home *** CD-ROM | disk | FTP | other *** search
- /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
- Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- #include "config.h"
- #include "rtl.h"
- #include "tree.h"
- #include "flags.h"
- #include "insn-flags.h"
- #include "insn-codes.h"
- #include "expr.h"
- #include "insn-config.h"
- #include "recog.h"
- #include <ctype.h>
-
- /* Each optab contains info on how this target machine
- can perform a particular operation
- for all sizes and kinds of operands.
-
- The operation to be performed is often specified
- by passing one of these optabs as an argument.
-
- See expr.h for documentation of these optabs. */
-
- optab add_optab;
- optab sub_optab;
- optab smul_optab;
- optab smul_widen_optab;
- optab umul_widen_optab;
- optab sdiv_optab;
- optab sdivmod_optab;
- optab udiv_optab;
- optab udivmod_optab;
- optab smod_optab;
- optab umod_optab;
- optab flodiv_optab;
- optab ftrunc_optab;
- optab and_optab;
- optab ior_optab;
- optab xor_optab;
- optab ashl_optab;
- optab lshr_optab;
- optab lshl_optab;
- optab ashr_optab;
- optab rotl_optab;
- optab rotr_optab;
- optab smin_optab;
- optab smax_optab;
- optab umin_optab;
- optab umax_optab;
-
- optab mov_optab;
- optab movstrict_optab;
-
- optab neg_optab;
- optab abs_optab;
- optab one_cmpl_optab;
- optab ffs_optab;
- optab sqrt_optab;
- optab sin_optab;
- optab cos_optab;
-
- optab cmp_optab;
- optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
- optab tst_optab;
-
- optab strlen_optab;
-
- /* SYMBOL_REF rtx's for the library functions that are called
- implicitly and not via optabs. */
-
- rtx extendsfdf2_libfunc;
- rtx extendsfxf2_libfunc;
- rtx extendsftf2_libfunc;
- rtx extenddfxf2_libfunc;
- rtx extenddftf2_libfunc;
-
- rtx truncdfsf2_libfunc;
- rtx truncxfsf2_libfunc;
- rtx trunctfsf2_libfunc;
- rtx truncxfdf2_libfunc;
- rtx trunctfdf2_libfunc;
-
- rtx memcpy_libfunc;
- rtx bcopy_libfunc;
- rtx memcmp_libfunc;
- rtx bcmp_libfunc;
- rtx memset_libfunc;
- rtx bzero_libfunc;
-
- rtx eqsf2_libfunc;
- rtx nesf2_libfunc;
- rtx gtsf2_libfunc;
- rtx gesf2_libfunc;
- rtx ltsf2_libfunc;
- rtx lesf2_libfunc;
-
- rtx eqdf2_libfunc;
- rtx nedf2_libfunc;
- rtx gtdf2_libfunc;
- rtx gedf2_libfunc;
- rtx ltdf2_libfunc;
- rtx ledf2_libfunc;
-
- rtx eqxf2_libfunc;
- rtx nexf2_libfunc;
- rtx gtxf2_libfunc;
- rtx gexf2_libfunc;
- rtx ltxf2_libfunc;
- rtx lexf2_libfunc;
-
- rtx eqtf2_libfunc;
- rtx netf2_libfunc;
- rtx gttf2_libfunc;
- rtx getf2_libfunc;
- rtx lttf2_libfunc;
- rtx letf2_libfunc;
-
- rtx floatsisf_libfunc;
- rtx floatdisf_libfunc;
- rtx floattisf_libfunc;
-
- rtx floatsidf_libfunc;
- rtx floatdidf_libfunc;
- rtx floattidf_libfunc;
-
- rtx floatsixf_libfunc;
- rtx floatdixf_libfunc;
- rtx floattixf_libfunc;
-
- rtx floatsitf_libfunc;
- rtx floatditf_libfunc;
- rtx floattitf_libfunc;
-
- rtx fixsfsi_libfunc;
- rtx fixsfdi_libfunc;
- rtx fixsfti_libfunc;
-
- rtx fixdfsi_libfunc;
- rtx fixdfdi_libfunc;
- rtx fixdfti_libfunc;
-
- rtx fixxfsi_libfunc;
- rtx fixxfdi_libfunc;
- rtx fixxfti_libfunc;
-
- rtx fixtfsi_libfunc;
- rtx fixtfdi_libfunc;
- rtx fixtfti_libfunc;
-
- rtx fixunssfsi_libfunc;
- rtx fixunssfdi_libfunc;
- rtx fixunssfti_libfunc;
-
- rtx fixunsdfsi_libfunc;
- rtx fixunsdfdi_libfunc;
- rtx fixunsdfti_libfunc;
-
- rtx fixunsxfsi_libfunc;
- rtx fixunsxfdi_libfunc;
- rtx fixunsxfti_libfunc;
-
- rtx fixunstfsi_libfunc;
- rtx fixunstfdi_libfunc;
- rtx fixunstfti_libfunc;
-
- /* from emit-rtl.c */
- extern rtx gen_highpart ();
-
- /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
- gives the gen_function to make a branch to test that condition. */
-
- rtxfun bcc_gen_fctn[NUM_RTX_CODE];
-
- /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
- gives the insn code to make a store-condition insn
- to test that condition. */
-
- enum insn_code setcc_gen_code[NUM_RTX_CODE];
-
- static void emit_float_lib_cmp ();
-
- /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
- the result of operation CODE applied to OP0 (and OP1 if it is a binary
- operation).
-
- If the last insn does not set TARGET, don't do anything, but return 1.
-
- If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
- don't add the REG_EQUAL note but return 0. Our caller can then try
- again, ensuring that TARGET is not one of the operands. */
-
- static int
- add_equal_note (seq, target, code, op0, op1)
- rtx seq;
- rtx target;
- enum rtx_code code;
- rtx op0, op1;
- {
- rtx set;
- int i;
- rtx note;
-
- if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
- && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
- || GET_CODE (seq) != SEQUENCE
- || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
- || GET_CODE (target) == ZERO_EXTRACT
- || (! rtx_equal_p (SET_DEST (set), target)
- /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
- SUBREG. */
- && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
- || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
- target))))
- return 1;
-
- /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
- besides the last insn. */
- if (reg_overlap_mentioned_p (target, op0)
- || (op1 && reg_overlap_mentioned_p (target, op1)))
- for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
- if (reg_set_p (target, XVECEXP (seq, 0, i)))
- return 0;
-
- if (GET_RTX_CLASS (code) == '1')
- note = gen_rtx (code, GET_MODE (target), op0);
- else
- note = gen_rtx (code, GET_MODE (target), op0, op1);
-
- REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
- = gen_rtx (EXPR_LIST, REG_EQUAL, note,
- REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
-
- return 1;
- }
-
- /* Generate code to perform an operation specified by BINOPTAB
- on operands OP0 and OP1, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
- rtx
- expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
- enum machine_mode mode;
- optab binoptab;
- rtx op0, op1;
- rtx target;
- int unsignedp;
- enum optab_methods methods;
- {
- enum mode_class class;
- enum machine_mode wider_mode;
- register rtx temp;
- int commutative_op = 0;
- int shift_op = (binoptab->code == ASHIFT
- || binoptab->code == ASHIFTRT
- || binoptab->code == LSHIFT
- || binoptab->code == LSHIFTRT
- || binoptab->code == ROTATE
- || binoptab->code == ROTATERT);
- rtx entry_last = get_last_insn ();
- rtx last;
-
- class = GET_MODE_CLASS (mode);
-
- op0 = protect_from_queue (op0, 0);
- op1 = protect_from_queue (op1, 0);
- if (target)
- target = protect_from_queue (target, 1);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- op1 = force_not_mem (op1);
- }
-
- /* If subtracting an integer constant, convert this into an addition of
- the negated constant. */
-
- if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
- {
- op1 = negate_rtx (mode, op1);
- binoptab = add_optab;
- }
-
- /* If we are inside an appropriately-short loop and one operand is an
- expensive constant, force it into a register. */
- if (CONSTANT_P (op0) && preserve_subexpressions_p ()
- && rtx_cost (op0, binoptab->code) > 2)
- op0 = force_reg (mode, op0);
-
- if (CONSTANT_P (op1) && preserve_subexpressions_p ()
- && rtx_cost (op1, binoptab->code) > 2)
- op1 = force_reg (shift_op ? word_mode : mode, op1);
-
- /* Record where to delete back to if we backtrack. */
- last = get_last_insn ();
-
- /* If operation is commutative,
- try to make the first operand a register.
- Even better, try to make it the same as the target.
- Also try to make the last operand a constant. */
- if (GET_RTX_CLASS (binoptab->code) == 'c'
- || binoptab == smul_widen_optab
- || binoptab == umul_widen_optab)
- {
- commutative_op = 1;
-
- if (((target == 0 || GET_CODE (target) == REG)
- ? ((GET_CODE (op1) == REG
- && GET_CODE (op0) != REG)
- || target == op1)
- : rtx_equal_p (op1, target))
- || GET_CODE (op0) == CONST_INT)
- {
- temp = op1;
- op1 = op0;
- op0 = temp;
- }
- }
-
- /* If we can do it with a three-operand insn, do so. */
-
- if (methods != OPTAB_MUST_WIDEN
- && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) binoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- enum machine_mode mode1 = insn_operand_mode[icode][2];
- rtx pat;
- rtx xop0 = op0, xop1 = op1;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- /* If it is a commutative operator and the modes would match
- if we would swap the operands, we can save the conversions. */
- if (commutative_op)
- {
- if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
- && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
- {
- register rtx tmp;
-
- tmp = op0; op0 = op1; op1 = tmp;
- tmp = xop0; xop0 = xop1; xop1 = tmp;
- }
- }
-
- /* In case the insn wants input operands in modes different from
- the result, convert the operands. */
-
- if (GET_MODE (op0) != VOIDmode
- && GET_MODE (op0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- if (GET_MODE (xop1) != VOIDmode
- && GET_MODE (xop1) != mode1)
- xop1 = convert_to_mode (mode1, xop1, unsignedp);
-
- /* Now, if insn's predicates don't allow our operands, put them into
- pseudo regs. */
-
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, mode))
- temp = gen_reg_rtx (mode);
-
- pat = GEN_FCN (icode) (temp, xop0, xop1);
- if (pat)
- {
- /* If PAT is a multi-insn sequence, try to add an appropriate
- REG_EQUAL note to it. If we can't because TEMP conflicts with an
- operand, call ourselves again, this time without a target. */
- if (GET_CODE (pat) == SEQUENCE
- && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
- {
- delete_insns_since (last);
- return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
- unsignedp, methods);
- }
-
- emit_insn (pat);
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* If this is a multiply, see if we can do a widening operation that
- takes operands of this mode and makes a wider mode. */
-
- if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
- && (((unsignedp ? umul_widen_optab : smul_widen_optab)
- ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
- != CODE_FOR_nothing))
- {
- temp = expand_binop (GET_MODE_WIDER_MODE (mode),
- unsignedp ? umul_widen_optab : smul_widen_optab,
- op0, op1, 0, unsignedp, OPTAB_DIRECT);
-
- if (GET_MODE_CLASS (mode) == MODE_INT)
- return gen_lowpart (mode, temp);
- else
- return convert_to_mode (mode, temp, unsignedp);
- }
-
- /* Look for a wider mode of the same class for which we think we
- can open-code the operation. Check for a widening multiply at the
- wider mode as well. */
-
- if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
- || (binoptab == smul_optab
- && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
- && (((unsignedp ? umul_widen_optab : smul_widen_optab)
- ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
- != CODE_FOR_nothing)))
- {
- rtx xop0 = op0, xop1 = op1;
- int no_extend = 0;
-
- /* For certain integer operations, we need not actually extend
- the narrow operands, as long as we will truncate
- the results to the same narrowness. Don't do this when
- WIDER_MODE is wider than a word since a paradoxical SUBREG
- isn't valid for such modes. */
-
- if ((binoptab == ior_optab || binoptab == and_optab
- || binoptab == xor_optab
- || binoptab == add_optab || binoptab == sub_optab
- || binoptab == smul_optab
- || binoptab == ashl_optab || binoptab == lshl_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD)
- no_extend = 1;
-
- /* If an operand is a constant integer, we might as well
- convert it since that is more efficient than using a SUBREG,
- unlike the case for other operands. Similarly for
- SUBREGs that were made due to promoted objects. */
-
- if (no_extend && GET_MODE (xop0) != VOIDmode
- && ! (GET_CODE (xop0) == SUBREG
- && SUBREG_PROMOTED_VAR_P (xop0)))
- xop0 = gen_rtx (SUBREG, wider_mode,
- force_reg (GET_MODE (xop0), xop0), 0);
- else
- xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
-
- if (no_extend && GET_MODE (xop1) != VOIDmode
- && ! (GET_CODE (xop1) == SUBREG
- && SUBREG_PROMOTED_VAR_P (xop1)))
- xop1 = gen_rtx (SUBREG, wider_mode,
- force_reg (GET_MODE (xop1), xop1), 0);
- else
- xop1 = convert_to_mode (wider_mode, xop1, unsignedp);
-
- temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
- unsignedp, OPTAB_DIRECT);
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* These can be done a word at a time. */
- if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx insns;
- rtx equiv_value;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. */
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* Do the actual arithmetic. */
- for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
- {
- rtx target_piece = operand_subword (target, i, 1, mode);
- rtx x = expand_binop (word_mode, binoptab,
- operand_subword_force (op0, i, mode),
- operand_subword_force (op1, i, mode),
- target_piece, unsignedp, methods);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- if (binoptab->code != UNKNOWN)
- equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
- else
- equiv_value = 0;
-
- emit_no_conflict_block (insns, target, op0, op1, equiv_value);
- return target;
- }
-
- /* These can be done a word at a time by propagating carries. */
- if ((binoptab == add_optab || binoptab == sub_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx carry_tmp = gen_reg_rtx (word_mode);
- optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
- int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
- rtx carry_in, carry_out;
- rtx xop0, xop1;
-
- /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
- value is one of those, use it. Otherwise, use 1 since it is the
- one easiest to get. */
- #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
- int normalizep = STORE_FLAG_VALUE;
- #else
- int normalizep = 1;
- #endif
-
- /* Prepare the operands. */
- xop0 = force_reg (mode, op0);
- xop1 = force_reg (mode, op1);
-
- if (target == 0 || GET_CODE (target) != REG
- || target == xop0 || target == xop1)
- target = gen_reg_rtx (mode);
-
- /* Do the actual arithmetic. */
- for (i = 0; i < nwords; i++)
- {
- int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
- rtx target_piece = operand_subword (target, index, 1, mode);
- rtx op0_piece = operand_subword_force (xop0, index, mode);
- rtx op1_piece = operand_subword_force (xop1, index, mode);
- rtx x;
-
- /* Main add/subtract of the input operands. */
- x = expand_binop (word_mode, binoptab,
- op0_piece, op1_piece,
- target_piece, unsignedp, methods);
- if (x == 0)
- break;
-
- if (i + 1 < nwords)
- {
- /* Store carry from main add/subtract. */
- carry_out = gen_reg_rtx (word_mode);
- carry_out = emit_store_flag (carry_out,
- binoptab == add_optab ? LTU : GTU,
- x, op0_piece,
- word_mode, 1, normalizep);
- if (!carry_out)
- break;
- }
-
- if (i > 0)
- {
- /* Add/subtract previous carry to main result. */
- x = expand_binop (word_mode,
- normalizep == 1 ? binoptab : otheroptab,
- x, carry_in,
- target_piece, 1, methods);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
-
- if (i + 1 < nwords)
- {
- /* THIS CODE HAS NOT BEEN TESTED. */
- /* Get out carry from adding/subtracting carry in. */
- carry_tmp = emit_store_flag (carry_tmp,
- binoptab == add_optab
- ? LTU : GTU,
- x, carry_in,
- word_mode, 1, normalizep);
- /* Logical-ior the two poss. carry together. */
- carry_out = expand_binop (word_mode, ior_optab,
- carry_out, carry_tmp,
- carry_out, 0, methods);
- if (!carry_out)
- break;
- }
- }
-
- carry_in = carry_out;
- }
-
- if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
- {
- rtx temp;
-
- temp = emit_move_insn (target, target);
- REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
- gen_rtx (binoptab->code, mode, xop0, xop1),
- REG_NOTES (temp));
- return target;
- }
- else
- delete_insns_since (last);
- }
-
- /* If we want to multiply two two-word values and have normal and widening
- multiplies of single-word values, we can do this with three smaller
- multiplications. Note that we do not make a REG_NO_CONFLICT block here
- because we are not operating on one word at a time.
-
- The multiplication proceeds as follows:
- _______________________
- [__op0_high_|__op0_low__]
- _______________________
- * [__op1_high_|__op1_low__]
- _______________________________________________
- _______________________
- (1) [__op0_low__*__op1_low__]
- _______________________
- (2a) [__op0_low__*__op1_high_]
- _______________________
- (2b) [__op0_high_*__op1_low__]
- _______________________
- (3) [__op0_high_*__op1_high_]
-
-
- This gives a 4-word result. Since we are only interested in the
- lower 2 words, partial result (3) and the upper words of (2a) and
- (2b) don't need to be calculated. Hence (2a) and (2b) can be
- calculated using non-widening multiplication.
-
- (1), however, needs to be calculated with an unsigned widening
- multiplication. If this operation is not directly supported we
- try using a signed widening multiplication and adjust the result.
- This adjustment works as follows:
-
- If both operands are positive then no adjustment is needed.
-
- If the operands have different signs, for example op0_low < 0 and
- op1_low >= 0, the instruction treats the most significant bit of
- op0_low as a sign bit instead of a bit with significance
- 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
- with 2**BITS_PER_WORD - op0_low, and two's complements the
- result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
- the result.
-
- Similarly, if both operands are negative, we need to add
- (op0_low + op1_low) * 2**BITS_PER_WORD.
-
- We use a trick to adjust quickly. We logically shift op0_low right
- (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
- op0_high (op1_high) before it is used to calculate 2b (2a). If no
- logical shift exists, we do an arithmetic right shift and subtract
- the 0 or -1. */
-
- if (binoptab == smul_optab
- && class == MODE_INT
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && ((umul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)
- || (smul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)))
- {
- int low = (WORDS_BIG_ENDIAN ? 1 : 0);
- int high = (WORDS_BIG_ENDIAN ? 0 : 1);
- rtx op0_high = operand_subword_force (op0, high, mode);
- rtx op0_low = operand_subword_force (op0, low, mode);
- rtx op1_high = operand_subword_force (op1, high, mode);
- rtx op1_low = operand_subword_force (op1, low, mode);
- rtx product = 0;
- rtx op0_xhigh;
- rtx op1_xhigh;
-
- /* If the target is the same as one of the inputs, don't use it. This
- prevents problems with the REG_EQUAL note. */
- if (target == op0 || target == op1)
- target = 0;
-
- /* Multiply the two lower words to get a double-word product.
