home *** CD-ROM | disk | FTP | other *** search
- /* Optimize by combining instructions for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* This module is essentially the "combiner" phase of the U. of Arizona
- Portable Optimizer, but redone to work on our list-structured
- representation for RTL instead of their string representation.
-
- The LOG_LINKS of each insn identify the most recent assignment
- to each REG used in the insn. It is a list of previous insns,
- each of which contains a SET for a REG that is used in this insn
- and not used or set in between. LOG_LINKs never cross basic blocks.
- They were set up by the preceding pass (lifetime analysis).
-
- We try to combine each pair of insns joined by a logical link.
- We also try to combine triples of insns A, B and C when
- C has a link back to B and B has a link back to A.
-
- LOG_LINKS does not have links for use of the CC0. They don't
- need to, because the insn that sets the CC0 is always immediately
- before the insn that tests it. So we always regard a branch
- insn as having a logical link to the preceding insn. The same is true
- for an insn explicitly using CC0.
-
- We check (with use_crosses_set_p) to avoid combining in such a way
- as to move a computation to a place where its value would be different.
-
- Combination is done by mathematically substituting the previous
- insn(s) values for the regs they set into the expressions in
- the later insns that refer to these regs. If the result is a valid insn
- for our target machine, according to the machine description,
- we install it, delete the earlier insns, and update the data flow
- information (LOG_LINKS and REG_NOTES) for what we did.
-
- There are a few exceptions where the dataflow information created by
- flow.c aren't completely updated:
-
- - reg_live_length is not updated
- - reg_n_refs is not adjusted in the rare case when a register is
- no longer required in a computation
- - there are extremely rare cases (see distribute_regnotes) when a
- REG_DEAD note is lost
- - a LOG_LINKS entry that refers to an insn with multiple SETs may be
- removed because there is no way to know which register it was
- linking
-
- To simplify substitution, we combine only when the earlier insn(s)
- consist of only a single assignment. To simplify updating afterward,
- we never combine when a subroutine call appears in the middle.
-
- Since we do not represent assignments to CC0 explicitly except when that
- is all an insn does, there is no LOG_LINKS entry in an insn that uses
- the condition code for the insn that set the condition code.
- Fortunately, these two insns must be consecutive.
- Therefore, every JUMP_INSN is taken to have an implicit logical link
- to the preceding insn. This is not quite right, since non-jumps can
- also use the condition code; but in practice such insns would not
- combine anyway. */
-
- #include "config.h"
- #include "gvarargs.h"
-
- /* Must precede rtl.h for FFS. */
- #include <stdio.h>
-
- #include "rtl.h"
- #include "flags.h"
- #include "regs.h"
- #include "hard-reg-set.h"
- #include "expr.h"
- #include "basic-block.h"
- #include "insn-config.h"
- #include "insn-flags.h"
- #include "insn-codes.h"
- #include "insn-attr.h"
- #include "recog.h"
- #include "real.h"
-
- /* It is not safe to use ordinary gen_lowpart in combine.
- Use gen_lowpart_for_combine instead. See comments there. */
- #define gen_lowpart dont_use_gen_lowpart_you_dummy
-
- /* Number of attempts to combine instructions in this function. */
-
- static int combine_attempts;
-
- /* Number of attempts that got as far as substitution in this function. */
-
- static int combine_merges;
-
- /* Number of instructions combined with added SETs in this function. */
-
- static int combine_extras;
-
- /* Number of instructions combined in this function. */
-
- static int combine_successes;
-
- /* Totals over entire compilation. */
-
- static int total_attempts, total_merges, total_extras, total_successes;
-
- /* Vector mapping INSN_UIDs to cuids.
- The cuids are like uids but increase monotonically always.
- Combine always uses cuids so that it can compare them.
- But actually renumbering the uids, which we used to do,
- proves to be a bad idea because it makes it hard to compare
- the dumps produced by earlier passes with those from later passes. */
-
- static int *uid_cuid;
-
- /* Get the cuid of an insn. */
-
- #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
-
- /* Maximum register number, which is the size of the tables below. */
-
- static int combine_max_regno;
-
- /* Record last point of death of (hard or pseudo) register n. */
-
- static rtx *reg_last_death;
-
- /* Record last point of modification of (hard or pseudo) register n. */
-
- static rtx *reg_last_set;
-
- /* Record the cuid of the last insn that invalidated memory
- (anything that writes memory, and subroutine calls, but not pushes). */
-
- static int mem_last_set;
-
- /* Record the cuid of the last CALL_INSN
- so we can tell whether a potential combination crosses any calls. */
-
- static int last_call_cuid;
-
- /* When `subst' is called, this is the insn that is being modified
- (by combining in a previous insn). The PATTERN of this insn
- is still the old pattern partially modified and it should not be
- looked at, but this may be used to examine the successors of the insn
- to judge whether a simplification is valid. */
-
- static rtx subst_insn;
-
- /* If nonzero, this is the insn that should be presumed to be
- immediately in front of `subst_insn'. */
-
- static rtx subst_prev_insn;
-
- /* This is the lowest CUID that `subst' is currently dealing with.
- get_last_value will not return a value if the register was set at or
- after this CUID. If not for this mechanism, we could get confused if
- I2 or I1 in try_combine were an insn that used the old value of a register
- to obtain a new value. In that case, we might erroneously get the
- new value of the register when we wanted the old one. */
-
- static int subst_low_cuid;
-
- /* This is the value of undobuf.num_undo when we started processing this
- substitution. This will prevent gen_rtx_combine from re-used a piece
- from the previous expression. Doing so can produce circular rtl
- structures. */
-
- static int previous_num_undos;
-
- /* Basic block number of the block in which we are performing combines. */
- static int this_basic_block;
-
- /* The next group of arrays allows the recording of the last value assigned
- to (hard or pseudo) register n. We use this information to see if a
- operation being processed is redundant given a prior operation performed
- on the register. For example, an `and' with a constant is redundant if
- all the zero bits are already known to be turned off.
-
- We use an approach similar to that used by cse, but change it in the
- following ways:
-
- (1) We do not want to reinitialize at each label.
- (2) It is useful, but not critical, to know the actual value assigned
- to a register. Often just its form is helpful.
-
- Therefore, we maintain the following arrays:
-
- reg_last_set_value the last value assigned
- reg_last_set_label records the value of label_tick when the
- register was assigned
- reg_last_set_table_tick records the value of label_tick when a
- value using the register is assigned
- reg_last_set_invalid set to non-zero when it is not valid
- to use the value of this register in some
- register's value
-
- To understand the usage of these tables, it is important to understand
- the distinction between the value in reg_last_set_value being valid
- and the register being validly contained in some other expression in the
- table.
-
- Entry I in reg_last_set_value is valid if it is non-zero, and either
- reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
-
- Register I may validly appear in any expression returned for the value
- of another register if reg_n_sets[i] is 1. It may also appear in the
- value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
- reg_last_set_invalid[j] is zero.
-
- If an expression is found in the table containing a register which may
- not validly appear in an expression, the register is replaced by
- something that won't match, (clobber (const_int 0)).
-
- reg_last_set_invalid[i] is set non-zero when register I is being assigned
- to and reg_last_set_table_tick[i] == label_tick. */
-
- /* Record last value assigned to (hard or pseudo) register n. */
-
- static rtx *reg_last_set_value;
-
- /* Record the value of label_tick when the value for register n is placed in
- reg_last_set_value[n]. */
-
- static int *reg_last_set_label;
-
- /* Record the value of label_tick when an expression involving register n
- is placed in reg_last_set_value. */
-
- static int *reg_last_set_table_tick;
-
- /* Set non-zero if references to register n in expressions should not be
- used. */
-
- static char *reg_last_set_invalid;
-
- /* Incremented for each label. */
-
- static int label_tick;
-
- /* Some registers that are set more than once and used in more than one
- basic block are nevertheless always set in similar ways. For example,
- a QImode register may be loaded from memory in two places on a machine
- where byte loads zero extend.
-
- We record in the following array what we know about the nonzero
- bits of a register, specifically which bits are known to be zero.
