack_function
- case SAVE_FUNCTION:
- if (HAVE_restore_stack_function)
- fcn = gen_restore_stack_function;
- break;
- #endif
- #ifdef HAVE_restore_stack_nonlocal
-
- case SAVE_NONLOCAL:
- if (HAVE_restore_stack_nonlocal)
- fcn = gen_restore_stack_nonlocal;
- break;
- #endif
- }
-
- if (sa != 0)
- sa = validize_mem (sa);
-
- if (after)
- {
- rtx seq;
-
- start_sequence ();
- emit_insn (fcn (stack_pointer_rtx, sa));
- seq = gen_sequence ();
- end_sequence ();
- emit_insn_after (seq, after);
- }
- else
- emit_insn (fcn (stack_pointer_rtx, sa));
- }
-
- /* Return an rtx representing the address of an area of memory dynamically
- pushed on the stack. This region of memory is always aligned to
- a multiple of BIGGEST_ALIGNMENT.
-
- Any required stack pointer alignment is preserved.
-
- SIZE is an rtx representing the size of the area.
- TARGET is a place in which the address can be placed.
-
- KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
-
- rtx
- allocate_dynamic_stack_space (size, target, known_align)
- rtx size;
- rtx target;
- int known_align;
- {
- /* Ensure the size is in the proper mode. */
- if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
- size = convert_to_mode (Pmode, size, 1);
-
- /* We will need to ensure that the address we return is aligned to
- BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
- always know its final value at this point in the compilation (it
- might depend on the size of the outgoing parameter lists, for
- example), so we must align the value to be returned in that case.
- (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
- STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
- We must also do an alignment operation on the returned value if
- the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
-
- If we have to align, we must leave space in SIZE for the hole
- that might result from the alignment operation. */
-
- #if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
- #define MUST_ALIGN
- #endif
-
- #if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
- #define MUST_ALIGN
- #endif
-
- #ifdef MUST_ALIGN
-
- #if 0 /* It turns out we must always make extra space, if MUST_ALIGN
- because we must always round the address up at the end,
- because we don't know whether the dynamic offset
- will mess up the desired alignment. */
- /* If we have to round the address up regardless of known_align,
- make extra space regardless, also. */
- if (known_align % BIGGEST_ALIGNMENT != 0)
- #endif
- {
- if (GET_CODE (size) == CONST_INT)
- size = GEN_INT (INTVAL (size)
- + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
- else
- size = expand_binop (Pmode, add_optab, size,
- GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- }
-
- #endif
-
- #ifdef SETJMP_VIA_SAVE_AREA
- /* If setjmp restores regs from a save area in the stack frame,
- avoid clobbering the reg save area. Note that the offset of
- virtual_incoming_args_rtx includes the preallocated stack args space.
- It would be no problem to clobber that, but it's on the wrong side
- of the old save area. */
- {
- rtx dynamic_offset
- = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
- stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
- size = expand_binop (Pmode, add_optab, size, dynamic_offset,
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- }
- #endif /* SETJMP_VIA_SAVE_AREA */
-
- /* Round the size to a multiple of the required stack alignment.
- Since the stack if presumed to be rounded before this allocation,
- this will maintain the required alignment.
-
- If the stack grows downward, we could save an insn by subtracting
- SIZE from the stack pointer and then aligning the stack pointer.
- The problem with this is that the stack pointer may be unaligned
- between the execution of the subtraction and alignment insns and
- some machines do not allow this. Even on those that do, some
- signal handlers malfunction if a signal should occur between those
- insns. Since this is an extremely rare event, we have no reliable
- way of knowing which systems have this problem. So we avoid even
- momentarily mis-aligning the stack. */
-
- #ifdef STACK_BOUNDARY
- /* If we added a variable amount to SIZE,
- we can no longer assume it is aligned. */
- #if !defined (SETJMP_VIA_SAVE_AREA) && !defined (MUST_ALIGN)
- if (known_align % STACK_BOUNDARY != 0)
- #endif
- size = round_push (size);
- #endif
-
- do_pending_stack_adjust ();
-
- /* Don't use a TARGET that isn't a pseudo. */
- if (target == 0 || GET_CODE (target) != REG
- || REGNO (target) < FIRST_PSEUDO_REGISTER)
- target = gen_reg_rtx (Pmode);
-
- mark_reg_pointer (target);
-
- #ifndef STACK_GROWS_DOWNWARD
- emit_move_insn (target, virtual_stack_dynamic_rtx);
- #endif
-
- /* Perform the required allocation from the stack. Some systems do
- this differently than simply incrementing/decrementing from the
- stack pointer. */
- #ifdef HAVE_allocate_stack
- if (HAVE_allocate_stack)
- {
- enum machine_mode mode
- = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
-
- if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
- && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
- (size, mode)))
- size = copy_to_mode_reg (mode, size);
-
- emit_insn (gen_allocate_stack (size));
- }
- else
- #endif
- anti_adjust_stack (size);
-
- #ifdef STACK_GROWS_DOWNWARD
- emit_move_insn (target, virtual_stack_dynamic_rtx);
- #endif
-
- #ifdef MUST_ALIGN
- #if 0 /* Even if we know the stack pointer has enough alignment,
- there's no way to tell whether virtual_stack_dynamic_rtx shares that
- alignment, so we still need to round the address up. */
- if (known_align % BIGGEST_ALIGNMENT != 0)
- #endif
- {
- target = expand_divmod (0, CEIL_DIV_EXPR, Pmode, target,
- GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
- NULL_RTX, 1);
-
- target = expand_mult (Pmode, target,
- GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
- NULL_RTX, 1);
- }
- #endif
-
- /* Some systems require a particular insn to refer to the stack
- to make the pages exist. */
- #ifdef HAVE_probe
- if (HAVE_probe)
- emit_insn (gen_probe ());
- #endif
-
- return target;
- }
-
- /* Return an rtx representing the register or memory location
- in which a scalar value of data type VALTYPE
- was returned by a function call to function FUNC.
- FUNC is a FUNCTION_DECL node if the precise function is known,
- otherwise 0. */
-
- rtx
- hard_function_value (valtype, func)
- tree valtype;
- tree func;
- {
- return FUNCTION_VALUE (valtype, func);
- }
-
- /* Return an rtx representing the register or memory location
- in which a scalar value of mode MODE was returned by a library call. */
-
- rtx
- hard_libcall_value (mode)
- enum machine_mode mode;
- {
- return LIBCALL_VALUE (mode);
- }
-