- If unsigned widening multiplication is available, use that;
- otherwise use the signed form and compensate. */
-
- if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
- target, 1, OPTAB_DIRECT);
-
- /* If we didn't succeed, delete everything we did so far. */
- if (product == 0)
- delete_insns_since (last);
- else
- op0_xhigh = op0_high, op1_xhigh = op1_high;
- }
-
- if (product == 0
- && smul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)
- {
- rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
- product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
- target, 1, OPTAB_DIRECT);
- op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
- NULL_RTX, 1, OPTAB_DIRECT);
- if (op0_xhigh)
- op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
- op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT);
- else
- {
- op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
- NULL_RTX, 0, OPTAB_DIRECT);
- if (op0_xhigh)
- op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
- op0_xhigh, op0_xhigh, 0,
- OPTAB_DIRECT);
- }
-
- op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
- NULL_RTX, 1, OPTAB_DIRECT);
- if (op1_xhigh)
- op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
- op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT);
- else
- {
- op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
- NULL_RTX, 0, OPTAB_DIRECT);
- if (op1_xhigh)
- op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
- op1_xhigh, op1_xhigh, 0,
- OPTAB_DIRECT);
- }
- }
-
- /* If we have been able to directly compute the product of the
- low-order words of the operands and perform any required adjustments
- of the operands, we proceed by trying two more multiplications
- and then computing the appropriate sum.
-
- We have checked above that the required addition is provided.
- Full-word addition will normally always succeed, especially if
- it is provided at all, so we don't worry about its failure. The
- multiplication may well fail, however, so we do handle that. */
-
- if (product && op0_xhigh && op1_xhigh)
- {
- rtx product_piece;
- rtx product_high = operand_subword (product, high, 1, mode);
- rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
- NULL_RTX, 0, OPTAB_DIRECT);
-
- if (temp)
- {
- product_piece = expand_binop (word_mode, add_optab, temp,
- product_high, product_high,
- 0, OPTAB_LIB_WIDEN);
- if (product_piece != product_high)
- emit_move_insn (product_high, product_piece);
-
- temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
- NULL_RTX, 0, OPTAB_DIRECT);
-
- product_piece = expand_binop (word_mode, add_optab, temp,
- product_high, product_high,
- 0, OPTAB_LIB_WIDEN);
- if (product_piece != product_high)
- emit_move_insn (product_high, product_piece);
-
- temp = emit_move_insn (product, product);
- REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
- gen_rtx (MULT, mode, op0, op1),
- REG_NOTES (temp));
-
- return product;
- }
- }
-
- /* If we get here, we couldn't do it for some reason even though we
- originally thought we could. Delete anything we've emitted in
- trying to do it. */
-
- delete_insns_since (last);
- }
-
- /* We need to open-code the complex type operations: '+, -, * and /' */
-
- /* At this point we allow operations between two similar complex
- numbers, and also if one of the operands is not a complex number
- but rather of MODE_FLOAT or MODE_INT. However, the caller
- must make sure that the MODE of the non-complex operand matches
- the SUBMODE of the complex operand. */
-
- if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
- {
- rtx real0 = (rtx) 0;
- rtx imag0 = (rtx) 0;
- rtx real1 = (rtx) 0;
- rtx imag1 = (rtx) 0;
- rtx realr;
- rtx imagr;
- rtx res;
- rtx seq;
- rtx equiv_value;
-
- /* Find the correct mode for the real and imaginary parts */
- enum machine_mode submode
- = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
- class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
- 0);
-
- if (submode == BLKmode)
- abort ();
-
- if (! target)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- realr = gen_realpart (submode, target);
- imagr = gen_imagpart (submode, target);
-
- if (GET_MODE (op0) == mode)
- {
- real0 = gen_realpart (submode, op0);
- imag0 = gen_imagpart (submode, op0);
- }
- else
- real0 = op0;
-
- if (GET_MODE (op1) == mode)
- {
- real1 = gen_realpart (submode, op1);
- imag1 = gen_imagpart (submode, op1);
- }
- else
- real1 = op1;
-
- if (! real0 || ! real1 || ! (imag0 || imag1))
- abort ();
-
- switch (binoptab->code)
- {
- case PLUS:
- case MINUS:
- res = expand_binop (submode, binoptab, real0, real1,
- realr, unsignedp, methods);
- if (res != realr)
- emit_move_insn (realr, res);
-
- if (imag0 && imag1)
- res = expand_binop (submode, binoptab, imag0, imag1,
- imagr, unsignedp, methods);
- else if (imag0)
- res = imag0;
- else if (binoptab->code == MINUS)
- res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
- else
- res = imag1;
-
- if (res != imagr)
- emit_move_insn (imagr, res);
- break;
-
- case MULT:
- /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
-
- res = expand_binop (submode, binoptab, real0, real1,
- realr, unsignedp, methods);
-
- if (imag0 && imag1)
- {
- rtx temp =
- expand_binop (submode, sub_optab, res,
- expand_binop (submode, binoptab, imag0, imag1,
- 0, unsignedp, methods),
- realr, unsignedp, methods);
-
- if (temp != realr)
- emit_move_insn (realr, temp);
-
- res = expand_binop (submode, add_optab,
- expand_binop (submode, binoptab,
- real0, imag1,
- 0, unsignedp, methods),
- expand_binop (submode, binoptab,
- real1, imag0,
- 0, unsignedp, methods),
- imagr, unsignedp, methods);
- if (res != imagr)
- emit_move_insn (imagr, res);
- }
- else
- {
- if (res != realr)
- emit_move_insn (realr, res);
-
- if (imag0)
- res = expand_binop (submode, binoptab,
- real1, imag0, imagr, unsignedp, methods);
- else
- res = expand_binop (submode, binoptab,
- real0, imag1, imagr, unsignedp, methods);
- if (res != imagr)
- emit_move_insn (imagr, res);
- }
- break;
-
- case DIV:
- /* (c+id)/(a+ib) == ((c+id)*(a-ib))/(a*a+b*b) */
-
- if (! imag1)
- {
- /* Simply divide the real and imaginary parts by `a' */
- res = expand_binop (submode, binoptab, real0, real1,
- realr, unsignedp, methods);
- if (res != realr)
- emit_move_insn (realr, res);
-
- res = expand_binop (submode, binoptab, imag0, real1,
- imagr, unsignedp, methods);
- if (res != imagr)
- emit_move_insn (imagr, res);
- }
- else /* Divisor is of complex type */
- { /* X/(a+ib) */
-
- rtx divisor;
- rtx real_t;
- rtx imag_t;
-
- optab mulopt = unsignedp ? umul_widen_optab : smul_optab;
-
- /* Divisor: c*c + d*d */
- divisor = expand_binop (submode, add_optab,
- expand_binop (submode, mulopt,
- real1, real1,
- 0, unsignedp, methods),
- expand_binop (submode, mulopt,
- imag1, imag1,
- 0, unsignedp, methods),
- 0, unsignedp, methods);
-
- if (! imag0) /* ((a)(c-id))/divisor */
- { /* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */
- /* Calculate the dividend */
- real_t = expand_binop (submode, mulopt, real0, real1,
- 0, unsignedp, methods);
-
- imag_t
- = expand_unop (submode, neg_optab,
- expand_binop (submode, mulopt, real0, imag1,
- 0, unsignedp, methods),
- 0, unsignedp);
- }
- else /* ((a+ib)(c-id))/divider */
- {
- /* Calculate the dividend */
- real_t = expand_binop (submode, add_optab,
- expand_binop (submode, mulopt,
- real0, real1,
- 0, unsignedp, methods),
- expand_binop (submode, mulopt,
- imag0, imag1,
- 0, unsignedp, methods),
- 0, unsignedp, methods);
-
- imag_t = expand_binop (submode, sub_optab,
- expand_binop (submode, mulopt,
- imag0, real1,
- 0, unsignedp, methods),
- expand_binop (submode, mulopt,
- real0, imag1,
- 0, unsignedp, methods),
- 0, unsignedp, methods);
-
- }
-
- res = expand_binop (submode, binoptab, real_t, divisor,
- realr, unsignedp, methods);
- if (res != realr)
- emit_move_insn (realr, res);
-
- res = expand_binop (submode, binoptab, imag_t, divisor,
- imagr, unsignedp, methods);
- if (res != imagr)
- emit_move_insn (imagr, res);
- }
- break;
-
- default:
- abort ();
- }
-
- seq = get_insns ();
- end_sequence ();
-
- if (binoptab->code != UNKNOWN)
- equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
- else
- equiv_value = 0;
-
- emit_no_conflict_block (seq, target, op0, op1, equiv_value);
-
- return target;
- }
-
- /* It can't be open-coded in this mode.
- Use a library call if one is available and caller says that's ok. */
-
- if (binoptab->handlers[(int) mode].libfunc
- && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
- {
- rtx insns;
- rtx funexp = binoptab->handlers[(int) mode].libfunc;
- rtx op1x = op1;
- enum machine_mode op1_mode = mode;
-
- start_sequence ();
-
- if (shift_op)
- {
- op1_mode = word_mode;
- /* Specify unsigned here,
- since negative shift counts are meaningless. */
- op1x = convert_to_mode (word_mode, op1, 1);
- }
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- emit_library_call (binoptab->handlers[(int) mode].libfunc,
- 1, mode, 2, op0, mode, op1x, op1_mode);
-
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (mode);
- emit_libcall_block (insns, target, hard_libcall_value (mode),
- gen_rtx (binoptab->code, mode, op0, op1));
-
- return target;
- }
-
- delete_insns_since (last);
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
- || methods == OPTAB_MUST_WIDEN))
- {
- /* Caller says, don't even try. */
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Compute the value of METHODS to pass to recursive calls.
- Don't allow widening to be tried recursively. */
-
- methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
-
- /* Look for a wider mode of the same class for which it appears we can do
- the operation. */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((binoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || (methods == OPTAB_LIB
- && binoptab->handlers[(int) wider_mode].libfunc))
- {
- rtx xop0 = op0, xop1 = op1;
- int no_extend = 0;
-
- /* For certain integer operations, we need not actually extend
- the narrow operands, as long as we will truncate
- the results to the same narrowness. Don't do this when
- WIDER_MODE is wider than a word since a paradoxical SUBREG
- isn't valid for such modes. */
-
- if ((binoptab == ior_optab || binoptab == and_optab
- || binoptab == xor_optab
- || binoptab == add_optab || binoptab == sub_optab
- || binoptab == smul_optab
- || binoptab == ashl_optab || binoptab == lshl_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD)
- no_extend = 1;
-
- /* If an operand is a constant integer, we might as well
- convert it since that is more efficient than using a SUBREG,
- unlike the case for other operands. Similarly for
- SUBREGs that were made due to promoted objects.*/
-
- if (no_extend && GET_MODE (xop0) != VOIDmode
- && ! (GET_CODE (xop0) == SUBREG
- && SUBREG_PROMOTED_VAR_P (xop0)))
- xop0 = gen_rtx (SUBREG, wider_mode,
- force_reg (GET_MODE (xop0), xop0), 0);
- else
- xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
-
- if (no_extend && GET_MODE (xop1) != VOIDmode
- && ! (GET_CODE (xop1) == SUBREG
- && SUBREG_PROMOTED_VAR_P (xop1)))
- xop1 = gen_rtx (SUBREG, wider_mode,
- force_reg (GET_MODE (xop1), xop1), 0);
- else
- xop1 = convert_to_mode (wider_mode, xop1, unsignedp);
-
- temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
- unsignedp, methods);
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Expand a binary operator which has both signed and unsigned forms.
- UOPTAB is the optab for unsigned operations, and SOPTAB is for
- signed operations.
-
- If we widen unsigned operands, we may use a signed wider operation instead
- of an unsigned wider operation, since the result would be the same. */
-
- rtx
- sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
- enum machine_mode mode;
- optab uoptab, soptab;
- rtx op0, op1, target;
- int unsignedp;
- enum optab_methods methods;
- {
- register rtx temp;
- optab direct_optab = unsignedp ? uoptab : soptab;
- struct optab wide_soptab;
-
- /* Do it without widening, if possible. */
- temp = expand_binop (mode, direct_optab, op0, op1, target,
- unsignedp, OPTAB_DIRECT);
- if (temp || methods == OPTAB_DIRECT)
- return temp;
-
- /* Try widening to a signed int. Make a fake signed optab that
- hides any signed insn for direct use. */
- wide_soptab = *soptab;
- wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
- wide_soptab.handlers[(int) mode].libfunc = 0;
-
- temp = expand_binop (mode, &wide_soptab, op0, op1, target,
- unsignedp, OPTAB_WIDEN);
-
- /* For unsigned operands, try widening to an unsigned int. */
- if (temp == 0 && unsignedp)
- temp = expand_binop (mode, uoptab, op0, op1, target,
- unsignedp, OPTAB_WIDEN);
- if (temp || methods == OPTAB_WIDEN)
- return temp;
-
- /* Use the right width lib call if that exists. */
- temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
- if (temp || methods == OPTAB_LIB)
- return temp;
-
- /* Must widen and use a lib call, use either signed or unsigned. */
- temp = expand_binop (mode, &wide_soptab, op0, op1, target,
- unsignedp, methods);
- if (temp != 0)
- return temp;
- if (unsignedp)
- return expand_binop (mode, uoptab, op0, op1, target,
- unsignedp, methods);
- return 0;
- }
-
- /* Generate code to perform an operation specified by BINOPTAB
- on operands OP0 and OP1, with two results to TARG1 and TARG2.
- We assume that the order of the operands for the instruction
- is TARG0, OP0, OP1, TARG1, which would fit a pattern like
- [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
-
- Either TARG0 or TARG1 may be zero, but what that means is that
- that result is not actually wanted. We will generate it into
- a dummy pseudo-reg and discard it. They may not both be zero.
-
- Returns 1 if this operation can be performed; 0 if not. */
-
- int
- expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
- optab binoptab;
- rtx op0, op1;
- rtx targ0, targ1;
- int unsignedp;
- {
- enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
- enum mode_class class;
- enum machine_mode wider_mode;
- rtx entry_last = get_last_insn ();
- rtx last;
-
- class = GET_MODE_CLASS (mode);
-
- op0 = protect_from_queue (op0, 0);
- op1 = protect_from_queue (op1, 0);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- op1 = force_not_mem (op1);
- }
-
- /* If we are inside an appropriately-short loop and one operand is an
- expensive constant, force it into a register. */
- if (CONSTANT_P (op0) && preserve_subexpressions_p ()
- && rtx_cost (op0, binoptab->code) > 2)
- op0 = force_reg (mode, op0);
-
- if (CONSTANT_P (op1) && preserve_subexpressions_p ()
- && rtx_cost (op1, binoptab->code) > 2)
- op1 = force_reg (mode, op1);
-
- if (targ0)
- targ0 = protect_from_queue (targ0, 1);
- else
- targ0 = gen_reg_rtx (mode);
- if (targ1)
- targ1 = protect_from_queue (targ1, 1);
- else
- targ1 = gen_reg_rtx (mode);
-
- /* Record where to go back to if we fail. */
- last = get_last_insn ();
-
- if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) binoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- enum machine_mode mode1 = insn_operand_mode[icode][2];
- rtx pat;
- rtx xop0 = op0, xop1 = op1;
-
- /* In case this insn wants input operands in modes different from the
- result, convert the operands. */
- if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
- xop1 = convert_to_mode (mode1, xop1, unsignedp);
-
- /* Now, if insn doesn't accept these operands, put them into pseudos. */
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- /* We could handle this, but we should always be called with a pseudo
- for our targets and all insns should take them as outputs. */
- if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
- || ! (*insn_operand_predicate[icode][3]) (targ1, mode))
- abort ();
-
- pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
- if (pat)
- {
- emit_insn (pat);
- return 1;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (binoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- register rtx t0 = gen_reg_rtx (wider_mode);
- register rtx t1 = gen_reg_rtx (wider_mode);
-
- if (expand_twoval_binop (binoptab,
- convert_to_mode (wider_mode, op0,
- unsignedp),
- convert_to_mode (wider_mode, op1,
- unsignedp),
- t0, t1, unsignedp))
- {
- convert_move (targ0, t0, unsignedp);
- convert_move (targ1, t1, unsignedp);
- return 1;
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Generate code to perform an operation specified by UNOPTAB
- on operand OP0, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
- rtx
- expand_unop (mode, unoptab, op0, target, unsignedp)
- enum machine_mode mode;
- optab unoptab;
- rtx op0;
- rtx target;
- int unsignedp;
- {
- enum mode_class class;
- enum machine_mode wider_mode;
- register rtx temp;
- rtx last = get_last_insn ();
- rtx pat;
-
- class = GET_MODE_CLASS (mode);
-
- op0 = protect_from_queue (op0, 0);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- }
-
- if (target)
- target = protect_from_queue (target, 1);
-
- if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) unoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- rtx xop0 = op0;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- if (GET_MODE (xop0) != VOIDmode
- && GET_MODE (xop0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- /* Now, if insn doesn't accept our operand, put it into a pseudo. */
-
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, mode))
- temp = gen_reg_rtx (mode);
-
- pat = GEN_FCN (icode) (temp, xop0);
- if (pat)
- {
- if (GET_CODE (pat) == SEQUENCE
- && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
- {
- delete_insns_since (last);
- return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
- }
-
- emit_insn (pat);
-
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we open-code it in a wider mode? */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
- {
- rtx xop0 = op0;
-
- /* For certain operations, we need not actually extend
- the narrow operand, as long as we will truncate the
- results to the same narrowness. But it is faster to
- convert a SUBREG due to mode promotion. */
-
- if ((unoptab == neg_optab || unoptab == one_cmpl_optab)
- && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD
- && class == MODE_INT
- && ! (GET_CODE (xop0) == SUBREG
- && SUBREG_PROMOTED_VAR_P (xop0)))
- xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0);
- else
- xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
-
- temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
- unsignedp);
-
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* These can be done a word at a time. */
- if (unoptab == one_cmpl_optab
- && class == MODE_INT
- && GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx insns;
-
- if (target == 0 || target == op0)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* Do the actual arithmetic. */
- for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
- {
- rtx target_piece = operand_subword (target, i, 1, mode);
- rtx x = expand_unop (word_mode, unoptab,
- operand_subword_force (op0, i, mode),
- target_piece, unsignedp);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- emit_no_conflict_block (insns, target, op0, NULL_RTX,
- gen_rtx (unoptab->code, mode, op0));
- return target;
- }
-
- /* Open-code the complex negation operation. */
- else if (unoptab == neg_optab
- && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
- {
- rtx target_piece;
- rtx x;
- rtx seq;
-
- /* Find the correct mode for the real and imaginary parts */
- enum machine_mode submode
- = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
- class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
- 0);
-
- if (submode == BLKmode)
- abort ();
-
- if (target == 0)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- target_piece = gen_imagpart (submode, target);
- x = expand_unop (submode, unoptab,
- gen_imagpart (submode, op0),
- target_piece, unsignedp);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
-
- target_piece = gen_realpart (submode, target);
- x = expand_unop (submode, unoptab,
- gen_realpart (submode, op0),
- target_piece, unsignedp);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
-
- seq = get_insns ();
- end_sequence ();
-
- emit_no_conflict_block (seq, target, op0, 0,
- gen_rtx (unoptab->code, mode, op0));
- return target;
- }
-
- /* Now try a library call in this mode. */
- if (unoptab->handlers[(int) mode].libfunc)
- {
- rtx insns;
- rtx funexp = unoptab->handlers[(int) mode].libfunc;
-
- start_sequence ();
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- emit_library_call (unoptab->handlers[(int) mode].libfunc,
- 1, mode, 1, op0, mode);
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (mode);
- emit_libcall_block (insns, target, hard_libcall_value (mode),
- gen_rtx (unoptab->code, mode, op0));
-
- return target;
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((unoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || unoptab->handlers[(int) wider_mode].libfunc)
- {
- rtx xop0 = op0;
-
- /* For certain operations, we need not actually extend
- the narrow operand, as long as we will truncate the
- results to the same narrowness. */
-
- if ((unoptab == neg_optab || unoptab == one_cmpl_optab)
- && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD
- && class == MODE_INT
- && ! (GET_CODE (xop0) == SUBREG
- && SUBREG_PROMOTED_VAR_P (xop0)))
- xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0);
- else
- xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
-
- temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
- unsignedp);
-
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- return 0;
- }
-
- /* Emit code to compute the absolute value of OP0, with result to
- TARGET if convenient. (TARGET may be 0.) The return value says
- where the result actually is to be found.