-
- If an entry is zero, it means that we don't know anything special. */
-
- static unsigned HOST_WIDE_INT *reg_nonzero_bits;
-
- /* Mode used to compute significance in reg_nonzero_bits. It is the largest
- integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
-
- static enum machine_mode nonzero_bits_mode;
-
- /* Nonzero if we know that a register has some leading bits that are always
- equal to the sign bit. */
-
- static char *reg_sign_bit_copies;
-
- /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
- It is zero while computing them and after combine has completed. This
- former test prevents propagating values based on previously set values,
- which can be incorrect if a variable is modified in a loop. */
-
- static int nonzero_sign_valid;
-
- /* These arrays are maintained in parallel with reg_last_set_value
- and are used to store the mode in which the register was last set,
- the bits that were known to be zero when it was last set, and the
- number of sign bits copies it was known to have when it was last set. */
-
- static enum machine_mode *reg_last_set_mode;
- static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
- static char *reg_last_set_sign_bit_copies;
-
- /* Record one modification to rtl structure
- to be undone by storing old_contents into *where.
- is_int is 1 if the contents are an int. */
-
- struct undo
- {
- int is_int;
- union {rtx r; int i;} old_contents;
- union {rtx *r; int *i;} where;
- };
-
- /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
- num_undo says how many are currently recorded.
-
- storage is nonzero if we must undo the allocation of new storage.
- The value of storage is what to pass to obfree.
-
- other_insn is nonzero if we have modified some other insn in the process
- of working on subst_insn. It must be verified too. */
-
- #define MAX_UNDO 50
-
- struct undobuf
- {
- int num_undo;
- char *storage;
- struct undo undo[MAX_UNDO];
- rtx other_insn;
- };
-
- static struct undobuf undobuf;
-
- /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
- insn. The substitution can be undone by undo_all. If INTO is already
- set to NEWVAL, do not record this change. Because computing NEWVAL might
- also call SUBST, we have to compute it before we put anything into
- the undo table. */
-
- #define SUBST(INTO, NEWVAL) \
- do { rtx _new = (NEWVAL); \
- if (undobuf.num_undo < MAX_UNDO) \
- { \
- undobuf.undo[undobuf.num_undo].is_int = 0; \
- undobuf.undo[undobuf.num_undo].where.r = &INTO; \
- undobuf.undo[undobuf.num_undo].old_contents.r = INTO; \
- INTO = _new; \
- if (undobuf.undo[undobuf.num_undo].old_contents.r != INTO) \
- undobuf.num_undo++; \
- } \
- } while (0)
-
- /* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
- expression.
- Note that substitution for the value of a CONST_INT is not safe. */
-
- #define SUBST_INT(INTO, NEWVAL) \
- do { if (undobuf.num_undo < MAX_UNDO) \
- { \
- undobuf.undo[undobuf.num_undo].is_int = 1; \
- undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \
- undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \
- INTO = NEWVAL; \
- if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \
- undobuf.num_undo++; \
- } \
- } while (0)
-
- /* Number of times the pseudo being substituted for
- was found and replaced. */
-
- static int n_occurrences;
-
- static void init_reg_last_arrays PROTO(());
- static void setup_incoming_promotions PROTO(());
- static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
- static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
- static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
- static rtx try_combine PROTO((rtx, rtx, rtx));
- static void undo_all PROTO((void));
- static rtx *find_split_point PROTO((rtx *, rtx));
- static rtx subst PROTO((rtx, rtx, rtx, int, int));
- static rtx expand_compound_operation PROTO((rtx));
- static rtx expand_field_assignment PROTO((rtx));
- static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
- int, int, int));
- static rtx make_compound_operation PROTO((rtx, enum rtx_code));
- static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
- static rtx force_to_mode PROTO((rtx, enum machine_mode,
- unsigned HOST_WIDE_INT, rtx, int));
- static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
- static rtx make_field_assignment PROTO((rtx));
- static rtx apply_distributive_law PROTO((rtx));
- static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
- unsigned HOST_WIDE_INT));
- static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
- static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
- static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
- enum rtx_code, HOST_WIDE_INT,
- enum machine_mode, int *));
- static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
- rtx, int));
- static int recog_for_combine PROTO((rtx *, rtx, rtx *));
- static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
- static rtx gen_rtx_combine (); /* This is varargs. */
- static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
- rtx, rtx));
- static rtx gen_unary PROTO((enum rtx_code, enum machine_mode, rtx));
- static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
- static int reversible_comparison_p PROTO((rtx));
- static void update_table_tick PROTO((rtx));
- static void record_value_for_reg PROTO((rtx, rtx, rtx));
- static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
- static void record_dead_and_set_regs PROTO((rtx));
- static int get_last_value_validate PROTO((rtx *, int, int));
- static rtx get_last_value PROTO((rtx));
- static int use_crosses_set_p PROTO((rtx, int));
- static void reg_dead_at_p_1 PROTO((rtx, rtx));
- static int reg_dead_at_p PROTO((rtx, rtx));
- static void move_deaths PROTO((rtx, int, rtx, rtx *));
- static int reg_bitfield_target_p PROTO((rtx, rtx));
- static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
- static void distribute_links PROTO((rtx));
-
- /* Main entry point for combiner. F is the first insn of the function.
- NREGS is the first unused pseudo-reg number. */
-
- void
- combine_instructions (f, nregs)
- rtx f;
- int nregs;
- {
- register rtx insn, next, prev;
- register int i;
- register rtx links, nextlinks;
-
- combine_attempts = 0;
- combine_merges = 0;
- combine_extras = 0;
- combine_successes = 0;
- undobuf.num_undo = previous_num_undos = 0;
-
- combine_max_regno = nregs;
-
- reg_nonzero_bits
- = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
- reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
-
- bzero (reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
- bzero (reg_sign_bit_copies, nregs * sizeof (char));
-
- reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
- reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
- reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
- reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
- reg_last_set_label = (int *) alloca (nregs * sizeof (int));
- reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
- reg_last_set_mode
- = (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
- reg_last_set_nonzero_bits
- = (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
- reg_last_set_sign_bit_copies
- = (char *) alloca (nregs * sizeof (char));
-
- init_reg_last_arrays ();
-
- init_recog_no_volatile ();
-
- /* Compute maximum uid value so uid_cuid can be allocated. */
-
- for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
- if (INSN_UID (insn) > i)
- i = INSN_UID (insn);
-
- uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
-
- nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
-
- /* Don't use reg_nonzero_bits when computing it. This can cause problems
- when, for example, we have j <<= 1 in a loop. */
-
- nonzero_sign_valid = 0;
-
- /* Compute the mapping from uids to cuids.
- Cuids are numbers assigned to insns, like uids,
- except that cuids increase monotonically through the code.
-
- Scan all SETs and see if we can deduce anything about what
- bits are known to be zero for some registers and how many copies
- of the sign bit are known to exist for those registers.
-
- Also set any known values so that we can use it while searching
- for what bits are known to be set. */
-
- label_tick = 1;
-
- setup_incoming_promotions ();
-
- for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
- {
- INSN_CUID (insn) = ++i;
- subst_low_cuid = i;
- subst_insn = insn;
-
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
- record_dead_and_set_regs (insn);
- }
-
- if (GET_CODE (insn) == CODE_LABEL)
- label_tick++;
- }
-
- nonzero_sign_valid = 1;
-
- /* Now scan all the insns in forward order. */
-
- this_basic_block = -1;
- label_tick = 1;
- last_call_cuid = 0;
- mem_last_set = 0;
- init_reg_last_arrays ();
- setup_incoming_promotions ();
-
- for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
- {
- next = 0;
-
- /* If INSN starts a new basic block, update our basic block number. */
- if (this_basic_block + 1 < n_basic_blocks
- && basic_block_head[this_basic_block + 1] == insn)
- this_basic_block++;
-
- if (GET_CODE (insn) == CODE_LABEL)
- label_tick++;
-
- else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- /* Try this insn with each insn it links back to. */
-
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
- goto retry;
-
- /* Try each sequence of three linked insns ending with this one. */
-
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, XEXP (links, 0),
- XEXP (nextlinks, 0))) != 0)
- goto retry;
-
- #ifdef HAVE_cc0
- /* Try to combine a jump insn that uses CC0
- with a preceding insn that sets CC0, and maybe with its
- logical predecessor as well.
- This is how we make decrement-and-branch insns.
- We need this special code because data flow connections
- via CC0 do not get entered in LOG_LINKS. */
-
- if (GET_CODE (insn) == JUMP_INSN
- && (prev = prev_nonnote_insn (insn)) != 0
- && GET_CODE (prev) == INSN
- && sets_cc0_p (PATTERN (prev)))
- {
- if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
- goto retry;
-
- for (nextlinks = LOG_LINKS (prev); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, prev,
- XEXP (nextlinks, 0))) != 0)
- goto retry;
- }
-
- /* Do the same for an insn that explicitly references CC0. */
- if (GET_CODE (insn) == INSN
- && (prev = prev_nonnote_insn (insn)) != 0
- && GET_CODE (prev) == INSN
- && sets_cc0_p (PATTERN (prev))
- && GET_CODE (PATTERN (insn)) == SET
- && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
- {
- if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
- goto retry;
-
- for (nextlinks = LOG_LINKS (prev); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, prev,
- XEXP (nextlinks, 0))) != 0)
- goto retry;
- }
-
- /* Finally, see if any of the insns that this insn links to
- explicitly references CC0. If so, try this insn, that insn,
- and its predecessor if it sets CC0. */
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- if (GET_CODE (XEXP (links, 0)) == INSN
- && GET_CODE (PATTERN (XEXP (links, 0))) == SET
- && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
- && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
- && GET_CODE (prev) == INSN
- && sets_cc0_p (PATTERN (prev))
- && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
- goto retry;
- #endif
-
- /* Try combining an insn with two different insns whose results it
- uses. */
- for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
- for (nextlinks = XEXP (links, 1); nextlinks;
- nextlinks = XEXP (nextlinks, 1))
- if ((next = try_combine (insn, XEXP (links, 0),
- XEXP (nextlinks, 0))) != 0)
- goto retry;
-
- if (GET_CODE (insn) != NOTE)
- record_dead_and_set_regs (insn);
-
- retry:
- ;
- }
- }
-
- total_attempts += combine_attempts;
- total_merges += combine_merges;
- total_extras += combine_extras;
- total_successes += combine_successes;
-
- nonzero_sign_valid = 0;
- }
-
- /* Wipe the reg_last_xxx arrays in preparation for another pass. */
-
- static void
- init_reg_last_arrays ()
- {
- int nregs = combine_max_regno;
-
- bzero (reg_last_death, nregs * sizeof (rtx));
- bzero (reg_last_set, nregs * sizeof (rtx));
- bzero (reg_last_set_value, nregs * sizeof (rtx));
- bzero (reg_last_set_table_tick, nregs * sizeof (int));
- bzero (reg_last_set_label, nregs * sizeof (int));
- bzero (reg_last_set_invalid, nregs * sizeof (char));
- bzero (reg_last_set_mode, nregs * sizeof (enum machine_mode));
- bzero (reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
- bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
- }
-
- /* Set up any promoted values for incoming argument registers. */
-
- static void
- setup_incoming_promotions ()
- {
- #ifdef PROMOTE_FUNCTION_ARGS
- int regno;
- rtx reg;
- enum machine_mode mode;
- int unsignedp;
- rtx first = get_insns ();
-
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- if (FUNCTION_ARG_REGNO_P (regno)
- && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
- record_value_for_reg (reg, first,
- gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
- GET_MODE (reg),
- gen_rtx (CLOBBER, mode, const0_rtx)));
- #endif
- }
-
- /* Called via note_stores. If X is a pseudo that is used in more than
- one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being
- set, record what bits are known zero. If we are clobbering X,
- ignore this "set" because the clobbered value won't be used.
-
- If we are setting only a portion of X and we can't figure out what
- portion, assume all bits will be used since we don't know what will
- be happening.
-
- Similarly, set how many bits of X are known to be copies of the sign bit
- at all locations in the function. This is the smallest number implied
- by any set of X. */
-
- static void
- set_nonzero_bits_and_sign_copies (x, set)
- rtx x;
- rtx set;
- {
- int num;
-
- if (GET_CODE (x) == REG
- && REGNO (x) >= FIRST_PSEUDO_REGISTER
- && reg_n_sets[REGNO (x)] > 1
- && reg_basic_block[REGNO (x)] < 0
- /* If this register is undefined at the start of the file, we can't
- say what its contents were. */
- && ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
- {
- if (GET_CODE (set) == CLOBBER)
- {
- reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
- reg_sign_bit_copies[REGNO (x)] = 0;
- return;
- }
-
- /* If this is a complex assignment, see if we can convert it into a
- simple assignment. */
- set = expand_field_assignment (set);
-
- /* If this is a simple assignment, or we have a paradoxical SUBREG,
- set what we know about X. */
-
- if (SET_DEST (set) == x
- || (GET_CODE (SET_DEST (set)) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
- && SUBREG_REG (SET_DEST (set)) == x))
- {
- rtx src = SET_SRC (set);
-
- #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
- /* If X is narrower than a word and SRC is a non-negative
- constant that would appear negative in the mode of X,
- sign-extend it for use in reg_nonzero_bits because some
- machines (maybe most) will actually do the sign-extension
- and this is the conservative approach.
-
- ??? For 2.5, try to tighten up the MD files in this regard
- instead of this kludge. */
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
- && GET_CODE (src) == CONST_INT
- && INTVAL (src) > 0
- && 0 != (INTVAL (src)
- & ((HOST_WIDE_INT) 1
- << GET_MODE_BITSIZE (GET_MODE (x)))))
- src = GEN_INT (INTVAL (src)
- | ((HOST_WIDE_INT) (-1)
- << GET_MODE_BITSIZE (GET_MODE (x))));
- #endif
-
- reg_nonzero_bits[REGNO (x)]
- |= nonzero_bits (src, nonzero_bits_mode);
- num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
- if (reg_sign_bit_copies[REGNO (x)] == 0
- || reg_sign_bit_copies[REGNO (x)] > num)
- reg_sign_bit_copies[REGNO (x)] = num;
- }
- else
- {
- reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
- reg_sign_bit_copies[REGNO (x)] = 0;
- }
- }
- }
-
- /* See if INSN can be combined into I3. PRED and SUCC are optionally
- insns that were previously combined into I3 or that will be combined
- into the merger of INSN and I3.
-
- Return 0 if the combination is not allowed for any reason.
-
- If the combination is allowed, *PDEST will be set to the single
- destination of INSN and *PSRC to the single source, and this function
- will return 1. */
-
- static int
- can_combine_p (insn, i3, pred, succ, pdest, psrc)
- rtx insn;
- rtx i3;
- rtx pred, succ;
- rtx *pdest, *psrc;
- {
- int i;
- rtx set = 0, src, dest;
- rtx p, link;
- int all_adjacent = (succ ? (next_active_insn (insn) == succ
- && next_active_insn (succ) == i3)
- : next_active_insn (insn) == i3);
-
- /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
- or a PARALLEL consisting of such a SET and CLOBBERs.
-
- If INSN has CLOBBER parallel parts, ignore them for our processing.
- By definition, these happen during the execution of the insn. When it
- is merged with another insn, all bets are off. If they are, in fact,
- needed and aren't also supplied in I3, they may be added by
- recog_for_combine. Otherwise, it won't match.
-
- We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
- note.