-
- MODE is the mode of the operand; the mode of the result is
- different but can be deduced from MODE.
-
- UNSIGNEDP is relevant for complex integer modes. */
-
- rtx
- expand_complex_abs (mode, op0, target, unsignedp)
- enum machine_mode mode;
- rtx op0;
- rtx target;
- int unsignedp;
- {
- enum mode_class class = GET_MODE_CLASS (mode);
- enum machine_mode wider_mode;
- register rtx temp;
- rtx entry_last = get_last_insn ();
- rtx last;
- rtx pat;
-
- /* Find the correct mode for the real and imaginary parts. */
- enum machine_mode submode
- = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
- class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
- 0);
-
- if (submode == BLKmode)
- abort ();
-
- op0 = protect_from_queue (op0, 0);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- }
-
- last = get_last_insn ();
-
- if (target)
- target = protect_from_queue (target, 1);
-
- if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) abs_optab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- rtx xop0 = op0;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (submode);
-
- if (GET_MODE (xop0) != VOIDmode
- && GET_MODE (xop0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- /* Now, if insn doesn't accept our operand, put it into a pseudo. */
-
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, submode))
- temp = gen_reg_rtx (submode);
-
- pat = GEN_FCN (icode) (temp, xop0);
- if (pat)
- {
- if (GET_CODE (pat) == SEQUENCE
- && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
- {
- delete_insns_since (last);
- return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
- }
-
- emit_insn (pat);
-
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we open-code it in a wider mode? */
-
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
- {
- rtx xop0 = op0;
-
- xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
- temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
-
- if (temp)
- {
- if (class != MODE_COMPLEX_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (submode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (submode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* Open-code the complex absolute-value operation
- if we can open-code sqrt. Otherwise it's not worth while. */
- if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
- {
- rtx real, imag, total;
-
- real = gen_realpart (submode, op0);
- imag = gen_imagpart (submode, op0);
- /* Square both parts. */
- real = expand_mult (mode, real, real, NULL_RTX, 0);
- imag = expand_mult (mode, imag, imag, NULL_RTX, 0);
- /* Sum the parts. */
- total = expand_binop (submode, add_optab, real, imag, 0,
- 0, OPTAB_LIB_WIDEN);
- /* Get sqrt in TARGET. Set TARGET to where the result is. */
- target = expand_unop (submode, sqrt_optab, total, target, 0);
- if (target == 0)
- delete_insns_since (last);
- else
- return target;
- }
-
- /* Now try a library call in this mode. */
- if (abs_optab->handlers[(int) mode].libfunc)
- {
- rtx insns;
- rtx funexp = abs_optab->handlers[(int) mode].libfunc;
-
- start_sequence ();
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- emit_library_call (abs_optab->handlers[(int) mode].libfunc,
- 1, mode, 1, op0, mode);
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (submode);
- emit_libcall_block (insns, target, hard_libcall_value (submode),
- gen_rtx (abs_optab->code, mode, op0));
-
- return target;
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((abs_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || abs_optab->handlers[(int) wider_mode].libfunc)
- {
- rtx xop0 = op0;
-
- xop0 = convert_to_mode (wider_mode, xop0, unsignedp);
-
- temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
-
- if (temp)
- {
- if (class != MODE_COMPLEX_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (submode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (submode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Generate an instruction whose insn-code is INSN_CODE,
- with two operands: an output TARGET and an input OP0.
- TARGET *must* be nonzero, and the output is always stored there.
- CODE is an rtx code such that (CODE OP0) is an rtx that describes
- the value that is stored into TARGET. */
-
- void
- emit_unop_insn (icode, target, op0, code)
- int icode;
- rtx target;
- rtx op0;
- enum rtx_code code;
- {
- register rtx temp;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- rtx pat;
-
- temp = target = protect_from_queue (target, 1);
-
- op0 = protect_from_queue (op0, 0);
-
- if (flag_force_mem)
- op0 = force_not_mem (op0);
-
- /* Now, if insn does not accept our operands, put them into pseudos. */
-
- if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
- || (flag_force_mem && GET_CODE (temp) == MEM))
- temp = gen_reg_rtx (GET_MODE (temp));
-
- pat = GEN_FCN (icode) (temp, op0);
-
- if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
- add_equal_note (pat, temp, code, op0, NULL_RTX);
-
- emit_insn (pat);
-
- if (temp != target)
- emit_move_insn (target, temp);
- }
-
- /* Emit code to perform a series of operations on a multi-word quantity, one
- word at a time.
-
- Such a block is preceded by a CLOBBER of the output, consists of multiple
- insns, each setting one word of the output, and followed by a SET copying
- the output to itself.
-
- Each of the insns setting words of the output receives a REG_NO_CONFLICT
- note indicating that it doesn't conflict with the (also multi-word)
- inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
- notes.
-
- INSNS is a block of code generated to perform the operation, not including
- the CLOBBER and final copy. All insns that compute intermediate values
- are first emitted, followed by the block as described above. Only
- INSNs are allowed in the block; no library calls or jumps may be
- present.
-
- TARGET, OP0, and OP1 are the output and inputs of the operations,
- respectively. OP1 may be zero for a unary operation.
-
- EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
- on the last insn.
-
- If TARGET is not a register, INSNS is simply emitted with no special
- processing.
-
- The final insn emitted is returned. */
-
- rtx
- emit_no_conflict_block (insns, target, op0, op1, equiv)
- rtx insns;
- rtx target;
- rtx op0, op1;
- rtx equiv;
- {
- rtx prev, next, first, last, insn;
-
- if (GET_CODE (target) != REG || reload_in_progress)
- return emit_insns (insns);
-
- /* First emit all insns that do not store into words of the output and remove
- these from the list. */
- for (insn = insns; insn; insn = next)
- {
- rtx set = 0;
- int i;
-
- next = NEXT_INSN (insn);
-
- if (GET_CODE (insn) != INSN)
- abort ();
-
- if (GET_CODE (PATTERN (insn)) == SET)
- set = PATTERN (insn);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
- {
- set = XVECEXP (PATTERN (insn), 0, i);
- break;
- }
- }
-
- if (set == 0)
- abort ();
-
- if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
- {
- if (PREV_INSN (insn))
- NEXT_INSN (PREV_INSN (insn)) = next;
- else
- insns = next;
-
- if (next)
- PREV_INSN (next) = PREV_INSN (insn);
-
- add_insn (insn);
- }
- }
-
- prev = get_last_insn ();
-
- /* Now write the CLOBBER of the output, followed by the setting of each
- of the words, followed by the final copy. */
- if (target != op0 && target != op1)
- emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
-
- for (insn = insns; insn; insn = next)
- {
- next = NEXT_INSN (insn);
- add_insn (insn);
-
- if (op1 && GET_CODE (op1) == REG)
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
- REG_NOTES (insn));
-
- if (op0 && GET_CODE (op0) == REG)
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
- REG_NOTES (insn));
- }
-
- last = emit_move_insn (target, target);
- if (equiv)
- REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
-
- if (prev == 0)
- first = get_insns ();
- else
- first = NEXT_INSN (prev);
-
- /* Encapsulate the block so it gets manipulated as a unit. */
- REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
- REG_NOTES (first));
- REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
-
- return last;
- }
-
- /* Emit code to make a call to a constant function or a library call.
-
- INSNS is a list containing all insns emitted in the call.
- These insns leave the result in RESULT. Our block is to copy RESULT
- to TARGET, which is logically equivalent to EQUIV.
-
- We first emit any insns that set a pseudo on the assumption that these are
- loading constants into registers; doing so allows them to be safely cse'ed
- between blocks. Then we emit all the other insns in the block, followed by
- an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
- note with an operand of EQUIV.
-
- Moving assignments to pseudos outside of the block is done to improve
- the generated code, but is not required to generate correct code,
- hence being unable to move an assignment is not grounds for not making
- a libcall block. There are two reasons why it is safe to leave these
- insns inside the block: First, we know that these pseudos cannot be
- used in generated RTL outside the block since they are created for
- temporary purposes within the block. Second, CSE will not record the
- values of anything set inside a libcall block, so we know they must
- be dead at the end of the block.
-
- Except for the first group of insns (the ones setting pseudos), the
- block is delimited by REG_RETVAL and REG_LIBCALL notes. */
-
- void
- emit_libcall_block (insns, target, result, equiv)
- rtx insns;
- rtx target;
- rtx result;
- rtx equiv;
- {
- rtx prev, next, first, last, insn;
-
- /* First emit all insns that set pseudos. Remove them from the list as
- we go. Avoid insns that set pseudo which were referenced in previous
- insns. These can be generated by move_by_pieces, for example,
- to update an address. */
-
- for (insn = insns; insn; insn = next)
- {
- rtx set = single_set (insn);
-
- next = NEXT_INSN (insn);
-
- if (set != 0 && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
- && (insn == insns
- || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
- && ! reg_used_between_p (SET_DEST (set), insns, insn))))
- {
- if (PREV_INSN (insn))
- NEXT_INSN (PREV_INSN (insn)) = next;
- else
- insns = next;
-
- if (next)
- PREV_INSN (next) = PREV_INSN (insn);
-
- add_insn (insn);
- }
- }
-
- prev = get_last_insn ();
-
- /* Write the remaining insns followed by the final copy. */
-
- for (insn = insns; insn; insn = next)
- {
- next = NEXT_INSN (insn);
-
- add_insn (insn);
- }
-
- last = emit_move_insn (target, result);
- REG_NOTES (last) = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
-
- if (prev == 0)
- first = get_insns ();
- else
- first = NEXT_INSN (prev);
-
- /* Encapsulate the block so it gets manipulated as a unit. */
- REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
- REG_NOTES (first));
- REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
- }
-
- /* Generate code to store zero in X. */
-
- void
- emit_clr_insn (x)
- rtx x;
- {
- emit_move_insn (x, const0_rtx);
- }
-
- /* Generate code to store 1 in X
- assuming it contains zero beforehand. */
-
- void
- emit_0_to_1_insn (x)
- rtx x;
- {
- emit_move_insn (x, const1_rtx);
- }
-
- /* Generate code to compare X with Y
- so that the condition codes are set.
-
- MODE is the mode of the inputs (in case they are const_int).
- UNSIGNEDP nonzero says that X and Y are unsigned;
- this matters if they need to be widened.
-
- If they have mode BLKmode, then SIZE specifies the size of both X and Y,
- and ALIGN specifies the known shared alignment of X and Y.
-
- COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
- It is ignored for fixed-point and block comparisons;
- it is used only for floating-point comparisons. */
-
- void
- emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
- rtx x, y;
- enum rtx_code comparison;
- rtx size;
- enum machine_mode mode;
- int unsignedp;
- int align;
- {
- enum mode_class class;
- enum machine_mode wider_mode;
-
- class = GET_MODE_CLASS (mode);
-
- /* They could both be VOIDmode if both args are immediate constants,
- but we should fold that at an earlier stage.
- With no special code here, this will call abort,
- reminding the programmer to implement such folding. */
-
- if (mode != BLKmode && flag_force_mem)
- {
- x = force_not_mem (x);
- y = force_not_mem (y);
- }
-
- /* If we are inside an appropriately-short loop and one operand is an
- expensive constant, force it into a register. */
- if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
- x = force_reg (mode, x);
-
- if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
- y = force_reg (mode, y);
-
- /* Don't let both operands fail to indicate the mode. */
- if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
- x = force_reg (mode, x);
-
- /* Handle all BLKmode compares. */
-
- if (mode == BLKmode)
- {
- emit_queue ();
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
-
- if (size == 0)
- abort ();
- #ifdef HAVE_cmpstrqi
- if (HAVE_cmpstrqi
- && GET_CODE (size) == CONST_INT
- && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
- {
- enum machine_mode result_mode
- = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
- rtx result = gen_reg_rtx (result_mode);
- emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
- emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
- result_mode, 0, 0);
- }
- else
- #endif
- #ifdef HAVE_cmpstrhi
- if (HAVE_cmpstrhi
- && GET_CODE (size) == CONST_INT
- && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
- {
- enum machine_mode result_mode
- = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
- rtx result = gen_reg_rtx (result_mode);
- emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
- emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
- result_mode, 0, 0);
- }
- else
- #endif
- #ifdef HAVE_cmpstrsi
- if (HAVE_cmpstrsi)
- {
- enum machine_mode result_mode
- = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
- rtx result = gen_reg_rtx (result_mode);
- size = protect_from_queue (size, 0);
- emit_insn (gen_cmpstrsi (result, x, y,
- convert_to_mode (SImode, size, 1),
- GEN_INT (align)));
- emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
- result_mode, 0, 0);
- }
- else
- #endif
- {
- #ifdef TARGET_MEM_FUNCTIONS
- emit_library_call (memcmp_libfunc, 0,
- TYPE_MODE (integer_type_node), 3,
- XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
- size, Pmode);
- #else
- emit_library_call (bcmp_libfunc, 0,
- TYPE_MODE (integer_type_node), 3,
- XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
- size, Pmode);
- #endif
- emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
- const0_rtx, comparison, NULL_RTX,
- TYPE_MODE (integer_type_node), 0, 0);
- }
- return;
- }
-
- /* Handle some compares against zero. */
-
- if (y == CONST0_RTX (mode)
- && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) tst_optab->handlers[(int) mode].insn_code;
-
- emit_queue ();
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
-
- /* Now, if insn does accept these operands, put them into pseudos. */
- if (! (*insn_operand_predicate[icode][0])
- (x, insn_operand_mode[icode][0]))
- x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
-
- emit_insn (GEN_FCN (icode) (x));
- return;
- }
-
- /* Handle compares for which there is a directly suitable insn. */
-
- if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
-
- emit_queue ();
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
-
- /* Now, if insn doesn't accept these operands, put them into pseudos. */
- if (! (*insn_operand_predicate[icode][0])
- (x, insn_operand_mode[icode][0]))
- x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
-
- if (! (*insn_operand_predicate[icode][1])
- (y, insn_operand_mode[icode][1]))
- y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
-
- emit_insn (GEN_FCN (icode) (x, y));
- return;
- }
-
- /* Try widening if we can find a direct insn that way. */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (cmp_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
- x = convert_to_mode (wider_mode, x, unsignedp);
- y = convert_to_mode (wider_mode, y, unsignedp);
- emit_cmp_insn (x, y, comparison, NULL_RTX,
- wider_mode, unsignedp, align);
- return;
- }
- }
- }
-
- /* Handle a lib call just for the mode we are using. */
-
- if (cmp_optab->handlers[(int) mode].libfunc
- && class != MODE_FLOAT)
- {
- rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
- /* If we want unsigned, and this mode has a distinct unsigned
- comparison routine, use that. */
- if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
- libfunc = ucmp_optab->handlers[(int) mode].libfunc;
-
- emit_library_call (libfunc, 1,
- SImode, 2, x, mode, y, mode);
-
- /* Integer comparison returns a result that must be compared against 1,
- so that even if we do an unsigned compare afterward,
- there is still a value that can represent the result "less than". */
-
- emit_cmp_insn (hard_libcall_value (SImode), const1_rtx,
- comparison, NULL_RTX, SImode, unsignedp, 0);
- return;
- }
-
- if (class == MODE_FLOAT)
- emit_float_lib_cmp (x, y, comparison);
-
- else
- abort ();
- }
-
- /* Nonzero if a compare of mode MODE can be done straightforwardly
- (without splitting it into pieces). */
-
- int
- can_compare_p (mode)
- enum machine_mode mode;
- {
- do
- {
- if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
- return 1;
- mode = GET_MODE_WIDER_MODE (mode);
- } while (mode != VOIDmode);
-
- return 0;
- }
-
- /* Emit a library call comparison between floating point X and Y.
- COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
-
- static void
- emit_float_lib_cmp (x, y, comparison)
- rtx x, y;
- enum rtx_code comparison;
- {
- enum machine_mode mode = GET_MODE (x);
- rtx libfunc;
-
- if (mode == SFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqsf2_libfunc;
- break;
-
- case NE:
- libfunc = nesf2_libfunc;
- break;
-
- case GT:
- libfunc = gtsf2_libfunc;
- break;
-
- case GE:
- libfunc = gesf2_libfunc;
- break;
-
- case LT:
- libfunc = ltsf2_libfunc;
- break;
-
- case LE:
- libfunc = lesf2_libfunc;
- break;
- }
- else if (mode == DFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqdf2_libfunc;
- break;
-
- case NE:
- libfunc = nedf2_libfunc;
- break;
-
- case GT:
- libfunc = gtdf2_libfunc;
- break;
-
- case GE:
- libfunc = gedf2_libfunc;
- break;
-
- case LT:
- libfunc = ltdf2_libfunc;
- break;
-
- case LE:
- libfunc = ledf2_libfunc;
- break;
- }
- else if (mode == XFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqxf2_libfunc;
- break;
-
- case NE:
- libfunc = nexf2_libfunc;
- break;
-
- case GT:
- libfunc = gtxf2_libfunc;
- break;
-
- case GE:
- libfunc = gexf2_libfunc;
- break;
-
- case LT:
- libfunc = ltxf2_libfunc;
- break;
-
- case LE:
- libfunc = lexf2_libfunc;
- break;
- }
- else if (mode == TFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqtf2_libfunc;
- break;
-
- case NE:
- libfunc = netf2_libfunc;
- break;
-
- case GT:
- libfunc = gttf2_libfunc;
- break;
-
- case GE:
- libfunc = getf2_libfunc;
- break;
-
- case LT:
- libfunc = lttf2_libfunc;
- break;
-
- case LE:
- libfunc = letf2_libfunc;
- break;
- }
- else
- {
- enum machine_mode wider_mode;
-
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((cmp_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
- {
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
- x = convert_to_mode (wider_mode, x, 0);
- y = convert_to_mode (wider_mode, y, 0);
- emit_float_lib_cmp (x, y, comparison);
- return;
- }
- }
- abort ();
- }
-
- emit_library_call (libfunc, 1,
- SImode, 2, x, mode, y, mode);
-
- emit_cmp_insn (hard_libcall_value (SImode), const0_rtx, comparison,
- NULL_RTX, SImode, 0, 0);
- }
-
- /* Generate code to indirectly jump to a location given in the rtx LOC. */
-
- void
- emit_indirect_jump (loc)
- rtx loc;
- {
- if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
- (loc, VOIDmode)))
- loc = copy_to_mode_reg (insn_operand_mode[(int)CODE_FOR_indirect_jump][0],
- loc);
-
- emit_jump_insn (gen_indirect_jump (loc));
- emit_barrier ();
- }
-
- /* These three functions generate an insn body and return it
- rather than emitting the insn.
-
- They do not protect from queued increments,
- because they may be used 1) in protect_from_queue itself
- and 2) in other passes where there is no queue. */
-
- /* Generate and return an insn body to add Y to X. */
-
- rtx
- gen_add2_insn (x, y)
- rtx x, y;
- {
- int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
- || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
- || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
- abort ();
-
- return (GEN_FCN (icode) (x, x, y));
- }
-
- int
- have_add2_insn (mode)
- enum machine_mode mode;
- {
- return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
- }
-
- /* Generate and return an insn body to subtract Y from X. */
-
- rtx
- gen_sub2_insn (x, y)
- rtx x, y;
- {
- int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
- || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
- || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
- abort ();
-
- return (GEN_FCN (icode) (x, x, y));
- }
-
- int
- have_sub2_insn (mode)
- enum machine_mode mode;
- {
- return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
- }
-
- /* Generate the body of an instruction to copy Y into X. */
-
- rtx
- gen_move_insn (x, y)
- rtx x, y;
- {
- register enum machine_mode mode = GET_MODE (x);
- enum insn_code insn_code;
-
- if (mode == VOIDmode)
- mode = GET_MODE (y);
-
- insn_code = mov_optab->handlers[(int) mode].insn_code;
-
- /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
- find a mode to do it in. If we have a movcc, use it. Otherwise,
- find the MODE_INT mode of the same width. */
-
- if (insn_code == CODE_FOR_nothing)
- {
- enum machine_mode tmode = VOIDmode;
- rtx x1 = x, y1 = y;
-
- if (GET_MODE_CLASS (mode) == MODE_CC && mode != CCmode
- && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
- tmode = CCmode;
- else if (GET_MODE_CLASS (mode) == MODE_CC)
- for (tmode = QImode; tmode != VOIDmode;
- tmode = GET_MODE_WIDER_MODE (tmode))
- if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
- break;
-
- if (tmode == VOIDmode)
- abort ();
-
- /* Get X and Y in TMODE. We can't use gen_lowpart here because it
- may call change_address which is not appropriate if we were
- called when a reload was in progress. We don't have to worry
- about changing the address since the size in bytes is supposed to
- be the same. Copy the MEM to change the mode and move any
- substitutions from the old MEM to the new one. */
-
- if (reload_in_progress)
- {
- x = gen_lowpart_common (tmode, x1);
- if (x == 0 && GET_CODE (x1) == MEM)
- {
- x = gen_rtx (MEM, tmode, XEXP (x1, 0));
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
- MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
- MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
- copy_replacements (x1, x);
- }
-
- y = gen_lowpart_common (tmode, y1);
- if (y == 0 && GET_CODE (y1) == MEM)
- {
- y = gen_rtx (MEM, tmode, XEXP (y1, 0));
- RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
- MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
- MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
- copy_replacements (y1, y);
- }
- }
- else
- {
- x = gen_lowpart (tmode, x);
- y = gen_lowpart (tmode, y);
- }
-
- insn_code = mov_optab->handlers[(int) tmode].insn_code;
- }
-
- return (GEN_FCN (insn_code) (x, y));
- }
-
- /* Tables of patterns for extending one integer mode to another. */
- static enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
-
- /* Return the insn code used to extend FROM_MODE to TO_MODE.
- UNSIGNEDP specifies zero-extension instead of sign-extension. If
- no such operation exists, CODE_FOR_nothing will be returned. */
-
- enum insn_code
- can_extend_p (to_mode, from_mode, unsignedp)
- enum machine_mode to_mode, from_mode;
- int unsignedp;
- {
- return extendtab[(int) to_mode][(int) from_mode][unsignedp];
- }
-
- /* Generate the body of an insn to extend Y (with mode MFROM)
- into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
-
- rtx
- gen_extend_insn (x, y, mto, mfrom, unsignedp)
- rtx x, y;
- enum machine_mode mto, mfrom;
- int unsignedp;
- {
- return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
- }
-
- static void
- init_extends ()
- {
- enum insn_code *p;
-
- for (p = extendtab[0][0];
- p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
- p++)
- *p = CODE_FOR_nothing;
-
- #ifdef HAVE_extendditi2
- if (HAVE_extendditi2)
- extendtab[(int) TImode][(int) DImode][0] = CODE_FOR_extendditi2;
- #endif
- #ifdef HAVE_extendsiti2
- if (HAVE_extendsiti2)
- extendtab[(int) TImode][(int) SImode][0] = CODE_FOR_extendsiti2;
- #endif
- #ifdef HAVE_extendhiti2
- if (HAVE_extendhiti2)
- extendtab[(int) TImode][(int) HImode][0] = CODE_FOR_extendhiti2;
- #endif
- #ifdef HAVE_extendqiti2
- if (HAVE_extendqiti2)
- extendtab[(int) TImode][(int) QImode][0] = CODE_FOR_extendqiti2;
- #endif
- #ifdef HAVE_extendsidi2
- if (HAVE_extendsidi2)
- extendtab[(int) DImode][(int) SImode][0] = CODE_FOR_extendsidi2;
- #endif
- #ifdef HAVE_extendhidi2
- if (HAVE_extendhidi2)
- extendtab[(int) DImode][(int) HImode][0] = CODE_FOR_extendhidi2;
- #endif
- #ifdef HAVE_extendqidi2
- if (HAVE_extendqidi2)
- extendtab[(int) DImode][(int) QImode][0] = CODE_FOR_extendqidi2;
- #endif
- #ifdef HAVE_extendhisi2
- if (HAVE_extendhisi2)
- extendtab[(int) SImode][(int) HImode][0] = CODE_FOR_extendhisi2;
- #endif
- #ifdef HAVE_extendqisi2
- if (HAVE_extendqisi2)
- extendtab[(int) SImode][(int) QImode][0] = CODE_FOR_extendqisi2;
- #endif
- #ifdef HAVE_extendqihi2
- if (HAVE_extendqihi2)
- extendtab[(int) HImode][(int) QImode][0] = CODE_FOR_extendqihi2;
- #endif
-
- #ifdef HAVE_zero_extendditi2
- if (HAVE_zero_extendsiti2)
- extendtab[(int) TImode][(int) DImode][1] = CODE_FOR_zero_extendditi2;
- #endif
- #ifdef HAVE_zero_extendsiti2
- if (HAVE_zero_extendsiti2)
- extendtab[(int) TImode][(int) SImode][1] = CODE_FOR_zero_extendsiti2;
- #endif
- #ifdef HAVE_zero_extendhiti2
- if (HAVE_zero_extendhiti2)
- extendtab[(int) TImode][(int) HImode][1] = CODE_FOR_zero_extendhiti2;
- #endif
- #ifdef HAVE_zero_extendqiti2
- if (HAVE_zero_extendqiti2)
- extendtab[(int) TImode][(int) QImode][1] = CODE_FOR_zero_extendqiti2;
- #endif
- #ifdef HAVE_zero_extendsidi2
- if (HAVE_zero_extendsidi2)
- extendtab[(int) DImode][(int) SImode][1] = CODE_FOR_zero_extendsidi2;
- #endif
- #ifdef HAVE_zero_extendhidi2
- if (HAVE_zero_extendhidi2)
- extendtab[(int) DImode][(int) HImode][1] = CODE_FOR_zero_extendhidi2;
- #endif
- #ifdef HAVE_zero_extendqidi2
- if (HAVE_zero_extendqidi2)
- extendtab[(int) DImode][(int) QImode][1] = CODE_FOR_zero_extendqidi2;
- #endif
- #ifdef HAVE_zero_extendhisi2
- if (HAVE_zero_extendhisi2)
- extendtab[(int) SImode][(int) HImode][1] = CODE_FOR_zero_extendhisi2;
- #endif
- #ifdef HAVE_zero_extendqisi2
- if (HAVE_zero_extendqisi2)
- extendtab[(int) SImode][(int) QImode][1] = CODE_FOR_zero_extendqisi2;
- #endif
- #ifdef HAVE_zero_extendqihi2
- if (HAVE_zero_extendqihi2)
- extendtab[(int) HImode][(int) QImode][1] = CODE_FOR_zero_extendqihi2;
- #endif
- }
-
- /* can_fix_p and can_float_p say whether the target machine
- can directly convert a given fixed point type to
- a given floating point type, or vice versa.
- The returned value is the CODE_FOR_... value to use,
- or CODE_FOR_nothing if these modes cannot be directly converted. */
-
- static enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
- static enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
- static enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
-
- /* *TRUNCP_PTR is set to 1 if it is necessary to output
- an explicit FTRUNC insn before the fix insn; otherwise 0. */
-
- static enum insn_code
- can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
- enum machine_mode fltmode, fixmode;
- int unsignedp;
- int *truncp_ptr;
- {
- *truncp_ptr = 0;
- if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
- return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
-
- if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
- {
- *truncp_ptr = 1;
- return fixtab[(int) fltmode][(int) fixmode][unsignedp];
- }
- return CODE_FOR_nothing;
- }
-
- static enum insn_code
- can_float_p (fltmode, fixmode, unsignedp)
- enum machine_mode fixmode, fltmode;
- int unsignedp;
- {
- return floattab[(int) fltmode][(int) fixmode][unsignedp];
- }
-
- void
- init_fixtab ()
- {
- enum insn_code *p;
- for (p = fixtab[0][0];
- p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
- p++)
- *p = CODE_FOR_nothing;
- for (p = fixtrunctab[0][0];
- p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
- p++)
- *p = CODE_FOR_nothing;
-
- #ifdef HAVE_fixsfqi2
- if (HAVE_fixsfqi2)
- fixtab[(int) SFmode][(int) QImode][0] = CODE_FOR_fixsfqi2;
- #endif
- #ifdef HAVE_fixsfhi2
- if (HAVE_fixsfhi2)
- fixtab[(int) SFmode][(int) HImode][0] = CODE_FOR_fixsfhi2;
- #endif
- #ifdef HAVE_fixsfsi2
- if (HAVE_fixsfsi2)
- fixtab[(int) SFmode][(int) SImode][0] = CODE_FOR_fixsfsi2;
- #endif
- #ifdef HAVE_fixsfdi2
- if (HAVE_fixsfdi2)
- fixtab[(int) SFmode][(int) DImode][0] = CODE_FOR_fixsfdi2;
- #endif
-
- #ifdef HAVE_fixdfqi2
- if (HAVE_fixdfqi2)
- fixtab[(int) DFmode][(int) QImode][0] = CODE_FOR_fixdfqi2;
- #endif
- #ifdef HAVE_fixdfhi2
- if (HAVE_fixdfhi2)
- fixtab[(int) DFmode][(int) HImode][0] = CODE_FOR_fixdfhi2;
- #endif
- #ifdef HAVE_fixdfsi2
- if (HAVE_fixdfsi2)
- fixtab[(int) DFmode][(int) SImode][0] = CODE_FOR_fixdfsi2;
- #endif
- #ifdef HAVE_fixdfdi2
- if (HAVE_fixdfdi2)
- fixtab[(int) DFmode][(int) DImode][0] = CODE_FOR_fixdfdi2;
- #endif
- #ifdef HAVE_fixdfti2
- if (HAVE_fixdfti2)
- fixtab[(int) DFmode][(int) TImode][0] = CODE_FOR_fixdfti2;
- #endif
-
- #ifdef HAVE_fixxfqi2
- if (HAVE_fixxfqi2)
- fixtab[(int) XFmode][(int) QImode][0] = CODE_FOR_fixxfqi2;
- #endif
- #ifdef HAVE_fixxfhi2
- if (HAVE_fixxfhi2)
- fixtab[(int) XFmode][(int) HImode][0] = CODE_FOR_fixxfhi2;
- #endif
- #ifdef HAVE_fixxfsi2
- if (HAVE_fixxfsi2)
- fixtab[(int) XFmode][(int) SImode][0] = CODE_FOR_fixxfsi2;
- #endif
- #ifdef HAVE_fixxfdi2
- if (HAVE_fixxfdi2)
- fixtab[(int) XFmode][(int) DImode][0] = CODE_FOR_fixxfdi2;
- #endif
- #ifdef HAVE_fixxfti2
- if (HAVE_fixxfti2)
- fixtab[(int) XFmode][(int) TImode][0] = CODE_FOR_fixxfti2;
- #endif
-
- #ifdef HAVE_fixtfqi2
- if (HAVE_fixtfqi2)
- fixtab[(int) TFmode][(int) QImode][0] = CODE_FOR_fixtfqi2;
- #endif
- #ifdef HAVE_fixtfhi2
- if (HAVE_fixtfhi2)
- fixtab[(int) TFmode][(int) HImode][0] = CODE_FOR_fixtfhi2;
- #endif
- #ifdef HAVE_fixtfsi2
- if (HAVE_fixtfsi2)
- fixtab[(int) TFmode][(int) SImode][0] = CODE_FOR_fixtfsi2;
- #endif
- #ifdef HAVE_fixtfdi2
- if (HAVE_fixtfdi2)
- fixtab[(int) TFmode][(int) DImode][0] = CODE_FOR_fixtfdi2;
- #endif
- #ifdef HAVE_fixtfti2
- if (HAVE_fixtfti2)
- fixtab[(int) TFmode][(int) TImode][0] = CODE_FOR_fixtfti2;
- #endif
-
- #ifdef HAVE_fixunssfqi2
- if (HAVE_fixunssfqi2)
- fixtab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixunssfqi2;
- #endif
- #ifdef HAVE_fixunssfhi2
- if (HAVE_fixunssfhi2)
- fixtab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixunssfhi2;
- #endif
- #ifdef HAVE_fixunssfsi2
- if (HAVE_fixunssfsi2)
- fixtab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixunssfsi2;
- #endif
- #ifdef HAVE_fixunssfdi2
- if (HAVE_fixunssfdi2)
- fixtab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixunssfdi2;
- #endif
-
- #ifdef HAVE_fixunsdfqi2
- if (HAVE_fixunsdfqi2)
- fixtab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixunsdfqi2;
- #endif
- #ifdef HAVE_fixunsdfhi2
- if (HAVE_fixunsdfhi2)
- fixtab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixunsdfhi2;
- #endif
- #ifdef HAVE_fixunsdfsi2
- if (HAVE_fixunsdfsi2)
- fixtab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixunsdfsi2;
- #endif
- #ifdef HAVE_fixunsdfdi2
- if (HAVE_fixunsdfdi2)
- fixtab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixunsdfdi2;
- #endif
- #ifdef HAVE_fixunsdfti2
- if (HAVE_fixunsdfti2)
- fixtab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixunsdfti2;
- #endif
-
- #ifdef HAVE_fixunsxfqi2
- if (HAVE_fixunsxfqi2)
- fixtab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixunsxfqi2;
- #endif
- #ifdef HAVE_fixunsxfhi2
- if (HAVE_fixunsxfhi2)
- fixtab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixunsxfhi2;
- #endif
- #ifdef HAVE_fixunsxfsi2
- if (HAVE_fixunsxfsi2)
- fixtab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixunsxfsi2;
- #endif
- #ifdef HAVE_fixunsxfdi2
- if (HAVE_fixunsxfdi2)
- fixtab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixunsxfdi2;
- #endif
- #ifdef HAVE_fixunsxfti2
- if (HAVE_fixunsxfti2)
- fixtab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixunsxfti2;
- #endif
-
- #ifdef HAVE_fixunstfqi2
- if (HAVE_fixunstfqi2)
- fixtab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixunstfqi2;
- #endif
- #ifdef HAVE_fixunstfhi2
- if (HAVE_fixunstfhi2)
- fixtab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixunstfhi2;
- #endif
- #ifdef HAVE_fixunstfsi2
- if (HAVE_fixunstfsi2)
- fixtab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixunstfsi2;
- #endif
- #ifdef HAVE_fixunstfdi2
- if (HAVE_fixunstfdi2)
- fixtab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixunstfdi2;
- #endif
- #ifdef HAVE_fixunstfti2
- if (HAVE_fixunstfti2)
- fixtab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixunstfti2;
- #endif
-
- #ifdef HAVE_fix_truncsfqi2
- if (HAVE_fix_truncsfqi2)
- fixtrunctab[(int) SFmode][(int) QImode][0] = CODE_FOR_fix_truncsfqi2;
- #endif
- #ifdef HAVE_fix_truncsfhi2
- if (HAVE_fix_truncsfhi2)
- fixtrunctab[(int) SFmode][(int) HImode][0] = CODE_FOR_fix_truncsfhi2;
- #endif
- #ifdef HAVE_fix_truncsfsi2
- if (HAVE_fix_truncsfsi2)
- fixtrunctab[(int) SFmode][(int) SImode][0] = CODE_FOR_fix_truncsfsi2;
- #endif
- #ifdef HAVE_fix_truncsfdi2
- if (HAVE_fix_truncsfdi2)
- fixtrunctab[(int) SFmode][(int) DImode][0] = CODE_FOR_fix_truncsfdi2;
- #endif
-
- #ifdef HAVE_fix_truncdfqi2
- if (HAVE_fix_truncdfqi2)
- fixtrunctab[(int) DFmode][(int) QImode][0] = CODE_FOR_fix_truncdfqi2;
- #endif
- #ifdef HAVE_fix_truncdfhi2
- if (HAVE_fix_truncdfhi2)
- fixtrunctab[(int) DFmode][(int) HImode][0] = CODE_FOR_fix_truncdfhi2;
- #endif
- #ifdef HAVE_fix_truncdfsi2
- if (HAVE_fix_truncdfsi2)
- fixtrunctab[(int) DFmode][(int) SImode][0] = CODE_FOR_fix_truncdfsi2;
- #endif
- #ifdef HAVE_fix_truncdfdi2
- if (HAVE_fix_truncdfdi2)
- fixtrunctab[(int) DFmode][(int) DImode][0] = CODE_FOR_fix_truncdfdi2;
- #endif
- #ifdef HAVE_fix_truncdfti2
- if (HAVE_fix_truncdfti2)
- fixtrunctab[(int) DFmode][(int) TImode][0] = CODE_FOR_fix_truncdfti2;
- #endif
-
- #ifdef HAVE_fix_truncxfqi2
- if (HAVE_fix_truncxfqi2)
- fixtrunctab[(int) XFmode][(int) QImode][0] = CODE_FOR_fix_truncxfqi2;
- #endif
- #ifdef HAVE_fix_truncxfhi2
- if (HAVE_fix_truncxfhi2)
- fixtrunctab[(int) XFmode][(int) HImode][0] = CODE_FOR_fix_truncxfhi2;
- #endif
- #ifdef HAVE_fix_truncxfsi2
- if (HAVE_fix_truncxfsi2)
- fixtrunctab[(int) XFmode][(int) SImode][0] = CODE_FOR_fix_truncxfsi2;
- #endif
- #ifdef HAVE_fix_truncxfdi2
- if (HAVE_fix_truncxfdi2)
- fixtrunctab[(int) XFmode][(int) DImode][0] = CODE_FOR_fix_truncxfdi2;
- #endif
- #ifdef HAVE_fix_truncxfti2
- if (HAVE_fix_truncxfti2)
- fixtrunctab[(int) XFmode][(int) TImode][0] = CODE_FOR_fix_truncxfti2;
- #endif
-
- #ifdef HAVE_fix_trunctfqi2
- if (HAVE_fix_trunctfqi2)
- fixtrunctab[(int) TFmode][(int) QImode][0] = CODE_FOR_fix_trunctfqi2;
- #endif
- #ifdef HAVE_fix_trunctfhi2
- if (HAVE_fix_trunctfhi2)
- fixtrunctab[(int) TFmode][(int) HImode][0] = CODE_FOR_fix_trunctfhi2;