-
- Get the source and destination of INSN. If more than one, can't
- combine. */
-
- if (GET_CODE (PATTERN (insn)) == SET)
- set = PATTERN (insn);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL
- && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
- {
- for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
- {
- rtx elt = XVECEXP (PATTERN (insn), 0, i);
-
- switch (GET_CODE (elt))
- {
- /* We can ignore CLOBBERs. */
- case CLOBBER:
- break;
-
- case SET:
- /* Ignore SETs whose result isn't used but not those that
- have side-effects. */
- if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
- && ! side_effects_p (elt))
- break;
-
- /* If we have already found a SET, this is a second one and
- so we cannot combine with this insn. */
- if (set)
- return 0;
-
- set = elt;
- break;
-
- default:
- /* Anything else means we can't combine. */
- return 0;
- }
- }
-
- if (set == 0
- /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
- so don't do anything with it. */
- || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
- return 0;
- }
- else
- return 0;
-
- if (set == 0)
- return 0;
-
- set = expand_field_assignment (set);
- src = SET_SRC (set), dest = SET_DEST (set);
-
- /* Don't eliminate a store in the stack pointer. */
- if (dest == stack_pointer_rtx
- /* If we couldn't eliminate a field assignment, we can't combine. */
- || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
- /* Don't combine with an insn that sets a register to itself if it has
- a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
- || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
- /* Can't merge a function call. */
- || GET_CODE (src) == CALL
- /* Don't substitute into an incremented register. */
- || FIND_REG_INC_NOTE (i3, dest)
- || (succ && FIND_REG_INC_NOTE (succ, dest))
- /* Don't combine the end of a libcall into anything. */
- || find_reg_note (insn, REG_RETVAL, NULL_RTX)
- /* Make sure that DEST is not used after SUCC but before I3. */
- || (succ && ! all_adjacent
- && reg_used_between_p (dest, succ, i3))
- /* Make sure that the value that is to be substituted for the register
- does not use any registers whose values alter in between. However,
- If the insns are adjacent, a use can't cross a set even though we
- think it might (this can happen for a sequence of insns each setting
- the same destination; reg_last_set of that register might point to
- a NOTE). If INSN has a REG_EQUIV note, the register is always
- equivalent to the memory so the substitution is valid even if there
- are intervening stores. Also, don't move a volatile asm or
- UNSPEC_VOLATILE across any other insns. */
- || (! all_adjacent
- && (((GET_CODE (src) != MEM
- || ! find_reg_note (insn, REG_EQUIV, src))
- && use_crosses_set_p (src, INSN_CUID (insn)))
- || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
- || GET_CODE (src) == UNSPEC_VOLATILE))
- /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
- better register allocation by not doing the combine. */
- || find_reg_note (i3, REG_NO_CONFLICT, dest)
- || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
- /* Don't combine across a CALL_INSN, because that would possibly
- change whether the life span of some REGs crosses calls or not,
- and it is a pain to update that information.
- Exception: if source is a constant, moving it later can't hurt.
- Accept that special case, because it helps -fforce-addr a lot. */
- || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
- return 0;
-
- /* DEST must either be a REG or CC0. */
- if (GET_CODE (dest) == REG)
- {
- /* If register alignment is being enforced for multi-word items in all
- cases except for parameters, it is possible to have a register copy
- insn referencing a hard register that is not allowed to contain the
- mode being copied and which would not be valid as an operand of most
- insns. Eliminate this problem by not combining with such an insn.
-
- Also, on some machines we don't want to extend the life of a hard
- register. */
-
- if (GET_CODE (src) == REG
- && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
- && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
- #ifdef SMALL_REGISTER_CLASSES
- /* Don't extend the life of a hard register. */
- || REGNO (src) < FIRST_PSEUDO_REGISTER
- #else
- || (REGNO (src) < FIRST_PSEUDO_REGISTER
- && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))
- #endif
- ))
- return 0;
- }
- else if (GET_CODE (dest) != CC0)
- return 0;
-
- /* Don't substitute for a register intended as a clobberable operand.
- Similarly, don't substitute an expression containing a register that
- will be clobbered in I3. */
- if (GET_CODE (PATTERN (i3)) == PARALLEL)
- for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
- && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
- src)
- || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
- return 0;
-
- /* If INSN contains anything volatile, or is an `asm' (whether volatile
- or not), reject, unless nothing volatile comes between it and I3,
- with the exception of SUCC. */
-
- if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
- for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
- if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
- && p != succ && volatile_refs_p (PATTERN (p)))
- return 0;
-
- /* If there are any volatile insns between INSN and I3, reject, because
- they might affect machine state. */
-
- for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
- if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
- && p != succ && volatile_insn_p (PATTERN (p)))
- return 0;
-
- /* If INSN or I2 contains an autoincrement or autodecrement,
- make sure that register is not used between there and I3,
- and not already used in I3 either.
- Also insist that I3 not be a jump; if it were one
- and the incremented register were spilled, we would lose. */
-
- #ifdef AUTO_INC_DEC
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && (GET_CODE (i3) == JUMP_INSN
- || reg_used_between_p (XEXP (link, 0), insn, i3)
- || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
- return 0;
- #endif
-
- #ifdef HAVE_cc0
- /* Don't combine an insn that follows a CC0-setting insn.
- An insn that uses CC0 must not be separated from the one that sets it.
- We do, however, allow I2 to follow a CC0-setting insn if that insn
- is passed as I1; in that case it will be deleted also.
- We also allow combining in this case if all the insns are adjacent
- because that would leave the two CC0 insns adjacent as well.
- It would be more logical to test whether CC0 occurs inside I1 or I2,
- but that would be much slower, and this ought to be equivalent. */
-
- p = prev_nonnote_insn (insn);
- if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
- && ! all_adjacent)
- return 0;
- #endif
-
- /* If we get here, we have passed all the tests and the combination is
- to be allowed. */
-
- *pdest = dest;
- *psrc = src;
-
- return 1;
- }
-
- /* LOC is the location within I3 that contains its pattern or the component
- of a PARALLEL of the pattern. We validate that it is valid for combining.
-
- One problem is if I3 modifies its output, as opposed to replacing it
- entirely, we can't allow the output to contain I2DEST or I1DEST as doing
- so would produce an insn that is not equivalent to the original insns.
-
- Consider:
-
- (set (reg:DI 101) (reg:DI 100))
- (set (subreg:SI (reg:DI 101) 0) <foo>)
-
- This is NOT equivalent to:
-
- (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
- (set (reg:DI 101) (reg:DI 100))])
-
- Not only does this modify 100 (in which case it might still be valid
- if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
-
- We can also run into a problem if I2 sets a register that I1
- uses and I1 gets directly substituted into I3 (not via I2). In that
- case, we would be getting the wrong value of I2DEST into I3, so we
- must reject the combination. This case occurs when I2 and I1 both
- feed into I3, rather than when I1 feeds into I2, which feeds into I3.
- If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
- of a SET must prevent combination from occurring.
-
- On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
- if the destination of a SET is a hard register.
-
- Before doing the above check, we first try to expand a field assignment
- into a set of logical operations.
-
- If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
- we place a register that is both set and used within I3. If more than one
- such register is detected, we fail.
-
- Return 1 if the combination is valid, zero otherwise. */
-
- static int
- combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
- rtx i3;
- rtx *loc;
- rtx i2dest;
- rtx i1dest;
- int i1_not_in_src;
- rtx *pi3dest_killed;
- {
- rtx x = *loc;
-
- if (GET_CODE (x) == SET)
- {
- rtx set = expand_field_assignment (x);
- rtx dest = SET_DEST (set);
- rtx src = SET_SRC (set);
- rtx inner_dest = dest, inner_src = src;
-
- SUBST (*loc, set);
-
- while (GET_CODE (inner_dest) == STRICT_LOW_PART
- || GET_CODE (inner_dest) == SUBREG
- || GET_CODE (inner_dest) == ZERO_EXTRACT)
- inner_dest = XEXP (inner_dest, 0);
-
- /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
- was added. */
- #if 0
- while (GET_CODE (inner_src) == STRICT_LOW_PART
- || GET_CODE (inner_src) == SUBREG
- || GET_CODE (inner_src) == ZERO_EXTRACT)
- inner_src = XEXP (inner_src, 0);
-
- /* If it is better that two different modes keep two different pseudos,
- avoid combining them. This avoids producing the following pattern
- on a 386:
- (set (subreg:SI (reg/v:QI 21) 0)
- (lshiftrt:SI (reg/v:SI 20)
- (const_int 24)))
- If that were made, reload could not handle the pair of
- reg 20/21, since it would try to get any GENERAL_REGS
- but some of them don't handle QImode. */
-
- if (rtx_equal_p (inner_src, i2dest)
- && GET_CODE (inner_dest) == REG
- && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
- return 0;
- #endif
-
- /* Check for the case where I3 modifies its output, as
- discussed above. */
- if ((inner_dest != dest
- && (reg_overlap_mentioned_p (i2dest, inner_dest)
- || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
- /* This is the same test done in can_combine_p except that we
- allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
- CALL operation. */
- || (GET_CODE (inner_dest) == REG
- && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
- #ifdef SMALL_REGISTER_CLASSES
- && GET_CODE (src) != CALL
- #else
- && ! HARD_REGNO_MODE_OK (REGNO (inner_dest),
- GET_MODE (inner_dest))
- #endif
- )
-
- || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
- return 0;
-
- /* If DEST is used in I3, it is being killed in this insn,
- so record that for later.
- Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
- STACK_POINTER_REGNUM, since these are always considered to be
- live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
- if (pi3dest_killed && GET_CODE (dest) == REG
- && reg_referenced_p (dest, PATTERN (i3))
- && REGNO (dest) != FRAME_POINTER_REGNUM
- #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
- #endif
- #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && (REGNO (dest) != ARG_POINTER_REGNUM
- || ! fixed_regs [REGNO (dest)])
- #endif
- && REGNO (dest) != STACK_POINTER_REGNUM)
- {
- if (*pi3dest_killed)
- return 0;
-
- *pi3dest_killed = dest;
- }
- }
-
- else if (GET_CODE (x) == PARALLEL)
- {
- int i;
-
- for (i = 0; i < XVECLEN (x, 0); i++)
- if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
- i1_not_in_src, pi3dest_killed))
- return 0;
- }
-
- return 1;
- }
-
- /* Try to combine the insns I1 and I2 into I3.
- Here I1 and I2 appear earlier than I3.
- I1 can be zero; then we combine just I2 into I3.
-
- It we are combining three insns and the resulting insn is not recognized,
- try splitting it into two insns. If that happens, I2 and I3 are retained
- and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
- are pseudo-deleted.
-
- If we created two insns, return I2; otherwise return I3.
- Return 0 if the combination does not work. Then nothing is changed. */
-
- static rtx
- try_combine (i3, i2, i1)
- register rtx i3, i2, i1;
- {
- /* New patterns for I3 and I3, respectively. */
- rtx newpat, newi2pat = 0;
- /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
- int added_sets_1, added_sets_2;
- /* Total number of SETs to put into I3. */
- int total_sets;
- /* Nonzero is I2's body now appears in I3. */
- int i2_is_used;
- /* INSN_CODEs for new I3, new I2, and user of condition code. */
- int insn_code_number, i2_code_number, other_code_number;
- /* Contains I3 if the destination of I3 is used in its source, which means
- that the old life of I3 is being killed. If that usage is placed into
- I2 and not in I3, a REG_DEAD note must be made. */
- rtx i3dest_killed = 0;
- /* SET_DEST and SET_SRC of I2 and I1. */
- rtx i2dest, i2src, i1dest = 0, i1src = 0;
- /* PATTERN (I2), or a copy of it in certain cases. */
- rtx i2pat;
- /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
- int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
- int i1_feeds_i3 = 0;
- /* Notes that must be added to REG_NOTES in I3 and I2. */
- rtx new_i3_notes, new_i2_notes;
- /* Notes that we substituted I3 into I2 instead of the normal case. */
- int i3_subst_into_i2 = 0;
-
- int maxreg;
- rtx temp;
- register rtx link;
- int i;
-
- /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
- This can occur when flow deletes an insn that it has merged into an
- auto-increment address. We also can't do anything if I3 has a
- REG_LIBCALL note since we don't want to disrupt the contiguity of a
- libcall. */
-
- if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
- || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
- || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
- || find_reg_note (i3, REG_LIBCALL, NULL_RTX))
- return 0;
-
- combine_attempts++;
-
- undobuf.num_undo = previous_num_undos = 0;
- undobuf.other_insn = 0;
-
- /* Save the current high-water-mark so we can free storage if we didn't
- accept this combination. */
- undobuf.storage = (char *) oballoc (0);
-
- /* If I1 and I2 both feed I3, they can be in any order. To simplify the
- code below, set I1 to be the earlier of the two insns. */
- if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
- temp = i1, i1 = i2, i2 = temp;
-
- subst_prev_insn = 0;
-
- /* First check for one important special-case that the code below will
- not handle. Namely, the case where I1 is zero, I2 has multiple sets,
- and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
- we may be able to replace that destination with the destination of I3.
- This occurs in the common code where we compute both a quotient and
- remainder into a structure, in which case we want to do the computation
- directly into the structure to avoid register-register copies.
-
- We make very conservative checks below and only try to handle the
- most common cases of this. For example, we only handle the case
- where I2 and I3 are adjacent to avoid making difficult register
- usage tests. */
-
- if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
- && GET_CODE (SET_SRC (PATTERN (i3))) == REG
- && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
- #ifdef SMALL_REGISTER_CLASSES
- && (GET_CODE (SET_DEST (PATTERN (i3))) != REG
- || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER)
- #endif
- && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
- && GET_CODE (PATTERN (i2)) == PARALLEL
- && ! side_effects_p (SET_DEST (PATTERN (i3)))
- /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
- below would need to check what is inside (and reg_overlap_mentioned_p
- doesn't support those codes anyway). Don't allow those destinations;
- the resulting insn isn't likely to be recognized anyway. */
- && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
- && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
- SET_DEST (PATTERN (i3)))
- && next_real_insn (i2) == i3)
- {
- rtx p2 = PATTERN (i2);
-
- /* Make sure that the destination of I3,
- which we are going to substitute into one output of I2,
- is not used within another output of I2. We must avoid making this:
- (parallel [(set (mem (reg 69)) ...)
- (set (reg 69) ...)])
- which is not well-defined as to order of actions.
- (Besides, reload can't handle output reloads for this.)
-
- The problem can also happen if the dest of I3 is a memory ref,
- if another dest in I2 is an indirect memory ref. */
- for (i = 0; i < XVECLEN (p2, 0); i++)
- if (GET_CODE (XVECEXP (p2, 0, i)) == SET
- && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
- SET_DEST (XVECEXP (p2, 0, i))))
- break;
-
- if (i == XVECLEN (p2, 0))
- for (i = 0; i < XVECLEN (p2, 0); i++)
- if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
- {
- combine_merges++;
-
- subst_insn = i3;
- subst_low_cuid = INSN_CUID (i2);
-
- added_sets_2 = added_sets_1 = 0;
- i2dest = SET_SRC (PATTERN (i3));
-
- /* Replace the dest in I2 with our dest and make the resulting
- insn the new pattern for I3. Then skip to where we
- validate the pattern. Everything was set up above. */
- SUBST (SET_DEST (XVECEXP (p2, 0, i)),
- SET_DEST (PATTERN (i3)));
-
- newpat = p2;
- i3_subst_into_i2 = 1;
- goto validate_replacement;
- }
- }
-
- #ifndef HAVE_cc0
- /* If we have no I1 and I2 looks like:
- (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
- (set Y OP)])
- make up a dummy I1 that is
- (set Y OP)
- and change I2 to be
- (set (reg:CC X) (compare:CC Y (const_int 0)))
-
- (We can ignore any trailing CLOBBERs.)
-
- This undoes a previous combination and allows us to match a branch-and-
- decrement insn. */
-
- if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
- && XVECLEN (PATTERN (i2), 0) >= 2
- && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
- && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
- == MODE_CC)
- && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
- && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
- && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
- && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
- && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
- SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
- {
- for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
- if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
- break;
-
- if (i == 1)
- {
- /* We make I1 with the same INSN_UID as I2. This gives it
- the same INSN_CUID for value tracking. Our fake I1 will
- never appear in the insn stream so giving it the same INSN_UID
- as I2 will not cause a problem. */
-
- subst_prev_insn = i1
- = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
- XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
-
- SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
- SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
- SET_DEST (PATTERN (i1)));
- }
- }
- #endif
-
- /* Verify that I2 and I1 are valid for combining. */
- if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
- || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
- {
- undo_all ();
- return 0;
- }
-
- /* Record whether I2DEST is used in I2SRC and similarly for the other
- cases. Knowing this will help in register status updating below. */
- i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
- i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
- i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
-
- /* See if I1 directly feeds into I3. It does if I1DEST is not used
- in I2SRC. */
- i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
-
- /* Ensure that I3's pattern can be the destination of combines. */
- if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
- i1 && i2dest_in_i1src && i1_feeds_i3,
- &i3dest_killed))
- {
- undo_all ();
- return 0;
- }
-
- /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
- We used to do this EXCEPT in one case: I3 has a post-inc in an
- output operand. However, that exception can give rise to insns like
- mov r3,(r3)+
- which is a famous insn on the PDP-11 where the value of r3 used as the
- source was model-dependent. Avoid this sort of thing. */
-
- #if 0
- if (!(GET_CODE (PATTERN (i3)) == SET
- && GET_CODE (SET_SRC (PATTERN (i3))) == REG
- && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
- && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
- || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
- /* It's not the exception. */
- #endif
- #ifdef AUTO_INC_DEC
- for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
- || (i1 != 0
- && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
- {
- undo_all ();
- return 0;
- }
- #endif
-
- /* See if the SETs in I1 or I2 need to be kept around in the merged
- instruction: whenever the value set there is still needed past I3.