- #endif
- #ifdef HAVE_fix_trunctfsi2
- if (HAVE_fix_trunctfsi2)
- fixtrunctab[(int) TFmode][(int) SImode][0] = CODE_FOR_fix_trunctfsi2;
- #endif
- #ifdef HAVE_fix_trunctfdi2
- if (HAVE_fix_trunctfdi2)
- fixtrunctab[(int) TFmode][(int) DImode][0] = CODE_FOR_fix_trunctfdi2;
- #endif
- #ifdef HAVE_fix_trunctfti2
- if (HAVE_fix_trunctfti2)
- fixtrunctab[(int) TFmode][(int) TImode][0] = CODE_FOR_fix_trunctfti2;
- #endif
-
- #ifdef HAVE_fixuns_truncsfqi2
- if (HAVE_fixuns_truncsfqi2)
- fixtrunctab[(int) SFmode][(int) QImode][1] = CODE_FOR_fixuns_truncsfqi2;
- #endif
- #ifdef HAVE_fixuns_truncsfhi2
- if (HAVE_fixuns_truncsfhi2)
- fixtrunctab[(int) SFmode][(int) HImode][1] = CODE_FOR_fixuns_truncsfhi2;
- #endif
- #ifdef HAVE_fixuns_truncsfsi2
- if (HAVE_fixuns_truncsfsi2)
- fixtrunctab[(int) SFmode][(int) SImode][1] = CODE_FOR_fixuns_truncsfsi2;
- #endif
- #ifdef HAVE_fixuns_truncsfdi2
- if (HAVE_fixuns_truncsfdi2)
- fixtrunctab[(int) SFmode][(int) DImode][1] = CODE_FOR_fixuns_truncsfdi2;
- #endif
-
- #ifdef HAVE_fixuns_truncdfqi2
- if (HAVE_fixuns_truncdfqi2)
- fixtrunctab[(int) DFmode][(int) QImode][1] = CODE_FOR_fixuns_truncdfqi2;
- #endif
- #ifdef HAVE_fixuns_truncdfhi2
- if (HAVE_fixuns_truncdfhi2)
- fixtrunctab[(int) DFmode][(int) HImode][1] = CODE_FOR_fixuns_truncdfhi2;
- #endif
- #ifdef HAVE_fixuns_truncdfsi2
- if (HAVE_fixuns_truncdfsi2)
- fixtrunctab[(int) DFmode][(int) SImode][1] = CODE_FOR_fixuns_truncdfsi2;
- #endif
- #ifdef HAVE_fixuns_truncdfdi2
- if (HAVE_fixuns_truncdfdi2)
- fixtrunctab[(int) DFmode][(int) DImode][1] = CODE_FOR_fixuns_truncdfdi2;
- #endif
- #ifdef HAVE_fixuns_truncdfti2
- if (HAVE_fixuns_truncdfti2)
- fixtrunctab[(int) DFmode][(int) TImode][1] = CODE_FOR_fixuns_truncdfti2;
- #endif
-
- #ifdef HAVE_fixuns_truncxfqi2
- if (HAVE_fixuns_truncxfqi2)
- fixtrunctab[(int) XFmode][(int) QImode][1] = CODE_FOR_fixuns_truncxfqi2;
- #endif
- #ifdef HAVE_fixuns_truncxfhi2
- if (HAVE_fixuns_truncxfhi2)
- fixtrunctab[(int) XFmode][(int) HImode][1] = CODE_FOR_fixuns_truncxfhi2;
- #endif
- #ifdef HAVE_fixuns_truncxfsi2
- if (HAVE_fixuns_truncxfsi2)
- fixtrunctab[(int) XFmode][(int) SImode][1] = CODE_FOR_fixuns_truncxfsi2;
- #endif
- #ifdef HAVE_fixuns_truncxfdi2
- if (HAVE_fixuns_truncxfdi2)
- fixtrunctab[(int) XFmode][(int) DImode][1] = CODE_FOR_fixuns_truncxfdi2;
- #endif
- #ifdef HAVE_fixuns_truncxfti2
- if (HAVE_fixuns_truncxfti2)
- fixtrunctab[(int) XFmode][(int) TImode][1] = CODE_FOR_fixuns_truncxfti2;
- #endif
-
- #ifdef HAVE_fixuns_trunctfqi2
- if (HAVE_fixuns_trunctfqi2)
- fixtrunctab[(int) TFmode][(int) QImode][1] = CODE_FOR_fixuns_trunctfqi2;
- #endif
- #ifdef HAVE_fixuns_trunctfhi2
- if (HAVE_fixuns_trunctfhi2)
- fixtrunctab[(int) TFmode][(int) HImode][1] = CODE_FOR_fixuns_trunctfhi2;
- #endif
- #ifdef HAVE_fixuns_trunctfsi2
- if (HAVE_fixuns_trunctfsi2)
- fixtrunctab[(int) TFmode][(int) SImode][1] = CODE_FOR_fixuns_trunctfsi2;
- #endif
- #ifdef HAVE_fixuns_trunctfdi2
- if (HAVE_fixuns_trunctfdi2)
- fixtrunctab[(int) TFmode][(int) DImode][1] = CODE_FOR_fixuns_trunctfdi2;
- #endif
- #ifdef HAVE_fixuns_trunctfti2
- if (HAVE_fixuns_trunctfti2)
- fixtrunctab[(int) TFmode][(int) TImode][1] = CODE_FOR_fixuns_trunctfti2;
- #endif
-
- #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
- /* This flag says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one. */
- {
- int i;
- int j;
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- for (j = 0; j < NUM_MACHINE_MODES; j++)
- fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
- }
- #endif
- }
-
- void
- init_floattab ()
- {
- enum insn_code *p;
- for (p = floattab[0][0];
- p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
- p++)
- *p = CODE_FOR_nothing;
-
- #ifdef HAVE_floatqisf2
- if (HAVE_floatqisf2)
- floattab[(int) SFmode][(int) QImode][0] = CODE_FOR_floatqisf2;
- #endif
- #ifdef HAVE_floathisf2
- if (HAVE_floathisf2)
- floattab[(int) SFmode][(int) HImode][0] = CODE_FOR_floathisf2;
- #endif
- #ifdef HAVE_floatsisf2
- if (HAVE_floatsisf2)
- floattab[(int) SFmode][(int) SImode][0] = CODE_FOR_floatsisf2;
- #endif
- #ifdef HAVE_floatdisf2
- if (HAVE_floatdisf2)
- floattab[(int) SFmode][(int) DImode][0] = CODE_FOR_floatdisf2;
- #endif
- #ifdef HAVE_floattisf2
- if (HAVE_floattisf2)
- floattab[(int) SFmode][(int) TImode][0] = CODE_FOR_floattisf2;
- #endif
-
- #ifdef HAVE_floatqidf2
- if (HAVE_floatqidf2)
- floattab[(int) DFmode][(int) QImode][0] = CODE_FOR_floatqidf2;
- #endif
- #ifdef HAVE_floathidf2
- if (HAVE_floathidf2)
- floattab[(int) DFmode][(int) HImode][0] = CODE_FOR_floathidf2;
- #endif
- #ifdef HAVE_floatsidf2
- if (HAVE_floatsidf2)
- floattab[(int) DFmode][(int) SImode][0] = CODE_FOR_floatsidf2;
- #endif
- #ifdef HAVE_floatdidf2
- if (HAVE_floatdidf2)
- floattab[(int) DFmode][(int) DImode][0] = CODE_FOR_floatdidf2;
- #endif
- #ifdef HAVE_floattidf2
- if (HAVE_floattidf2)
- floattab[(int) DFmode][(int) TImode][0] = CODE_FOR_floattidf2;
- #endif
-
- #ifdef HAVE_floatqixf2
- if (HAVE_floatqixf2)
- floattab[(int) XFmode][(int) QImode][0] = CODE_FOR_floatqixf2;
- #endif
- #ifdef HAVE_floathixf2
- if (HAVE_floathixf2)
- floattab[(int) XFmode][(int) HImode][0] = CODE_FOR_floathixf2;
- #endif
- #ifdef HAVE_floatsixf2
- if (HAVE_floatsixf2)
- floattab[(int) XFmode][(int) SImode][0] = CODE_FOR_floatsixf2;
- #endif
- #ifdef HAVE_floatdixf2
- if (HAVE_floatdixf2)
- floattab[(int) XFmode][(int) DImode][0] = CODE_FOR_floatdixf2;
- #endif
- #ifdef HAVE_floattixf2
- if (HAVE_floattixf2)
- floattab[(int) XFmode][(int) TImode][0] = CODE_FOR_floattixf2;
- #endif
-
- #ifdef HAVE_floatqitf2
- if (HAVE_floatqitf2)
- floattab[(int) TFmode][(int) QImode][0] = CODE_FOR_floatqitf2;
- #endif
- #ifdef HAVE_floathitf2
- if (HAVE_floathitf2)
- floattab[(int) TFmode][(int) HImode][0] = CODE_FOR_floathitf2;
- #endif
- #ifdef HAVE_floatsitf2
- if (HAVE_floatsitf2)
- floattab[(int) TFmode][(int) SImode][0] = CODE_FOR_floatsitf2;
- #endif
- #ifdef HAVE_floatditf2
- if (HAVE_floatditf2)
- floattab[(int) TFmode][(int) DImode][0] = CODE_FOR_floatditf2;
- #endif
- #ifdef HAVE_floattitf2
- if (HAVE_floattitf2)
- floattab[(int) TFmode][(int) TImode][0] = CODE_FOR_floattitf2;
- #endif
-
- #ifdef HAVE_floatunsqisf2
- if (HAVE_floatunsqisf2)
- floattab[(int) SFmode][(int) QImode][1] = CODE_FOR_floatunsqisf2;
- #endif
- #ifdef HAVE_floatunshisf2
- if (HAVE_floatunshisf2)
- floattab[(int) SFmode][(int) HImode][1] = CODE_FOR_floatunshisf2;
- #endif
- #ifdef HAVE_floatunssisf2
- if (HAVE_floatunssisf2)
- floattab[(int) SFmode][(int) SImode][1] = CODE_FOR_floatunssisf2;
- #endif
- #ifdef HAVE_floatunsdisf2
- if (HAVE_floatunsdisf2)
- floattab[(int) SFmode][(int) DImode][1] = CODE_FOR_floatunsdisf2;
- #endif
- #ifdef HAVE_floatunstisf2
- if (HAVE_floatunstisf2)
- floattab[(int) SFmode][(int) TImode][1] = CODE_FOR_floatunstisf2;
- #endif
-
- #ifdef HAVE_floatunsqidf2
- if (HAVE_floatunsqidf2)
- floattab[(int) DFmode][(int) QImode][1] = CODE_FOR_floatunsqidf2;
- #endif
- #ifdef HAVE_floatunshidf2
- if (HAVE_floatunshidf2)
- floattab[(int) DFmode][(int) HImode][1] = CODE_FOR_floatunshidf2;
- #endif
- #ifdef HAVE_floatunssidf2
- if (HAVE_floatunssidf2)
- floattab[(int) DFmode][(int) SImode][1] = CODE_FOR_floatunssidf2;
- #endif
- #ifdef HAVE_floatunsdidf2
- if (HAVE_floatunsdidf2)
- floattab[(int) DFmode][(int) DImode][1] = CODE_FOR_floatunsdidf2;
- #endif
- #ifdef HAVE_floatunstidf2
- if (HAVE_floatunstidf2)
- floattab[(int) DFmode][(int) TImode][1] = CODE_FOR_floatunstidf2;
- #endif
-
- #ifdef HAVE_floatunsqixf2
- if (HAVE_floatunsqixf2)
- floattab[(int) XFmode][(int) QImode][1] = CODE_FOR_floatunsqixf2;
- #endif
- #ifdef HAVE_floatunshixf2
- if (HAVE_floatunshixf2)
- floattab[(int) XFmode][(int) HImode][1] = CODE_FOR_floatunshixf2;
- #endif
- #ifdef HAVE_floatunssixf2
- if (HAVE_floatunssixf2)
- floattab[(int) XFmode][(int) SImode][1] = CODE_FOR_floatunssixf2;
- #endif
- #ifdef HAVE_floatunsdixf2
- if (HAVE_floatunsdixf2)
- floattab[(int) XFmode][(int) DImode][1] = CODE_FOR_floatunsdixf2;
- #endif
- #ifdef HAVE_floatunstixf2
- if (HAVE_floatunstixf2)
- floattab[(int) XFmode][(int) TImode][1] = CODE_FOR_floatunstixf2;
- #endif
-
- #ifdef HAVE_floatunsqitf2
- if (HAVE_floatunsqitf2)
- floattab[(int) TFmode][(int) QImode][1] = CODE_FOR_floatunsqitf2;
- #endif
- #ifdef HAVE_floatunshitf2
- if (HAVE_floatunshitf2)
- floattab[(int) TFmode][(int) HImode][1] = CODE_FOR_floatunshitf2;
- #endif
- #ifdef HAVE_floatunssitf2
- if (HAVE_floatunssitf2)
- floattab[(int) TFmode][(int) SImode][1] = CODE_FOR_floatunssitf2;
- #endif
- #ifdef HAVE_floatunsditf2
- if (HAVE_floatunsditf2)
- floattab[(int) TFmode][(int) DImode][1] = CODE_FOR_floatunsditf2;
- #endif
- #ifdef HAVE_floatunstitf2
- if (HAVE_floatunstitf2)
- floattab[(int) TFmode][(int) TImode][1] = CODE_FOR_floatunstitf2;
- #endif
- }
-
- /* Generate code to convert FROM to floating point
- and store in TO. FROM must be fixed point and not VOIDmode.
- UNSIGNEDP nonzero means regard FROM as unsigned.
- Normally this is done by correcting the final value
- if it is negative. */
-
- void
- expand_float (to, from, unsignedp)
- rtx to, from;
- int unsignedp;
- {
- enum insn_code icode;
- register rtx target = to;
- enum machine_mode fmode, imode;
-
- /* Crash now, because we won't be able to decide which mode to use. */
- if (GET_MODE (from) == VOIDmode)
- abort ();
-
- /* Look for an insn to do the conversion. Do it in the specified
- modes if possible; otherwise convert either input, output or both to
- wider mode. If the integer mode is wider than the mode of FROM,
- we can do the conversion signed even if the input is unsigned. */
-
- for (imode = GET_MODE (from); imode != VOIDmode;
- imode = GET_MODE_WIDER_MODE (imode))
- for (fmode = GET_MODE (to); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- {
- int doing_unsigned = unsignedp;
-
- icode = can_float_p (fmode, imode, unsignedp);
- if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
- icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
-
- if (icode != CODE_FOR_nothing)
- {
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (imode != GET_MODE (from))
- from = convert_to_mode (imode, from, unsignedp);
-
- if (fmode != GET_MODE (to))
- target = gen_reg_rtx (fmode);
-
- emit_unop_insn (icode, target, from,
- doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
-
- if (target != to)
- convert_move (to, target, 0);
- return;
- }
- }
-
- #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-
- /* Unsigned integer, and no way to convert directly.
- Convert as signed, then conditionally adjust the result. */
- if (unsignedp)
- {
- rtx label = gen_label_rtx ();
- rtx temp;
- REAL_VALUE_TYPE offset;
-
- emit_queue ();
-
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- /* If we are about to do some arithmetic to correct for an
- unsigned operand, do it in a pseudo-register. */
-
- if (GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER)
- target = gen_reg_rtx (GET_MODE (to));
-
- /* Convert as signed integer to floating. */
- expand_float (target, from, 0);
-
- /* If FROM is negative (and therefore TO is negative),
- correct its value by 2**bitwidth. */
-
- do_pending_stack_adjust ();
- emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0);
- emit_jump_insn (gen_bge (label));
- /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
- Rather than setting up a dconst_dot_5, let's hope SCO
- fixes the bug. */
- offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
- temp = expand_binop (GET_MODE (to), add_optab, target,
- immed_real_const_1 (offset, GET_MODE (to)),
- target, 0, OPTAB_LIB_WIDEN);
- if (temp != target)
- emit_move_insn (target, temp);
- do_pending_stack_adjust ();
- emit_label (label);
- }
- else
- #endif
-
- /* No hardware instruction available; call a library rotine to convert from
- SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
- {
- rtx libfcn;
- rtx insns;
-
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
- from = convert_to_mode (SImode, from, unsignedp);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- if (GET_MODE (to) == SFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsisf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatdisf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattisf_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (to) == DFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsidf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatdidf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattidf_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (to) == XFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsixf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatdixf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattixf_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (to) == TFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsitf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatditf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattitf_libfunc;
- else
- abort ();
- }
- else
- abort ();
-
- start_sequence ();
-
- emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from));
- insns = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
- gen_rtx (FLOAT, GET_MODE (to), from));
- }
-
- /* Copy result to requested destination
- if we have been computing in a temp location. */
-
- if (target != to)
- {
- if (GET_MODE (target) == GET_MODE (to))
- emit_move_insn (to, target);
- else
- convert_move (to, target, 0);
- }
- }
-
- /* expand_fix: generate code to convert FROM to fixed point
- and store in TO. FROM must be floating point. */
-
- static rtx
- ftruncify (x)
- rtx x;
- {
- rtx temp = gen_reg_rtx (GET_MODE (x));
- return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
- }
-
- void
- expand_fix (to, from, unsignedp)
- register rtx to, from;
- int unsignedp;
- {
- enum insn_code icode;
- register rtx target = to;
- enum machine_mode fmode, imode;
- int must_trunc = 0;
- rtx libfcn = 0;
-
- /* We first try to find a pair of modes, one real and one integer, at
- least as wide as FROM and TO, respectively, in which we can open-code
- this conversion. If the integer mode is wider than the mode of TO,
- we can do the conversion either signed or unsigned. */
-
- for (imode = GET_MODE (to); imode != VOIDmode;
- imode = GET_MODE_WIDER_MODE (imode))
- for (fmode = GET_MODE (from); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- {
- int doing_unsigned = unsignedp;
-
- icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
- if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
- icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
-
- if (icode != CODE_FOR_nothing)
- {
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (fmode != GET_MODE (from))
- from = convert_to_mode (fmode, from, 0);
-
- if (must_trunc)
- from = ftruncify (from);
-
- if (imode != GET_MODE (to))
- target = gen_reg_rtx (imode);
-
- emit_unop_insn (icode, target, from,
- doing_unsigned ? UNSIGNED_FIX : FIX);
- if (target != to)
- convert_move (to, target, unsignedp);
- return;
- }
- }
-
- #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- /* For an unsigned conversion, there is one more way to do it.
- If we have a signed conversion, we generate code that compares
- the real value to the largest representable positive number. If if
- is smaller, the conversion is done normally. Otherwise, subtract
- one plus the highest signed number, convert, and add it back.
-
- We only need to check all real modes, since we know we didn't find
- anything with a wider integer mode. */
-
- if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
- for (fmode = GET_MODE (from); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- /* Make sure we won't lose significant bits doing this. */
- if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
- && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
- &must_trunc))
- {
- int bitsize = GET_MODE_BITSIZE (GET_MODE (to));
- REAL_VALUE_TYPE offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
- rtx limit = immed_real_const_1 (offset, fmode);
- rtx lab1 = gen_label_rtx ();
- rtx lab2 = gen_label_rtx ();
- rtx insn;
-
- emit_queue ();
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- if (fmode != GET_MODE (from))
- from = convert_to_mode (fmode, from, 0);
-
- /* See if we need to do the subtraction. */
- do_pending_stack_adjust ();
- emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0);
- emit_jump_insn (gen_bge (lab1));
-
- /* If not, do the signed "fix" and branch around fixup code. */
- expand_fix (to, from, 0);
- emit_jump_insn (gen_jump (lab2));
- emit_barrier ();
-
- /* Otherwise, subtract 2**(N-1), convert to signed number,
- then add 2**(N-1). Do the addition using XOR since this
- will often generate better code. */
- emit_label (lab1);
- target = expand_binop (GET_MODE (from), sub_optab, from, limit,
- NULL_RTX, 0, OPTAB_LIB_WIDEN);
- expand_fix (to, target, 0);
- target = expand_binop (GET_MODE (to), xor_optab, to,
- GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
- to, 1, OPTAB_LIB_WIDEN);
-
- if (target != to)
- emit_move_insn (to, target);
-
- emit_label (lab2);
-
- /* Make a place for a REG_NOTE and add it. */
- insn = emit_move_insn (to, to);
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
- gen_rtx (UNSIGNED_FIX, GET_MODE (to),
- from), REG_NOTES (insn));
-
- return;
- }
- #endif
-
- /* We can't do it with an insn, so use a library call. But first ensure
- that the mode of TO is at least as wide as SImode, since those are the
- only library calls we know about. */
-
- if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
- {
- target = gen_reg_rtx (SImode);
-
- expand_fix (target, from, unsignedp);
- }
- else if (GET_MODE (from) == SFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (from) == DFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (from) == XFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (from) == TFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
- else
- abort ();
- }
- else
- abort ();
-
- if (libfcn)
- {
- rtx insns;
-
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- start_sequence ();
-
- emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from));
- insns = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
- gen_rtx (unsignedp ? FIX : UNSIGNED_FIX,
- GET_MODE (to), from));
- }
-
- if (GET_MODE (to) == GET_MODE (target))
- emit_move_insn (to, target);
- else
- convert_move (to, target, 0);
- }
-
- static optab
- init_optab (code)
- enum rtx_code code;
- {
- int i;
- optab op = (optab) xmalloc (sizeof (struct optab));
- op->code = code;
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- op->handlers[i].insn_code = CODE_FOR_nothing;
- op->handlers[i].libfunc = 0;
- }
- return op;
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab. Each entry is set equal to a string consisting of a leading
- pair of underscores followed by a generic operation name followed by
- a mode name (downshifted to lower case) followed by a single character
- representing the number of operands for the given operation (which is
- usually one of the characters '2', '3', or '4').
-
- OPTABLE is the table in which libfunc fields are to be initialized.
- FIRST_MODE is the first machine mode index in the given optab to
- initialize.
- LAST_MODE is the last machine mode index in the given optab to
- initialize.
- OPNAME is the generic (string) name of the operation.
- SUFFIX is the character which specifies the number of operands for
- the given generic operation.
- */
-
- static void
- init_libfuncs (optable, first_mode, last_mode, opname, suffix)
- register optab optable;
- register char *opname;
- register enum machine_mode first_mode;
- register enum machine_mode last_mode;
- register char suffix;
- {
- register enum machine_mode mode;
- register unsigned opname_len = strlen (opname);
-
- for (mode = first_mode; (int) mode <= (int) last_mode;
- mode = (enum machine_mode) ((int) mode + 1))
- {
- register char *mname = mode_name[(int) mode];
- register unsigned mname_len = strlen (mname);
- register char *libfunc_name
- = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1);
- register char *p;
- register char *q;
-
- p = libfunc_name;
- *p++ = '_';
- *p++ = '_';
- for (q = opname; *q; )
- *p++ = *q++;
- for (q = mname; *q; q++)
- *p++ = tolower (*q);
- *p++ = suffix;
- *p++ = '\0';
- optable->handlers[(int) mode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, libfunc_name);
- }
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all integer mode operations. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
- static void
- init_integral_libfuncs (optable, opname, suffix)
- register optab optable;
- register char *opname;
- register char suffix;
- {
- init_libfuncs (optable, SImode, TImode, opname, suffix);
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all real mode operations. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
- static void
- init_floating_libfuncs (optable, opname, suffix)
- register optab optable;
- register char *opname;
- register char suffix;
- {
- init_libfuncs (optable, SFmode, TFmode, opname, suffix);
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all complex floating modes. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
- static void
- init_complex_libfuncs (optable, opname, suffix)
- register optab optable;
- register char *opname;
- register char suffix;
- {
- init_libfuncs (optable, SCmode, TCmode, opname, suffix);
- }
-
- /* Call this once to initialize the contents of the optabs
- appropriately for the current target machine. */
-
- void
- init_optabs ()
- {
- int i;
-
- init_fixtab ();
- init_floattab ();
- init_extends ();
-
- add_optab = init_optab (PLUS);
- sub_optab = init_optab (MINUS);
- smul_optab = init_optab (MULT);
- smul_widen_optab = init_optab (UNKNOWN);
- umul_widen_optab = init_optab (UNKNOWN);
- sdiv_optab = init_optab (DIV);
- sdivmod_optab = init_optab (UNKNOWN);
- udiv_optab = init_optab (UDIV);
- udivmod_optab = init_optab (UNKNOWN);
- smod_optab = init_optab (MOD);
- umod_optab = init_optab (UMOD);
- flodiv_optab = init_optab (DIV);
- ftrunc_optab = init_optab (UNKNOWN);
- and_optab = init_optab (AND);
- ior_optab = init_optab (IOR);
- xor_optab = init_optab (XOR);
- ashl_optab = init_optab (ASHIFT);
- ashr_optab = init_optab (ASHIFTRT);
- lshl_optab = init_optab (LSHIFT);
- lshr_optab = init_optab (LSHIFTRT);
- rotl_optab = init_optab (ROTATE);
- rotr_optab = init_optab (ROTATERT);
- smin_optab = init_optab (SMIN);
- smax_optab = init_optab (SMAX);
- umin_optab = init_optab (UMIN);
- umax_optab = init_optab (UMAX);
- mov_optab = init_optab (UNKNOWN);
- movstrict_optab = init_optab (UNKNOWN);
- cmp_optab = init_optab (UNKNOWN);
- ucmp_optab = init_optab (UNKNOWN);
- tst_optab = init_optab (UNKNOWN);
- neg_optab = init_optab (NEG);
- abs_optab = init_optab (ABS);
- one_cmpl_optab = init_optab (NOT);
- ffs_optab = init_optab (FFS);
- sqrt_optab = init_optab (SQRT);
- sin_optab = init_optab (UNKNOWN);
- cos_optab = init_optab (UNKNOWN);
- strlen_optab = init_optab (UNKNOWN);
-
- #ifdef HAVE_addqi3
- if (HAVE_addqi3)
- add_optab->handlers[(int) QImode].insn_code = CODE_FOR_addqi3;
- #endif
- #ifdef HAVE_addhi3
- if (HAVE_addhi3)
- add_optab->handlers[(int) HImode].insn_code = CODE_FOR_addhi3;
- #endif
- #ifdef HAVE_addpsi3
- if (HAVE_addpsi3)
- add_optab->handlers[(int) PSImode].insn_code = CODE_FOR_addpsi3;
- #endif
- #ifdef HAVE_addsi3
- if (HAVE_addsi3)
- add_optab->handlers[(int) SImode].insn_code = CODE_FOR_addsi3;
- #endif
- #ifdef HAVE_adddi3
- if (HAVE_adddi3)
- add_optab->handlers[(int) DImode].insn_code = CODE_FOR_adddi3;
- #endif
- #ifdef HAVE_addti3
- if (HAVE_addti3)
- add_optab->handlers[(int) TImode].insn_code = CODE_FOR_addti3;
- #endif
- #ifdef HAVE_addsf3
- if (HAVE_addsf3)
- add_optab->handlers[(int) SFmode].insn_code = CODE_FOR_addsf3;
- #endif
- #ifdef HAVE_adddf3
- if (HAVE_adddf3)
- add_optab->handlers[(int) DFmode].insn_code = CODE_FOR_adddf3;
- #endif
- #ifdef HAVE_addxf3
- if (HAVE_addxf3)
- add_optab->handlers[(int) XFmode].insn_code = CODE_FOR_addxf3;
- #endif
- #ifdef HAVE_addtf3
- if (HAVE_addtf3)
- add_optab->handlers[(int) TFmode].insn_code = CODE_FOR_addtf3;
- #endif
- init_integral_libfuncs (add_optab, "add", '3');
- init_floating_libfuncs (add_optab, "add", '3');
-
- #ifdef HAVE_subqi3
- if (HAVE_subqi3)
- sub_optab->handlers[(int) QImode].insn_code = CODE_FOR_subqi3;
- #endif
- #ifdef HAVE_subhi3
- if (HAVE_subhi3)
- sub_optab->handlers[(int) HImode].insn_code = CODE_FOR_subhi3;
- #endif
- #ifdef HAVE_subpsi3
- if (HAVE_subpsi3)
- sub_optab->handlers[(int) PSImode].insn_code = CODE_FOR_subpsi3;
- #endif
- #ifdef HAVE_subsi3
- if (HAVE_subsi3)
- sub_optab->handlers[(int) SImode].insn_code = CODE_FOR_subsi3;
- #endif
- #ifdef HAVE_subdi3
- if (HAVE_subdi3)
- sub_optab->handlers[(int) DImode].insn_code = CODE_FOR_subdi3;
- #endif
- #ifdef HAVE_subti3
- if (HAVE_subti3)
- sub_optab->handlers[(int) TImode].insn_code = CODE_FOR_subti3;
- #endif
- #ifdef HAVE_subsf3
- if (HAVE_subsf3)
- sub_optab->handlers[(int) SFmode].insn_code = CODE_FOR_subsf3;
- #endif
- #ifdef HAVE_subdf3
- if (HAVE_subdf3)
- sub_optab->handlers[(int) DFmode].insn_code = CODE_FOR_subdf3;
- #endif
- #ifdef HAVE_subxf3
- if (HAVE_subxf3)
- sub_optab->handlers[(int) XFmode].insn_code = CODE_FOR_subxf3;
- #endif
- #ifdef HAVE_subtf3
- if (HAVE_subtf3)
- sub_optab->handlers[(int) TFmode].insn_code = CODE_FOR_subtf3;
- #endif
- init_integral_libfuncs (sub_optab, "sub", '3');
- init_floating_libfuncs (sub_optab, "sub", '3');
-
- #ifdef HAVE_mulqi3
- if (HAVE_mulqi3)
- smul_optab->handlers[(int) QImode].insn_code = CODE_FOR_mulqi3;
- #endif
- #ifdef HAVE_mulhi3
- if (HAVE_mulhi3)
- smul_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulhi3;
- #endif
- #ifdef HAVE_mulpsi3
- if (HAVE_mulpsi3)
- smul_optab->handlers[(int) PSImode].insn_code = CODE_FOR_mulpsi3;
- #endif
- #ifdef HAVE_mulsi3
- if (HAVE_mulsi3)
- smul_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulsi3;
- #endif
- #ifdef HAVE_muldi3
- if (HAVE_muldi3)
- smul_optab->handlers[(int) DImode].insn_code = CODE_FOR_muldi3;
- #endif
- #ifdef HAVE_multi3
- if (HAVE_multi3)
- smul_optab->handlers[(int) TImode].insn_code = CODE_FOR_multi3;
- #endif
- #ifdef HAVE_mulsf3
- if (HAVE_mulsf3)
- smul_optab->handlers[(int) SFmode].insn_code = CODE_FOR_mulsf3;
- #endif
- #ifdef HAVE_muldf3
- if (HAVE_muldf3)
- smul_optab->handlers[(int) DFmode].insn_code = CODE_FOR_muldf3;
- #endif
- #ifdef HAVE_mulxf3
- if (HAVE_mulxf3)
- smul_optab->handlers[(int) XFmode].insn_code = CODE_FOR_mulxf3;
- #endif
- #ifdef HAVE_multf3
- if (HAVE_multf3)
- smul_optab->handlers[(int) TFmode].insn_code = CODE_FOR_multf3;
- #endif
- init_integral_libfuncs (smul_optab, "mul", '3');
- init_floating_libfuncs (smul_optab, "mul", '3');
-
- #ifdef MULSI3_LIBCALL
- smul_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
- #endif
- #ifdef MULDI3_LIBCALL
- smul_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
- #endif
- #ifdef MULTI3_LIBCALL
- smul_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL);
- #endif
-
- #ifdef HAVE_mulqihi3
- if (HAVE_mulqihi3)
- smul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_mulqihi3;
- #endif
- #ifdef HAVE_mulhisi3
- if (HAVE_mulhisi3)
- smul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_mulhisi3;
- #endif
- #ifdef HAVE_mulsidi3
- if (HAVE_mulsidi3)
- smul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_mulsidi3;
- #endif
- #ifdef HAVE_mulditi3
- if (HAVE_mulditi3)
- smul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_mulditi3;
- #endif
-
- #ifdef HAVE_umulqihi3
- if (HAVE_umulqihi3)
- umul_widen_optab->handlers[(int) HImode].insn_code = CODE_FOR_umulqihi3;
- #endif
- #ifdef HAVE_umulhisi3
- if (HAVE_umulhisi3)
- umul_widen_optab->handlers[(int) SImode].insn_code = CODE_FOR_umulhisi3;
- #endif
- #ifdef HAVE_umulsidi3
- if (HAVE_umulsidi3)
- umul_widen_optab->handlers[(int) DImode].insn_code = CODE_FOR_umulsidi3;
- #endif
- #ifdef HAVE_umulditi3
- if (HAVE_umulditi3)
- umul_widen_optab->handlers[(int) TImode].insn_code = CODE_FOR_umulditi3;
- #endif
-
- #ifdef HAVE_divqi3
- if (HAVE_divqi3)
- sdiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_divqi3;
- #endif
- #ifdef HAVE_divhi3
- if (HAVE_divhi3)
- sdiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_divhi3;
- #endif
- #ifdef HAVE_divpsi3
- if (HAVE_divpsi3)
- sdiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_divpsi3;
- #endif
- #ifdef HAVE_divsi3
- if (HAVE_divsi3)
- sdiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_divsi3;
- #endif
- #ifdef HAVE_divdi3
- if (HAVE_divdi3)
- sdiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_divdi3;
- #endif
- #ifdef HAVE_divti3
- if (HAVE_divti3)
- sdiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_divti3;
- #endif
- init_integral_libfuncs (sdiv_optab, "div", '3');
-
- #ifdef DIVSI3_LIBCALL
- sdiv_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
- #endif
- #ifdef DIVDI3_LIBCALL
- sdiv_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
- #endif
- #ifdef DIVTI3_LIBCALL
- sdiv_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL);
- #endif
-
- #ifdef HAVE_udivqi3
- if (HAVE_udivqi3)
- udiv_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivqi3;
- #endif
- #ifdef HAVE_udivhi3
- if (HAVE_udivhi3)
- udiv_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivhi3;
- #endif
- #ifdef HAVE_udivpsi3
- if (HAVE_udivpsi3)
- udiv_optab->handlers[(int) PSImode].insn_code = CODE_FOR_udivpsi3;
- #endif
- #ifdef HAVE_udivsi3
- if (HAVE_udivsi3)
- udiv_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivsi3;
- #endif
- #ifdef HAVE_udivdi3
- if (HAVE_udivdi3)
- udiv_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivdi3;
- #endif
- #ifdef HAVE_udivti3
- if (HAVE_udivti3)
- udiv_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivti3;
- #endif
- init_integral_libfuncs (udiv_optab, "udiv", '3');
-
- #ifdef UDIVSI3_LIBCALL
- udiv_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
- #endif
- #ifdef UDIVDI3_LIBCALL
- udiv_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
- #endif
- #ifdef UDIVTI3_LIBCALL
- udiv_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL);
- #endif
-
- #ifdef HAVE_divmodqi4
- if (HAVE_divmodqi4)
- sdivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_divmodqi4;
- #endif
- #ifdef HAVE_divmodhi4
- if (HAVE_divmodhi4)
- sdivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_divmodhi4;
- #endif
- #ifdef HAVE_divmodsi4
- if (HAVE_divmodsi4)
- sdivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_divmodsi4;
- #endif
- #ifdef HAVE_divmoddi4
- if (HAVE_divmoddi4)
- sdivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_divmoddi4;
- #endif
- #ifdef HAVE_divmodti4
- if (HAVE_divmodti4)
- sdivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_divmodti4;
- #endif
- init_integral_libfuncs (sdivmod_optab, "divmod", '4');
-
- #ifdef HAVE_udivmodqi4
- if (HAVE_udivmodqi4)
- udivmod_optab->handlers[(int) QImode].insn_code = CODE_FOR_udivmodqi4;
- #endif
- #ifdef HAVE_udivmodhi4
- if (HAVE_udivmodhi4)
- udivmod_optab->handlers[(int) HImode].insn_code = CODE_FOR_udivmodhi4;
- #endif
- #ifdef HAVE_udivmodsi4
- if (HAVE_udivmodsi4)
- udivmod_optab->handlers[(int) SImode].insn_code = CODE_FOR_udivmodsi4;
- #endif
- #ifdef HAVE_udivmoddi4
- if (HAVE_udivmoddi4)
- udivmod_optab->handlers[(int) DImode].insn_code = CODE_FOR_udivmoddi4;
- #endif
- #ifdef HAVE_udivmodti4
- if (HAVE_udivmodti4)
- udivmod_optab->handlers[(int) TImode].insn_code = CODE_FOR_udivmodti4;
- #endif