- For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
-
- For the SET in I1, we have two cases: If I1 and I2 independently
- feed into I3, the set in I1 needs to be kept around if I1DEST dies
- or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
- in I1 needs to be kept around unless I1DEST dies or is set in either
- I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
- I1DEST. If so, we know I1 feeds into I2. */
-
- added_sets_2 = ! dead_or_set_p (i3, i2dest);
-
- added_sets_1
- = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
- : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
-
- /* If the set in I2 needs to be kept around, we must make a copy of
- PATTERN (I2), so that when we substitute I1SRC for I1DEST in
- PATTERN (I2), we are only substituting for the original I1DEST, not into
- an already-substituted copy. This also prevents making self-referential
- rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
- I2DEST. */
-
- i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
- ? gen_rtx (SET, VOIDmode, i2dest, i2src)
- : PATTERN (i2));
-
- if (added_sets_2)
- i2pat = copy_rtx (i2pat);
-
- combine_merges++;
-
- /* Substitute in the latest insn for the regs set by the earlier ones. */
-
- maxreg = max_reg_num ();
-
- subst_insn = i3;
-
- /* It is possible that the source of I2 or I1 may be performing an
- unneeded operation, such as a ZERO_EXTEND of something that is known
- to have the high part zero. Handle that case by letting subst look at
- the innermost one of them.
-
- Another way to do this would be to have a function that tries to
- simplify a single insn instead of merging two or more insns. We don't
- do this because of the potential of infinite loops and because
- of the potential extra memory required. However, doing it the way
- we are is a bit of a kludge and doesn't catch all cases.
-
- But only do this if -fexpensive-optimizations since it slows things down
- and doesn't usually win. */
-
- if (flag_expensive_optimizations)
- {
- /* Pass pc_rtx so no substitutions are done, just simplifications.
- The cases that we are interested in here do not involve the few
- cases were is_replaced is checked. */
- if (i1)
- {
- subst_low_cuid = INSN_CUID (i1);
- i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
- }
- else
- {
- subst_low_cuid = INSN_CUID (i2);
- i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
- }
-
- previous_num_undos = undobuf.num_undo;
- }
-
- #ifndef HAVE_cc0
- /* Many machines that don't use CC0 have insns that can both perform an
- arithmetic operation and set the condition code. These operations will
- be represented as a PARALLEL with the first element of the vector
- being a COMPARE of an arithmetic operation with the constant zero.
- The second element of the vector will set some pseudo to the result
- of the same arithmetic operation. If we simplify the COMPARE, we won't
- match such a pattern and so will generate an extra insn. Here we test
- for this case, where both the comparison and the operation result are
- needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
- I2SRC. Later we will make the PARALLEL that contains I2. */
-
- if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
- && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
- && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
- && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
- {
- rtx *cc_use;
- enum machine_mode compare_mode;
-
- newpat = PATTERN (i3);
- SUBST (XEXP (SET_SRC (newpat), 0), i2src);
-
- i2_is_used = 1;
-
- #ifdef EXTRA_CC_MODES
- /* See if a COMPARE with the operand we substituted in should be done
- with the mode that is currently being used. If not, do the same
- processing we do in `subst' for a SET; namely, if the destination
- is used only once, try to replace it with a register of the proper
- mode and also replace the COMPARE. */
- if (undobuf.other_insn == 0
- && (cc_use = find_single_use (SET_DEST (newpat), i3,
- &undobuf.other_insn))
- && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
- i2src, const0_rtx))
- != GET_MODE (SET_DEST (newpat))))
- {
- int regno = REGNO (SET_DEST (newpat));
- rtx new_dest = gen_rtx (REG, compare_mode, regno);
-
- if (regno < FIRST_PSEUDO_REGISTER
- || (reg_n_sets[regno] == 1 && ! added_sets_2
- && ! REG_USERVAR_P (SET_DEST (newpat))))
- {
- if (regno >= FIRST_PSEUDO_REGISTER)
- SUBST (regno_reg_rtx[regno], new_dest);
-
- SUBST (SET_DEST (newpat), new_dest);
- SUBST (XEXP (*cc_use, 0), new_dest);
- SUBST (SET_SRC (newpat),
- gen_rtx_combine (COMPARE, compare_mode,
- i2src, const0_rtx));
- }
- else
- undobuf.other_insn = 0;
- }
- #endif
- }
- else
- #endif
- {
- n_occurrences = 0; /* `subst' counts here */
-
- /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
- need to make a unique copy of I2SRC each time we substitute it
- to avoid self-referential rtl. */
-
- subst_low_cuid = INSN_CUID (i2);
- newpat = subst (PATTERN (i3), i2dest, i2src, 0,
- ! i1_feeds_i3 && i1dest_in_i1src);
- previous_num_undos = undobuf.num_undo;
-
- /* Record whether i2's body now appears within i3's body. */
- i2_is_used = n_occurrences;
- }
-
- /* If we already got a failure, don't try to do more. Otherwise,
- try to substitute in I1 if we have it. */
-
- if (i1 && GET_CODE (newpat) != CLOBBER)
- {
- /* Before we can do this substitution, we must redo the test done
- above (see detailed comments there) that ensures that I1DEST
- isn't mentioned in any SETs in NEWPAT that are field assignments. */
-
- if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
- 0, NULL_PTR))
- {
- undo_all ();
- return 0;
- }
-
- n_occurrences = 0;
- subst_low_cuid = INSN_CUID (i1);
- newpat = subst (newpat, i1dest, i1src, 0, 0);
- previous_num_undos = undobuf.num_undo;
- }
-
- /* Fail if an autoincrement side-effect has been duplicated. Be careful
- to count all the ways that I2SRC and I1SRC can be used. */
- if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
- && i2_is_used + added_sets_2 > 1)
- || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
- && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
- > 1))
- /* Fail if we tried to make a new register (we used to abort, but there's
- really no reason to). */
- || max_reg_num () != maxreg
- /* Fail if we couldn't do something and have a CLOBBER. */
- || GET_CODE (newpat) == CLOBBER)
- {
- undo_all ();
- return 0;
- }
-
- /* If the actions of the earlier insns must be kept
- in addition to substituting them into the latest one,
- we must make a new PARALLEL for the latest insn
- to hold additional the SETs. */
-
- if (added_sets_1 || added_sets_2)
- {
- combine_extras++;
-
- if (GET_CODE (newpat) == PARALLEL)
- {
- rtvec old = XVEC (newpat, 0);
- total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
- newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
- bcopy (&old->elem[0], &XVECEXP (newpat, 0, 0),
- sizeof (old->elem[0]) * old->num_elem);
- }
- else
- {
- rtx old = newpat;
- total_sets = 1 + added_sets_1 + added_sets_2;
- newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
- XVECEXP (newpat, 0, 0) = old;
- }
-
- if (added_sets_1)
- XVECEXP (newpat, 0, --total_sets)
- = (GET_CODE (PATTERN (i1)) == PARALLEL
- ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
-
- if (added_sets_2)
- {
- /* If there is no I1, use I2's body as is. We used to also not do
- the subst call below if I2 was substituted into I3,
- but that could lose a simplification. */
- if (i1 == 0)
- XVECEXP (newpat, 0, --total_sets) = i2pat;
- else
- /* See comment where i2pat is assigned. */
- XVECEXP (newpat, 0, --total_sets)
- = subst (i2pat, i1dest, i1src, 0, 0);
- }
- }
-
- /* We come here when we are replacing a destination in I2 with the
- destination of I3. */
- validate_replacement:
-
- /* Is the result of combination a valid instruction? */
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
-
- /* If the result isn't valid, see if it is a PARALLEL of two SETs where
- the second SET's destination is a register that is unused. In that case,
- we just need the first SET. This can occur when simplifying a divmod
- insn. We *must* test for this case here because the code below that
- splits two independent SETs doesn't handle this case correctly when it
- updates the register status. Also check the case where the first
- SET's destination is unused. That would not cause incorrect code, but
- does cause an unneeded insn to remain. */
-
- if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
- && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
- && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
- && asm_noperands (newpat) < 0)
- {
- newpat = XVECEXP (newpat, 0, 0);