- init_integral_libfuncs (udivmod_optab, "udivmod", '4');
-
- #ifdef HAVE_modqi3
- if (HAVE_modqi3)
- smod_optab->handlers[(int) QImode].insn_code = CODE_FOR_modqi3;
- #endif
- #ifdef HAVE_modhi3
- if (HAVE_modhi3)
- smod_optab->handlers[(int) HImode].insn_code = CODE_FOR_modhi3;
- #endif
- #ifdef HAVE_modpsi3
- if (HAVE_modpsi3)
- smod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_modpsi3;
- #endif
- #ifdef HAVE_modsi3
- if (HAVE_modsi3)
- smod_optab->handlers[(int) SImode].insn_code = CODE_FOR_modsi3;
- #endif
- #ifdef HAVE_moddi3
- if (HAVE_moddi3)
- smod_optab->handlers[(int) DImode].insn_code = CODE_FOR_moddi3;
- #endif
- #ifdef HAVE_modti3
- if (HAVE_modti3)
- smod_optab->handlers[(int) TImode].insn_code = CODE_FOR_modti3;
- #endif
- init_integral_libfuncs (smod_optab, "mod", '3');
-
- #ifdef MODSI3_LIBCALL
- smod_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
- #endif
- #ifdef MODDI3_LIBCALL
- smod_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
- #endif
- #ifdef MODTI3_LIBCALL
- smod_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL);
- #endif
-
- #ifdef HAVE_umodqi3
- if (HAVE_umodqi3)
- umod_optab->handlers[(int) QImode].insn_code = CODE_FOR_umodqi3;
- #endif
- #ifdef HAVE_umodhi3
- if (HAVE_umodhi3)
- umod_optab->handlers[(int) HImode].insn_code = CODE_FOR_umodhi3;
- #endif
- #ifdef HAVE_umodpsi3
- if (HAVE_umodpsi3)
- umod_optab->handlers[(int) PSImode].insn_code = CODE_FOR_umodpsi3;
- #endif
- #ifdef HAVE_umodsi3
- if (HAVE_umodsi3)
- umod_optab->handlers[(int) SImode].insn_code = CODE_FOR_umodsi3;
- #endif
- #ifdef HAVE_umoddi3
- if (HAVE_umoddi3)
- umod_optab->handlers[(int) DImode].insn_code = CODE_FOR_umoddi3;
- #endif
- #ifdef HAVE_umodti3
- if (HAVE_umodti3)
- umod_optab->handlers[(int) TImode].insn_code = CODE_FOR_umodti3;
- #endif
- init_integral_libfuncs (umod_optab, "umod", '3');
-
- #ifdef UMODSI3_LIBCALL
- umod_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
- #endif
- #ifdef UMODDI3_LIBCALL
- umod_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
- #endif
- #ifdef UMODTI3_LIBCALL
- umod_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL);
- #endif
-
- #ifdef HAVE_divsf3
- if (HAVE_divsf3)
- flodiv_optab->handlers[(int) SFmode].insn_code = CODE_FOR_divsf3;
- #endif
- #ifdef HAVE_divdf3
- if (HAVE_divdf3)
- flodiv_optab->handlers[(int) DFmode].insn_code = CODE_FOR_divdf3;
- #endif
- #ifdef HAVE_divxf3
- if (HAVE_divxf3)
- flodiv_optab->handlers[(int) XFmode].insn_code = CODE_FOR_divxf3;
- #endif
- #ifdef HAVE_divtf3
- if (HAVE_divtf3)
- flodiv_optab->handlers[(int) TFmode].insn_code = CODE_FOR_divtf3;
- #endif
- init_floating_libfuncs (flodiv_optab, "div", '3');
-
- #ifdef HAVE_ftruncsf2
- if (HAVE_ftruncsf2)
- ftrunc_optab->handlers[(int) SFmode].insn_code = CODE_FOR_ftruncsf2;
- #endif
- #ifdef HAVE_ftruncdf2
- if (HAVE_ftruncdf2)
- ftrunc_optab->handlers[(int) DFmode].insn_code = CODE_FOR_ftruncdf2;
- #endif
- #ifdef HAVE_ftruncxf2
- if (HAVE_ftruncxf2)
- ftrunc_optab->handlers[(int) XFmode].insn_code = CODE_FOR_ftruncxf2;
- #endif
- #ifdef HAVE_ftrunctf2
- if (HAVE_ftrunctf2)
- ftrunc_optab->handlers[(int) TFmode].insn_code = CODE_FOR_ftrunctf2;
- #endif
- init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
-
- #ifdef HAVE_andqi3
- if (HAVE_andqi3)
- and_optab->handlers[(int) QImode].insn_code = CODE_FOR_andqi3;
- #endif
- #ifdef HAVE_andhi3
- if (HAVE_andhi3)
- and_optab->handlers[(int) HImode].insn_code = CODE_FOR_andhi3;
- #endif
- #ifdef HAVE_andpsi3
- if (HAVE_andpsi3)
- and_optab->handlers[(int) PSImode].insn_code = CODE_FOR_andpsi3;
- #endif
- #ifdef HAVE_andsi3
- if (HAVE_andsi3)
- and_optab->handlers[(int) SImode].insn_code = CODE_FOR_andsi3;
- #endif
- #ifdef HAVE_anddi3
- if (HAVE_anddi3)
- and_optab->handlers[(int) DImode].insn_code = CODE_FOR_anddi3;
- #endif
- #ifdef HAVE_andti3
- if (HAVE_andti3)
- and_optab->handlers[(int) TImode].insn_code = CODE_FOR_andti3;
- #endif
- init_integral_libfuncs (and_optab, "and", '3');
-
- #ifdef HAVE_iorqi3
- if (HAVE_iorqi3)
- ior_optab->handlers[(int) QImode].insn_code = CODE_FOR_iorqi3;
- #endif
- #ifdef HAVE_iorhi3
- if (HAVE_iorhi3)
- ior_optab->handlers[(int) HImode].insn_code = CODE_FOR_iorhi3;
- #endif
- #ifdef HAVE_iorpsi3
- if (HAVE_iorpsi3)
- ior_optab->handlers[(int) PSImode].insn_code = CODE_FOR_iorpsi3;
- #endif
- #ifdef HAVE_iorsi3
- if (HAVE_iorsi3)
- ior_optab->handlers[(int) SImode].insn_code = CODE_FOR_iorsi3;
- #endif
- #ifdef HAVE_iordi3
- if (HAVE_iordi3)
- ior_optab->handlers[(int) DImode].insn_code = CODE_FOR_iordi3;
- #endif
- #ifdef HAVE_iorti3
- if (HAVE_iorti3)
- ior_optab->handlers[(int) TImode].insn_code = CODE_FOR_iorti3;
- #endif
- init_integral_libfuncs (ior_optab, "ior", '3');
-
- #ifdef HAVE_xorqi3
- if (HAVE_xorqi3)
- xor_optab->handlers[(int) QImode].insn_code = CODE_FOR_xorqi3;
- #endif
- #ifdef HAVE_xorhi3
- if (HAVE_xorhi3)
- xor_optab->handlers[(int) HImode].insn_code = CODE_FOR_xorhi3;
- #endif
- #ifdef HAVE_xorpsi3
- if (HAVE_xorpsi3)
- xor_optab->handlers[(int) PSImode].insn_code = CODE_FOR_xorpsi3;
- #endif
- #ifdef HAVE_xorsi3
- if (HAVE_xorsi3)
- xor_optab->handlers[(int) SImode].insn_code = CODE_FOR_xorsi3;
- #endif
- #ifdef HAVE_xordi3
- if (HAVE_xordi3)
- xor_optab->handlers[(int) DImode].insn_code = CODE_FOR_xordi3;
- #endif
- #ifdef HAVE_xorti3
- if (HAVE_xorti3)
- xor_optab->handlers[(int) TImode].insn_code = CODE_FOR_xorti3;
- #endif
- init_integral_libfuncs (xor_optab, "xor", '3');
-
- #ifdef HAVE_ashlqi3
- if (HAVE_ashlqi3)
- ashl_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashlqi3;
- #endif
- #ifdef HAVE_ashlhi3
- if (HAVE_ashlhi3)
- ashl_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashlhi3;
- #endif
- #ifdef HAVE_ashlpsi3
- if (HAVE_ashlpsi3)
- ashl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashlpsi3;
- #endif
- #ifdef HAVE_ashlsi3
- if (HAVE_ashlsi3)
- ashl_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashlsi3;
- #endif
- #ifdef HAVE_ashldi3
- if (HAVE_ashldi3)
- ashl_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashldi3;
- #endif
- #ifdef HAVE_ashlti3
- if (HAVE_ashlti3)
- ashl_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashlti3;
- #endif
- init_integral_libfuncs (ashl_optab, "ashl", '3');
-
- #ifdef HAVE_ashrqi3
- if (HAVE_ashrqi3)
- ashr_optab->handlers[(int) QImode].insn_code = CODE_FOR_ashrqi3;
- #endif
- #ifdef HAVE_ashrhi3
- if (HAVE_ashrhi3)
- ashr_optab->handlers[(int) HImode].insn_code = CODE_FOR_ashrhi3;
- #endif
- #ifdef HAVE_ashrpsi3
- if (HAVE_ashrpsi3)
- ashr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ashrpsi3;
- #endif
- #ifdef HAVE_ashrsi3
- if (HAVE_ashrsi3)
- ashr_optab->handlers[(int) SImode].insn_code = CODE_FOR_ashrsi3;
- #endif
- #ifdef HAVE_ashrdi3
- if (HAVE_ashrdi3)
- ashr_optab->handlers[(int) DImode].insn_code = CODE_FOR_ashrdi3;
- #endif
- #ifdef HAVE_ashrti3
- if (HAVE_ashrti3)
- ashr_optab->handlers[(int) TImode].insn_code = CODE_FOR_ashrti3;
- #endif
- init_integral_libfuncs (ashr_optab, "ashr", '3');
-
- #ifdef HAVE_lshlqi3
- if (HAVE_lshlqi3)
- lshl_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshlqi3;
- #endif
- #ifdef HAVE_lshlhi3
- if (HAVE_lshlhi3)
- lshl_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshlhi3;
- #endif
- #ifdef HAVE_lshlpsi3
- if (HAVE_lshlpsi3)
- lshl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshlpsi3;
- #endif
- #ifdef HAVE_lshlsi3
- if (HAVE_lshlsi3)
- lshl_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshlsi3;
- #endif
- #ifdef HAVE_lshldi3
- if (HAVE_lshldi3)
- lshl_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshldi3;
- #endif
- #ifdef HAVE_lshlti3
- if (HAVE_lshlti3)
- lshl_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshlti3;
- #endif
- init_integral_libfuncs (lshl_optab, "lshl", '3');
-
- #ifdef HAVE_lshrqi3
- if (HAVE_lshrqi3)
- lshr_optab->handlers[(int) QImode].insn_code = CODE_FOR_lshrqi3;
- #endif
- #ifdef HAVE_lshrhi3
- if (HAVE_lshrhi3)
- lshr_optab->handlers[(int) HImode].insn_code = CODE_FOR_lshrhi3;
- #endif
- #ifdef HAVE_lshrpsi3
- if (HAVE_lshrpsi3)
- lshr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_lshrpsi3;
- #endif
- #ifdef HAVE_lshrsi3
- if (HAVE_lshrsi3)
- lshr_optab->handlers[(int) SImode].insn_code = CODE_FOR_lshrsi3;
- #endif
- #ifdef HAVE_lshrdi3
- if (HAVE_lshrdi3)
- lshr_optab->handlers[(int) DImode].insn_code = CODE_FOR_lshrdi3;
- #endif
- #ifdef HAVE_lshrti3
- if (HAVE_lshrti3)
- lshr_optab->handlers[(int) TImode].insn_code = CODE_FOR_lshrti3;
- #endif
- init_integral_libfuncs (lshr_optab, "lshr", '3');
-
- #ifdef HAVE_rotlqi3
- if (HAVE_rotlqi3)
- rotl_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotlqi3;
- #endif
- #ifdef HAVE_rotlhi3
- if (HAVE_rotlhi3)
- rotl_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotlhi3;
- #endif
- #ifdef HAVE_rotlpsi3
- if (HAVE_rotlpsi3)
- rotl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotlpsi3;
- #endif
- #ifdef HAVE_rotlsi3
- if (HAVE_rotlsi3)
- rotl_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotlsi3;
- #endif
- #ifdef HAVE_rotldi3
- if (HAVE_rotldi3)
- rotl_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotldi3;
- #endif
- #ifdef HAVE_rotlti3
- if (HAVE_rotlti3)
- rotl_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotlti3;
- #endif
- init_integral_libfuncs (rotl_optab, "rotl", '3');
-
- #ifdef HAVE_rotrqi3
- if (HAVE_rotrqi3)
- rotr_optab->handlers[(int) QImode].insn_code = CODE_FOR_rotrqi3;
- #endif
- #ifdef HAVE_rotrhi3
- if (HAVE_rotrhi3)
- rotr_optab->handlers[(int) HImode].insn_code = CODE_FOR_rotrhi3;
- #endif
- #ifdef HAVE_rotrpsi3
- if (HAVE_rotrpsi3)
- rotr_optab->handlers[(int) PSImode].insn_code = CODE_FOR_rotrpsi3;
- #endif
- #ifdef HAVE_rotrsi3
- if (HAVE_rotrsi3)
- rotr_optab->handlers[(int) SImode].insn_code = CODE_FOR_rotrsi3;
- #endif
- #ifdef HAVE_rotrdi3
- if (HAVE_rotrdi3)
- rotr_optab->handlers[(int) DImode].insn_code = CODE_FOR_rotrdi3;
- #endif
- #ifdef HAVE_rotrti3
- if (HAVE_rotrti3)
- rotr_optab->handlers[(int) TImode].insn_code = CODE_FOR_rotrti3;
- #endif
- init_integral_libfuncs (rotr_optab, "rotr", '3');
-
- #ifdef HAVE_sminqi3
- if (HAVE_sminqi3)
- smin_optab->handlers[(int) QImode].insn_code = CODE_FOR_sminqi3;
- #endif
- #ifdef HAVE_sminhi3
- if (HAVE_sminhi3)
- smin_optab->handlers[(int) HImode].insn_code = CODE_FOR_sminhi3;
- #endif
- #ifdef HAVE_sminsi3
- if (HAVE_sminsi3)
- smin_optab->handlers[(int) SImode].insn_code = CODE_FOR_sminsi3;
- #endif
- #ifdef HAVE_smindi3
- if (HAVE_smindi3)
- smin_optab->handlers[(int) DImode].insn_code = CODE_FOR_smindi3;
- #endif
- #ifdef HAVE_sminti3
- if (HAVE_sminti3)
- smin_optab->handlers[(int) TImode].insn_code = CODE_FOR_sminti3;
- #endif
- #ifdef HAVE_minsf3
- if (HAVE_minsf3)
- smin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_minsf3;
- #endif
- #ifdef HAVE_mindf3
- if (HAVE_mindf3)
- smin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_mindf3;
- #endif
- #ifdef HAVE_minxf3
- if (HAVE_minxf3)
- smin_optab->handlers[(int) XFmode].insn_code = CODE_FOR_minxf3;
- #endif
- #ifdef HAVE_mintf3
- if (HAVE_mintf3)
- smin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_mintf3;
- #endif
- init_integral_libfuncs (smin_optab, "min", '3');
- init_floating_libfuncs (smin_optab, "min", '3');
-
- #ifdef HAVE_smaxqi3
- if (HAVE_smaxqi3)
- smax_optab->handlers[(int) QImode].insn_code = CODE_FOR_smaxqi3;
- #endif
- #ifdef HAVE_smaxhi3
- if (HAVE_smaxhi3)
- smax_optab->handlers[(int) HImode].insn_code = CODE_FOR_smaxhi3;
- #endif
- #ifdef HAVE_smaxsi3
- if (HAVE_smaxsi3)
- smax_optab->handlers[(int) SImode].insn_code = CODE_FOR_smaxsi3;
- #endif
- #ifdef HAVE_smaxdi3
- if (HAVE_smaxdi3)
- smax_optab->handlers[(int) DImode].insn_code = CODE_FOR_smaxdi3;
- #endif
- #ifdef HAVE_smaxti3
- if (HAVE_smaxti3)
- smax_optab->handlers[(int) TImode].insn_code = CODE_FOR_smaxti3;
- #endif
- #ifdef HAVE_maxsf3
- if (HAVE_maxsf3)
- smax_optab->handlers[(int) SFmode].insn_code = CODE_FOR_maxsf3;
- #endif
- #ifdef HAVE_maxdf3
- if (HAVE_maxdf3)
- smax_optab->handlers[(int) DFmode].insn_code = CODE_FOR_maxdf3;
- #endif
- #ifdef HAVE_maxxf3
- if (HAVE_maxxf3)
- smax_optab->handlers[(int) XFmode].insn_code = CODE_FOR_maxxf3;
- #endif
- #ifdef HAVE_maxtf3
- if (HAVE_maxtf3)
- smax_optab->handlers[(int) TFmode].insn_code = CODE_FOR_maxtf3;
- #endif
- init_integral_libfuncs (smax_optab, "max", '3');
- init_floating_libfuncs (smax_optab, "max", '3');
-
- #ifdef HAVE_uminqi3
- if (HAVE_uminqi3)
- umin_optab->handlers[(int) QImode].insn_code = CODE_FOR_uminqi3;
- #endif
- #ifdef HAVE_uminhi3
- if (HAVE_uminhi3)
- umin_optab->handlers[(int) HImode].insn_code = CODE_FOR_uminhi3;
- #endif
- #ifdef HAVE_uminsi3
- if (HAVE_uminsi3)
- umin_optab->handlers[(int) SImode].insn_code = CODE_FOR_uminsi3;
- #endif
- #ifdef HAVE_umindi3
- if (HAVE_umindi3)
- umin_optab->handlers[(int) DImode].insn_code = CODE_FOR_umindi3;
- #endif
- #ifdef HAVE_uminti3
- if (HAVE_uminti3)
- umin_optab->handlers[(int) TImode].insn_code = CODE_FOR_uminti3;
- #endif
- init_integral_libfuncs (umin_optab, "umin", '3');
-
- #ifdef HAVE_umaxqi3
- if (HAVE_umaxqi3)
- umax_optab->handlers[(int) QImode].insn_code = CODE_FOR_umaxqi3;
- #endif
- #ifdef HAVE_umaxhi3
- if (HAVE_umaxhi3)
- umax_optab->handlers[(int) HImode].insn_code = CODE_FOR_umaxhi3;
- #endif
- #ifdef HAVE_umaxsi3
- if (HAVE_umaxsi3)
- umax_optab->handlers[(int) SImode].insn_code = CODE_FOR_umaxsi3;
- #endif
- #ifdef HAVE_umaxdi3
- if (HAVE_umaxdi3)
- umax_optab->handlers[(int) DImode].insn_code = CODE_FOR_umaxdi3;
- #endif
- #ifdef HAVE_umaxti3
- if (HAVE_umaxti3)
- umax_optab->handlers[(int) TImode].insn_code = CODE_FOR_umaxti3;
- #endif
- init_integral_libfuncs (umax_optab, "umax", '3');
-
- #ifdef HAVE_negqi2
- if (HAVE_negqi2)
- neg_optab->handlers[(int) QImode].insn_code = CODE_FOR_negqi2;
- #endif
- #ifdef HAVE_neghi2
- if (HAVE_neghi2)
- neg_optab->handlers[(int) HImode].insn_code = CODE_FOR_neghi2;
- #endif
- #ifdef HAVE_negpsi2
- if (HAVE_negpsi2)
- neg_optab->handlers[(int) PSImode].insn_code = CODE_FOR_negpsi2;
- #endif
- #ifdef HAVE_negsi2
- if (HAVE_negsi2)
- neg_optab->handlers[(int) SImode].insn_code = CODE_FOR_negsi2;
- #endif
- #ifdef HAVE_negdi2
- if (HAVE_negdi2)
- neg_optab->handlers[(int) DImode].insn_code = CODE_FOR_negdi2;
- #endif
- #ifdef HAVE_negti2
- if (HAVE_negti2)
- neg_optab->handlers[(int) TImode].insn_code = CODE_FOR_negti2;
- #endif
- #ifdef HAVE_negsf2
- if (HAVE_negsf2)
- neg_optab->handlers[(int) SFmode].insn_code = CODE_FOR_negsf2;
- #endif
- #ifdef HAVE_negdf2
- if (HAVE_negdf2)
- neg_optab->handlers[(int) DFmode].insn_code = CODE_FOR_negdf2;
- #endif
- #ifdef HAVE_negxf2
- if (HAVE_negxf2)
- neg_optab->handlers[(int) XFmode].insn_code = CODE_FOR_negxf2;
- #endif
- #ifdef HAVE_negtf2
- if (HAVE_negtf2)
- neg_optab->handlers[(int) TFmode].insn_code = CODE_FOR_negtf2;
- #endif
- init_integral_libfuncs (neg_optab, "neg", '2');
- init_floating_libfuncs (neg_optab, "neg", '2');
-
- #ifdef HAVE_absqi2
- if (HAVE_absqi2)
- abs_optab->handlers[(int) QImode].insn_code = CODE_FOR_absqi2;
- #endif
- #ifdef HAVE_abshi2
- if (HAVE_abshi2)
- abs_optab->handlers[(int) HImode].insn_code = CODE_FOR_abshi2;
- #endif
- #ifdef HAVE_abspsi2
- if (HAVE_abspsi2)
- abs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_abspsi2;
- #endif
- #ifdef HAVE_abssi2
- if (HAVE_abssi2)
- abs_optab->handlers[(int) SImode].insn_code = CODE_FOR_abssi2;
- #endif
- #ifdef HAVE_absdi2
- if (HAVE_absdi2)
- abs_optab->handlers[(int) DImode].insn_code = CODE_FOR_absdi2;
- #endif
- #ifdef HAVE_absti2
- if (HAVE_absti2)
- abs_optab->handlers[(int) TImode].insn_code = CODE_FOR_absti2;
- #endif
- #ifdef HAVE_abssf2
- if (HAVE_abssf2)
- abs_optab->handlers[(int) SFmode].insn_code = CODE_FOR_abssf2;
- #endif
- #ifdef HAVE_absdf2
- if (HAVE_absdf2)
- abs_optab->handlers[(int) DFmode].insn_code = CODE_FOR_absdf2;
- #endif
- #ifdef HAVE_absxf2
- if (HAVE_absxf2)
- abs_optab->handlers[(int) XFmode].insn_code = CODE_FOR_absxf2;
- #endif
- #ifdef HAVE_abstf2
- if (HAVE_abstf2)
- abs_optab->handlers[(int) TFmode].insn_code = CODE_FOR_abstf2;
- #endif
-
- /* Use cabs for DC complex abs, since systems generally have cabs.