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
-
- else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
- && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
- && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
- && asm_noperands (newpat) < 0)
- {
- newpat = XVECEXP (newpat, 0, 1);
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
-
- /* See if this is an XOR. If so, perhaps the problem is that the
- constant is out of range. Replace it with a complemented XOR with
- a complemented constant; it might be in range. */
-
- else if (insn_code_number < 0 && GET_CODE (newpat) == SET
- && GET_CODE (SET_SRC (newpat)) == XOR
- && GET_CODE (XEXP (SET_SRC (newpat), 1)) == CONST_INT
- && ((temp = simplify_unary_operation (NOT,
- GET_MODE (SET_SRC (newpat)),
- XEXP (SET_SRC (newpat), 1),
- GET_MODE (SET_SRC (newpat))))
- != 0))
- {
- enum machine_mode i_mode = GET_MODE (SET_SRC (newpat));
- rtx pat
- = gen_rtx_combine (SET, VOIDmode, SET_DEST (newpat),
- gen_unary (NOT, i_mode,
- gen_binary (XOR, i_mode,
- XEXP (SET_SRC (newpat), 0),
- temp)));
-
- insn_code_number = recog_for_combine (&pat, i3, &new_i3_notes);
- if (insn_code_number >= 0)
- newpat = pat;
- }
-
- /* If we were combining three insns and the result is a simple SET
- with no ASM_OPERANDS that wasn't recognized, try to split it into two
- insns. There are two ways to do this. It can be split using a
- machine-specific method (like when you have an addition of a large
- constant) or by combine in the function find_split_point. */
-
- if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
- && asm_noperands (newpat) < 0)
- {
- rtx m_split, *split;
- rtx ni2dest = i2dest;
-
- /* See if the MD file can split NEWPAT. If it can't, see if letting it
- use I2DEST as a scratch register will help. In the latter case,
- convert I2DEST to the mode of the source of NEWPAT if we can. */
-
- m_split = split_insns (newpat, i3);
-
- /* We can only use I2DEST as a scratch reg if it doesn't overlap any
- inputs of NEWPAT. */
-
- /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
- possible to try that as a scratch reg. This would require adding
- more code to make it work though. */
-
- if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
- {
- /* If I2DEST is a hard register or the only use of a pseudo,
- we can change its mode. */
- if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
- && GET_MODE (SET_DEST (newpat)) != VOIDmode
- && GET_CODE (i2dest) == REG
- && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
- || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
- && ! REG_USERVAR_P (i2dest))))
- ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
- REGNO (i2dest));
-
- m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
- gen_rtvec (2, newpat,
- gen_rtx (CLOBBER,
- VOIDmode,
- ni2dest))),
- i3);
- }
-
- if (m_split && GET_CODE (m_split) == SEQUENCE
- && XVECLEN (m_split, 0) == 2
- && (next_real_insn (i2) == i3
- || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
- INSN_CUID (i2))))
- {
- rtx i2set, i3set;
- rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
- newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
-
- i3set = single_set (XVECEXP (m_split, 0, 1));
- i2set = single_set (XVECEXP (m_split, 0, 0));
-
- /* In case we changed the mode of I2DEST, replace it in the
- pseudo-register table here. We can't do it above in case this
- code doesn't get executed and we do a split the other way. */
-
- if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
- SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
-
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
-
- /* If I2 or I3 has multiple SETs, we won't know how to track
- register status, so don't use these insns. */
-
- if (i2_code_number >= 0 && i2set && i3set)
- insn_code_number = recog_for_combine (&newi3pat, i3,
- &new_i3_notes);
-
- if (insn_code_number >= 0)
- newpat = newi3pat;
-
- /* It is possible that both insns now set the destination of I3.
- If so, we must show an extra use of it. */
-
- if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG
- && GET_CODE (SET_DEST (i2set)) == REG
- && REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set)))
- reg_n_sets[REGNO (SET_DEST (i2set))]++;
- }
-
- /* If we can split it and use I2DEST, go ahead and see if that
- helps things be recognized. Verify that none of the registers
- are set between I2 and I3. */
- if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
- #ifdef HAVE_cc0
- && GET_CODE (i2dest) == REG
- #endif
- /* We need I2DEST in the proper mode. If it is a hard register
- or the only use of a pseudo, we can change its mode. */
- && (GET_MODE (*split) == GET_MODE (i2dest)
- || GET_MODE (*split) == VOIDmode
- || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
- || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
- && ! REG_USERVAR_P (i2dest)))
- && (next_real_insn (i2) == i3
- || ! use_crosses_set_p (*split, INSN_CUID (i2)))
- /* We can't overwrite I2DEST if its value is still used by
- NEWPAT. */
- && ! reg_referenced_p (i2dest, newpat))
- {
- rtx newdest = i2dest;
-
- /* Get NEWDEST as a register in the proper mode. We have already
- validated that we can do this. */
- if (GET_MODE (i2dest) != GET_MODE (*split)
- && GET_MODE (*split) != VOIDmode)
- {
- newdest = gen_rtx (REG, GET_MODE (*split), REGNO (i2dest));
-
- if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
- SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
- }
-
- /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
- an ASHIFT. This can occur if it was inside a PLUS and hence
- appeared to be a memory address. This is a kludge. */
- if (GET_CODE (*split) == MULT
- && GET_CODE (XEXP (*split, 1)) == CONST_INT
- && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
- SUBST (*split, gen_rtx_combine (ASHIFT, GET_MODE (*split),
- XEXP (*split, 0), GEN_INT (i)));
-
- #ifdef INSN_SCHEDULING
- /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
- be written as a ZERO_EXTEND. */
- if (GET_CODE (*split) == SUBREG
- && GET_CODE (SUBREG_REG (*split)) == MEM)
- SUBST (*split, gen_rtx_combine (ZERO_EXTEND, GET_MODE (*split),
- XEXP (*split, 0)));
- #endif
-
- newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
- SUBST (*split, newdest);
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
- if (i2_code_number >= 0)
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
- }
-
- /* Check for a case where we loaded from memory in a narrow mode and
- then sign extended it, but we need both registers. In that case,
- we have a PARALLEL with both loads from the same memory location.
- We can split this into a load from memory followed by a register-register
- copy. This saves at least one insn, more if register allocation can
- eliminate the copy.
-
- We cannot do this if the destination of the second assignment is
- a register that we have already assumed is zero-extended. Similarly
- for a SUBREG of such a register. */
-
- else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
- && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
- XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
- && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
- INSN_CUID (i2))
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
- && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
- (GET_CODE (temp) == REG
- && reg_nonzero_bits[REGNO (temp)] != 0
- && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
- && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
- && (reg_nonzero_bits[REGNO (temp)]
- != GET_MODE_MASK (word_mode))))
- && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
- && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
- (GET_CODE (temp) == REG
- && reg_nonzero_bits[REGNO (temp)] != 0
- && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
- && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
- && (reg_nonzero_bits[REGNO (temp)]
- != GET_MODE_MASK (word_mode)))))
- && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
- SET_SRC (XVECEXP (newpat, 0, 1)))
- && ! find_reg_note (i3, REG_UNUSED,
- SET_DEST (XVECEXP (newpat, 0, 0))))
- {
- rtx ni2dest;
-
- newi2pat = XVECEXP (newpat, 0, 0);
- ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
- newpat = XVECEXP (newpat, 0, 1);
- SUBST (SET_SRC (newpat),
- gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
- if (i2_code_number >= 0)
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
-
- if (insn_code_number >= 0)
- {
- rtx insn;
- rtx link;
-
- /* If we will be able to accept this, we have made a change to the
- destination of I3. This can invalidate a LOG_LINKS pointing
- to I3. No other part of combine.c makes such a transformation.