- Don't define any libcall for SCmode, so that cabs will be used. */
- abs_optab->handlers[(int) DCmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, "cabs");
-
- #ifdef HAVE_sqrtqi2
- if (HAVE_sqrtqi2)
- sqrt_optab->handlers[(int) QImode].insn_code = CODE_FOR_sqrtqi2;
- #endif
- #ifdef HAVE_sqrthi2
- if (HAVE_sqrthi2)
- sqrt_optab->handlers[(int) HImode].insn_code = CODE_FOR_sqrthi2;
- #endif
- #ifdef HAVE_sqrtpsi2
- if (HAVE_sqrtpsi2)
- sqrt_optab->handlers[(int) PSImode].insn_code = CODE_FOR_sqrtpsi2;
- #endif
- #ifdef HAVE_sqrtsi2
- if (HAVE_sqrtsi2)
- sqrt_optab->handlers[(int) SImode].insn_code = CODE_FOR_sqrtsi2;
- #endif
- #ifdef HAVE_sqrtdi2
- if (HAVE_sqrtdi2)
- sqrt_optab->handlers[(int) DImode].insn_code = CODE_FOR_sqrtdi2;
- #endif
- #ifdef HAVE_sqrtti2
- if (HAVE_sqrtti2)
- sqrt_optab->handlers[(int) TImode].insn_code = CODE_FOR_sqrtti2;
- #endif
- #ifdef HAVE_sqrtsf2
- if (HAVE_sqrtsf2)
- sqrt_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sqrtsf2;
- #endif
- #ifdef HAVE_sqrtdf2
- if (HAVE_sqrtdf2)
- sqrt_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sqrtdf2;
- #endif
- #ifdef HAVE_sqrttf2
- if (HAVE_sqrttf2)
- sqrt_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sqrttf2;
- #endif
- /* No library calls here! If there is no sqrt instruction expand_builtin
- should force the library call. */
-
- #ifdef HAVE_sinsf2
- if (HAVE_sinsf2)
- sin_optab->handlers[(int) SFmode].insn_code = CODE_FOR_sinsf2;
- #endif
- #ifdef HAVE_sindf2
- if (HAVE_sindf2)
- sin_optab->handlers[(int) DFmode].insn_code = CODE_FOR_sindf2;
- #endif
- #ifdef HAVE_sintf2
- if (HAVE_sintf2)
- sin_optab->handlers[(int) TFmode].insn_code = CODE_FOR_sintf2;
- #endif
- /* No library calls here! If there is no sin instruction expand_builtin
- should force the library call. */
-
- #ifdef HAVE_cossf2
- if (HAVE_cossf2)
- cos_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cossf2;
- #endif
- #ifdef HAVE_cosdf2
- if (HAVE_cosdf2)
- cos_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cosdf2;
- #endif
- #ifdef HAVE_costf2
- if (HAVE_costf2)
- cos_optab->handlers[(int) TFmode].insn_code = CODE_FOR_costf2;
- #endif
- /* No library calls here! If there is no cos instruction expand_builtin
- should force the library call. */
-
- #ifdef HAVE_strlenqi
- if (HAVE_strlenqi)
- strlen_optab->handlers[(int) QImode].insn_code = CODE_FOR_strlenqi;
- #endif
- #ifdef HAVE_strlenhi
- if (HAVE_strlenhi)
- strlen_optab->handlers[(int) HImode].insn_code = CODE_FOR_strlenhi;
- #endif
- #ifdef HAVE_strlenpsi
- if (HAVE_strlenpsi)
- strlen_optab->handlers[(int) PSImode].insn_code = CODE_FOR_strlenpsi;
- #endif
- #ifdef HAVE_strlensi
- if (HAVE_strlensi)
- strlen_optab->handlers[(int) SImode].insn_code = CODE_FOR_strlensi;
- #endif
- #ifdef HAVE_strlendi
- if (HAVE_strlendi)
- strlen_optab->handlers[(int) DImode].insn_code = CODE_FOR_strlendi;
- #endif
- #ifdef HAVE_strlenti
- if (HAVE_strlenti)
- strlen_optab->handlers[(int) TImode].insn_code = CODE_FOR_strlenti;
- #endif
- /* No library calls here! If there is no strlen instruction expand_builtin
- should force the library call. */
-
- #ifdef HAVE_one_cmplqi2
- if (HAVE_one_cmplqi2)
- one_cmpl_optab->handlers[(int) QImode].insn_code = CODE_FOR_one_cmplqi2;
- #endif
- #ifdef HAVE_one_cmplhi2
- if (HAVE_one_cmplhi2)
- one_cmpl_optab->handlers[(int) HImode].insn_code = CODE_FOR_one_cmplhi2;
- #endif
- #ifdef HAVE_one_cmplpsi2
- if (HAVE_one_cmplpsi2)
- one_cmpl_optab->handlers[(int) PSImode].insn_code = CODE_FOR_one_cmplpsi2;
- #endif
- #ifdef HAVE_one_cmplsi2
- if (HAVE_one_cmplsi2)
- one_cmpl_optab->handlers[(int) SImode].insn_code = CODE_FOR_one_cmplsi2;
- #endif
- #ifdef HAVE_one_cmpldi2
- if (HAVE_one_cmpldi2)
- one_cmpl_optab->handlers[(int) DImode].insn_code = CODE_FOR_one_cmpldi2;
- #endif
- #ifdef HAVE_one_cmplti2
- if (HAVE_one_cmplti2)
- one_cmpl_optab->handlers[(int) TImode].insn_code = CODE_FOR_one_cmplti2;
- #endif
- init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
-
- #ifdef HAVE_ffsqi2
- if (HAVE_ffsqi2)
- ffs_optab->handlers[(int) QImode].insn_code = CODE_FOR_ffsqi2;
- #endif
- #ifdef HAVE_ffshi2
- if (HAVE_ffshi2)
- ffs_optab->handlers[(int) HImode].insn_code = CODE_FOR_ffshi2;
- #endif
- #ifdef HAVE_ffspsi2
- if (HAVE_ffspsi2)
- ffs_optab->handlers[(int) PSImode].insn_code = CODE_FOR_ffspsi2;
- #endif
- #ifdef HAVE_ffssi2
- if (HAVE_ffssi2)
- ffs_optab->handlers[(int) SImode].insn_code = CODE_FOR_ffssi2;
- #endif
- #ifdef HAVE_ffsdi2
- if (HAVE_ffsdi2)
- ffs_optab->handlers[(int) DImode].insn_code = CODE_FOR_ffsdi2;
- #endif
- #ifdef HAVE_ffsti2
- if (HAVE_ffsti2)
- ffs_optab->handlers[(int) TImode].insn_code = CODE_FOR_ffsti2;
- #endif
- init_integral_libfuncs (ffs_optab, "ffs", '2');
-
- #ifdef HAVE_movqi
- if (HAVE_movqi)
- mov_optab->handlers[(int) QImode].insn_code = CODE_FOR_movqi;
- #endif
- #ifdef HAVE_movhi
- if (HAVE_movhi)
- mov_optab->handlers[(int) HImode].insn_code = CODE_FOR_movhi;
- #endif
- #ifdef HAVE_movpsi
- if (HAVE_movpsi)
- mov_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movpsi;
- #endif
- #ifdef HAVE_movsi
- if (HAVE_movsi)
- mov_optab->handlers[(int) SImode].insn_code = CODE_FOR_movsi;
- #endif
- #ifdef HAVE_movdi
- if (HAVE_movdi)
- mov_optab->handlers[(int) DImode].insn_code = CODE_FOR_movdi;
- #endif
- #ifdef HAVE_movti
- if (HAVE_movti)
- mov_optab->handlers[(int) TImode].insn_code = CODE_FOR_movti;
- #endif
- #ifdef HAVE_movsf
- if (HAVE_movsf)
- mov_optab->handlers[(int) SFmode].insn_code = CODE_FOR_movsf;
- #endif
- #ifdef HAVE_movdf
- if (HAVE_movdf)
- mov_optab->handlers[(int) DFmode].insn_code = CODE_FOR_movdf;
- #endif
- #ifdef HAVE_movxf
- if (HAVE_movxf)
- mov_optab->handlers[(int) XFmode].insn_code = CODE_FOR_movxf;
- #endif
- #ifdef HAVE_movtf
- if (HAVE_movtf)
- mov_optab->handlers[(int) TFmode].insn_code = CODE_FOR_movtf;
- #endif
- #ifdef HAVE_movcc
- if (HAVE_movcc)
- mov_optab->handlers[(int) CCmode].insn_code = CODE_FOR_movcc;
- #endif
-
- #ifdef EXTRA_CC_MODES
- init_mov_optab ();
- #endif
-
- #ifdef HAVE_movstrictqi
- if (HAVE_movstrictqi)
- movstrict_optab->handlers[(int) QImode].insn_code = CODE_FOR_movstrictqi;
- #endif
- #ifdef HAVE_movstricthi
- if (HAVE_movstricthi)
- movstrict_optab->handlers[(int) HImode].insn_code = CODE_FOR_movstricthi;
- #endif
- #ifdef HAVE_movstrictpsi
- if (HAVE_movstrictpsi)
- movstrict_optab->handlers[(int) PSImode].insn_code = CODE_FOR_movstrictpsi;
- #endif
- #ifdef HAVE_movstrictsi
- if (HAVE_movstrictsi)
- movstrict_optab->handlers[(int) SImode].insn_code = CODE_FOR_movstrictsi;
- #endif
- #ifdef HAVE_movstrictdi
- if (HAVE_movstrictdi)
- movstrict_optab->handlers[(int) DImode].insn_code = CODE_FOR_movstrictdi;
- #endif
- #ifdef HAVE_movstrictti
- if (HAVE_movstrictti)
- movstrict_optab->handlers[(int) TImode].insn_code = CODE_FOR_movstrictti;
- #endif
-
- #ifdef HAVE_cmpqi
- if (HAVE_cmpqi)
- cmp_optab->handlers[(int) QImode].insn_code = CODE_FOR_cmpqi;
- #endif
- #ifdef HAVE_cmphi
- if (HAVE_cmphi)
- cmp_optab->handlers[(int) HImode].insn_code = CODE_FOR_cmphi;
- #endif
- #ifdef HAVE_cmppsi
- if (HAVE_cmppsi)
- cmp_optab->handlers[(int) PSImode].insn_code = CODE_FOR_cmppsi;
- #endif
- #ifdef HAVE_cmpsi
- if (HAVE_cmpsi)
- cmp_optab->handlers[(int) SImode].insn_code = CODE_FOR_cmpsi;
- #endif
- #ifdef HAVE_cmpdi
- if (HAVE_cmpdi)
- cmp_optab->handlers[(int) DImode].insn_code = CODE_FOR_cmpdi;
- #endif
- #ifdef HAVE_cmpti
- if (HAVE_cmpti)
- cmp_optab->handlers[(int) TImode].insn_code = CODE_FOR_cmpti;
- #endif
- #ifdef HAVE_cmpsf
- if (HAVE_cmpsf)
- cmp_optab->handlers[(int) SFmode].insn_code = CODE_FOR_cmpsf;
- #endif
- #ifdef HAVE_cmpdf
- if (HAVE_cmpdf)
- cmp_optab->handlers[(int) DFmode].insn_code = CODE_FOR_cmpdf;
- #endif
- #ifdef HAVE_cmpxf
- if (HAVE_cmpxf)
- cmp_optab->handlers[(int) XFmode].insn_code = CODE_FOR_cmpxf;
- #endif
- #ifdef HAVE_cmptf
- if (HAVE_cmptf)
- cmp_optab->handlers[(int) TFmode].insn_code = CODE_FOR_cmptf;
- #endif
- /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
- init_integral_libfuncs (cmp_optab, "cmp", '2');
- init_integral_libfuncs (ucmp_optab, "ucmp", '2');
- init_floating_libfuncs (cmp_optab, "cmp", '2');
-
- #ifdef HAVE_tstqi
- if (HAVE_tstqi)
- tst_optab->handlers[(int) QImode].insn_code = CODE_FOR_tstqi;
- #endif
- #ifdef HAVE_tsthi
- if (HAVE_tsthi)
- tst_optab->handlers[(int) HImode].insn_code = CODE_FOR_tsthi;
- #endif
- #ifdef HAVE_tstpsi
- if (HAVE_tstpsi)
- tst_optab->handlers[(int) PSImode].insn_code = CODE_FOR_tstpsi;
- #endif
- #ifdef HAVE_tstsi
- if (HAVE_tstsi)
- tst_optab->handlers[(int) SImode].insn_code = CODE_FOR_tstsi;
- #endif
- #ifdef HAVE_tstdi
- if (HAVE_tstdi)
- tst_optab->handlers[(int) DImode].insn_code = CODE_FOR_tstdi;
- #endif
- #ifdef HAVE_tstti
- if (HAVE_tstti)
- tst_optab->handlers[(int) TImode].insn_code = CODE_FOR_tstti;
- #endif
- #ifdef HAVE_tstsf
- if (HAVE_tstsf)
- tst_optab->handlers[(int) SFmode].insn_code = CODE_FOR_tstsf;
- #endif
- #ifdef HAVE_tstdf
- if (HAVE_tstdf)
- tst_optab->handlers[(int) DFmode].insn_code = CODE_FOR_tstdf;
- #endif
- #ifdef HAVE_tstxf
- if (HAVE_tstxf)
- tst_optab->handlers[(int) XFmode].insn_code = CODE_FOR_tstxf;
- #endif
- #ifdef HAVE_tsttf
- if (HAVE_tsttf)
- tst_optab->handlers[(int) TFmode].insn_code = CODE_FOR_tsttf;
- #endif
-
- #ifdef HAVE_beq
- if (HAVE_beq)
- bcc_gen_fctn[(int) EQ] = gen_beq;
- #endif
- #ifdef HAVE_bne
- if (HAVE_bne)
- bcc_gen_fctn[(int) NE] = gen_bne;
- #endif
- #ifdef HAVE_bgt
- if (HAVE_bgt)
- bcc_gen_fctn[(int) GT] = gen_bgt;
- #endif
- #ifdef HAVE_bge
- if (HAVE_bge)
- bcc_gen_fctn[(int) GE] = gen_bge;
- #endif
- #ifdef HAVE_bgtu
- if (HAVE_bgtu)
- bcc_gen_fctn[(int) GTU] = gen_bgtu;
- #endif
- #ifdef HAVE_bgeu
- if (HAVE_bgeu)
- bcc_gen_fctn[(int) GEU] = gen_bgeu;
- #endif
- #ifdef HAVE_blt
- if (HAVE_blt)
- bcc_gen_fctn[(int) LT] = gen_blt;
- #endif
- #ifdef HAVE_ble
- if (HAVE_ble)
- bcc_gen_fctn[(int) LE] = gen_ble;
- #endif
- #ifdef HAVE_bltu
- if (HAVE_bltu)
- bcc_gen_fctn[(int) LTU] = gen_bltu;
- #endif
- #ifdef HAVE_bleu
- if (HAVE_bleu)
- bcc_gen_fctn[(int) LEU] = gen_bleu;
- #endif
-
- for (i = 0; i < NUM_RTX_CODE; i++)
- setcc_gen_code[i] = CODE_FOR_nothing;
-
- #ifdef HAVE_seq
- if (HAVE_seq)
- setcc_gen_code[(int) EQ] = CODE_FOR_seq;
- #endif
- #ifdef HAVE_sne
- if (HAVE_sne)
- setcc_gen_code[(int) NE] = CODE_FOR_sne;
- #endif
- #ifdef HAVE_sgt
- if (HAVE_sgt)
- setcc_gen_code[(int) GT] = CODE_FOR_sgt;
- #endif
- #ifdef HAVE_sge
- if (HAVE_sge)
- setcc_gen_code[(int) GE] = CODE_FOR_sge;
- #endif
- #ifdef HAVE_sgtu
- if (HAVE_sgtu)
- setcc_gen_code[(int) GTU] = CODE_FOR_sgtu;
- #endif
- #ifdef HAVE_sgeu
- if (HAVE_sgeu)
- setcc_gen_code[(int) GEU] = CODE_FOR_sgeu;
- #endif
- #ifdef HAVE_slt
- if (HAVE_slt)
- setcc_gen_code[(int) LT] = CODE_FOR_slt;
- #endif
- #ifdef HAVE_sle
- if (HAVE_sle)
- setcc_gen_code[(int) LE] = CODE_FOR_sle;
- #endif
- #ifdef HAVE_sltu
- if (HAVE_sltu)
- setcc_gen_code[(int) LTU] = CODE_FOR_sltu;
- #endif
- #ifdef HAVE_sleu
- if (HAVE_sleu)
- setcc_gen_code[(int) LEU] = CODE_FOR_sleu;
- #endif
-
- extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
- extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2");
- extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2");
- extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2");
- extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2");
-
- truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
- truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2");
- trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2");
- truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2");
- trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2");
-
- memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
- bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
- memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
- bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp");
- memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
- bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
-
- eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
- nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
- gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
- gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
- ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
- lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
-
- eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
- nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
- gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
- gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
- ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
- ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
-
- eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2");
- nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2");
- gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2");
- gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2");
- ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2");
- lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2");
-
- eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2");
- netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2");
- gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2");
- getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2");
- lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2");
- letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2");
-
- floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf");
- floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf");
- floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf");
-
- floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf");
- floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf");
- floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf");
-
- floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf");
- floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf");
- floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf");
-
- floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf");
- floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf");
- floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf");
-
- fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi");
- fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi");
- fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti");
-
- fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi");
- fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi");
- fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti");
-
- fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi");
- fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi");
- fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti");
-
- fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi");
- fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi");
- fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti");
-
- fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi");
- fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi");
- fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti");
-
- fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi");
- fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi");
- fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti");
-
- fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi");
- fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi");
- fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti");
-
- fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi");
- fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi");
- fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti");
- }
-
- #ifdef BROKEN_LDEXP
-
- /* SCO 3.2 apparently has a broken ldexp. */
-
- double
- ldexp(x,n)
- double x;
- int n;
- {
- if (n > 0)
- while (n--)
- x *= 2;
-
- return x;
- }
- #endif /* BROKEN_LDEXP */
-