-
- The new I3 will have a destination that was previously the
- destination of I1 or I2 and which was used in i2 or I3. Call
- distribute_links to make a LOG_LINK from the next use of
- that destination. */
-
- PATTERN (i3) = newpat;
- distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
-
- /* I3 now uses what used to be its destination and which is
- now I2's destination. That means we need a LOG_LINK from
- I3 to I2. But we used to have one, so we still will.
-
- However, some later insn might be using I2's dest and have
- a LOG_LINK pointing at I3. We must remove this link.
- The simplest way to remove the link is to point it at I1,
- which we know will be a NOTE. */
-
- for (insn = NEXT_INSN (i3);
- insn && (this_basic_block == n_basic_blocks - 1
- || insn != basic_block_head[this_basic_block + 1]);
- insn = NEXT_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && reg_referenced_p (ni2dest, PATTERN (insn)))
- {
- for (link = LOG_LINKS (insn); link;
- link = XEXP (link, 1))
- if (XEXP (link, 0) == i3)
- XEXP (link, 0) = i1;
-
- break;
- }
- }
- }
- }
-
- /* Similarly, check for a case where we have a PARALLEL of two independent
- SETs but we started with three insns. In this case, we can do the sets
- as two separate insns. This case occurs when some SET allows two
- other insns to combine, but the destination of that SET is still live. */
-
- else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
- && GET_CODE (newpat) == PARALLEL
- && XVECLEN (newpat, 0) == 2
- && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
- && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
- && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
- INSN_CUID (i2))
- /* Don't pass sets with (USE (MEM ...)) dests to the following. */
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
- && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
- && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
- XVECEXP (newpat, 0, 0))
- && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
- XVECEXP (newpat, 0, 1)))
- {
- newi2pat = XVECEXP (newpat, 0, 1);
- newpat = XVECEXP (newpat, 0, 0);
-
- i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
- if (i2_code_number >= 0)
- insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
- }
-
- /* If it still isn't recognized, fail and change things back the way they
- were. */
- if ((insn_code_number < 0
- /* Is the result a reasonable ASM_OPERANDS? */
- && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
- {
- undo_all ();
- return 0;
- }
-
- /* If we had to change another insn, make sure it is valid also. */
- if (undobuf.other_insn)
- {
- rtx other_notes = REG_NOTES (undobuf.other_insn);
- rtx other_pat = PATTERN (undobuf.other_insn);
- rtx new_other_notes;
- rtx note, next;
-
- other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
- &new_other_notes);
-
- if (other_code_number < 0 && ! check_asm_operands (other_pat))
- {
- undo_all ();
- return 0;
- }
-
- PATTERN (undobuf.other_insn) = other_pat;
-
- /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
- are still valid. Then add any non-duplicate notes added by
- recog_for_combine. */
- for (note = REG_NOTES (undobuf.other_insn); note; note = next)
- {
- next = XEXP (note, 1);
-
- if (REG_NOTE_KIND (note) == REG_UNUSED
- && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
- {
- if (GET_CODE (XEXP (note, 0)) == REG)
- reg_n_deaths[REGNO (XEXP (note, 0))]--;
-
- remove_note (undobuf.other_insn, note);
- }
- }
-
- for (note = new_other_notes; note; note = XEXP (note, 1))
- if (GET_CODE (XEXP (note, 0)) == REG)
- reg_n_deaths[REGNO (XEXP (note, 0))]++;
-
- distribute_notes (new_other_notes, undobuf.other_insn,
- undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
- }
-
- /* We now know that we can do this combination. Merge the insns and
- update the status of registers and LOG_LINKS. */
-
- {
- rtx i3notes, i2notes, i1notes = 0;
- rtx i3links, i2links, i1links = 0;
- rtx midnotes = 0;
- int all_adjacent = (next_real_insn (i2) == i3
- && (i1 == 0 || next_real_insn (i1) == i2));
- register int regno;
- /* Compute which registers we expect to eliminate. */
- rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
- ? 0 : i2dest);
- rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
-
- /* Get the old REG_NOTES and LOG_LINKS from all our insns and
- clear them. */
- i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
- i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
- if (i1)
- i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
-
- /* Ensure that we do not have something that should not be shared but
- occurs multiple times in the new insns. Check this by first
- resetting all the `used' flags and then copying anything is shared. */
-
- reset_used_flags (i3notes);
- reset_used_flags (i2notes);
- reset_used_flags (i1notes);
- reset_used_flags (newpat);
- reset_used_flags (newi2pat);
- if (undobuf.other_insn)
- reset_used_flags (PATTERN (undobuf.other_insn));
-
- i3notes = copy_rtx_if_shared (i3notes);
- i2notes = copy_rtx_if_shared (i2notes);
- i1notes = copy_rtx_if_shared (i1notes);
- newpat = copy_rtx_if_shared (newpat);
- newi2pat = copy_rtx_if_shared (newi2pat);
- if (undobuf.other_insn)
- reset_used_flags (PATTERN (undobuf.other_insn));
-
- INSN_CODE (i3) = insn_code_number;
- PATTERN (i3) = newpat;
- if (undobuf.other_insn)
- INSN_CODE (undobuf.other_insn) = other_code_number;
-
- /* We had one special case above where I2 had more than one set and
- we replaced a destination of one of those sets with the destination
- of I3. In that case, we have to update LOG_LINKS of insns later
- in this basic block. Note that this (expensive) case is rare.
-
- Also, in this case, we must pretend that all REG_NOTEs for I2
- actually came from I3, so that REG_UNUSED notes from I2 will be
- properly handled. */
-
- if (i3_subst_into_i2)
- {
- for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
- if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
- && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
- && ! find_reg_note (i2, REG_UNUSED,
- SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
- for (temp = NEXT_INSN (i2);
- temp && (this_basic_block == n_basic_blocks - 1
- || basic_block_head[this_basic_block] != temp);
- temp = NEXT_INSN (temp))
- if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
- for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
- if (XEXP (link, 0) == i2)
- XEXP (link, 0) = i3;
-
- if (i3notes)
- {
- rtx link = i3notes;
- while (XEXP (link, 1))
- link = XEXP (link, 1);
- XEXP (link, 1) = i2notes;
- }
- else
- i3notes = i2notes;
- i2notes = 0;
- }
-
- LOG_LINKS (i3) = 0;
- REG_NOTES (i3) = 0;
- LOG_LINKS (i2) = 0;
- REG_NOTES (i2) = 0;
-
- if (newi2pat)
- {
- INSN_CODE (i2) = i2_code_number;
- PATTERN (i2) = newi2pat;
- }
- else
- {
- PUT_CODE (i2, NOTE);
- NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (i2) = 0;
- }
-
- if (i1)
- {
- LOG_LINKS (i1) = 0;
- REG_NOTES (i1) = 0;
- PUT_CODE (i1, NOTE);
- NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (i1) = 0;
- }
-
- /* Get death notes for everything that is now used in either I3 or
- I2 and used to die in a previous insn. */
-
- move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
- if (newi2pat)
- move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
-
- /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
- if (i3notes)
- distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- if (i2notes)
- distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- if (i1notes)
- distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
- if (midnotes)
- distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- elim_i2, elim_i1);
-
- /* Distribute any notes added to I2 or I3 by recog_for_combine. We
- know these are REG_UNUSED and want them to go to the desired insn,
- so we always pass it as i3. We have not counted the notes in
- reg_n_deaths yet, so we need to do so now. */
-
- if (newi2pat && new_i2_notes)
- {
- for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
- if (GET_CODE (XEXP (temp, 0)) == REG)
- reg_n_deaths[REGNO (XEXP (temp, 0))]++;
-
- distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
- }
-
- if (new_i3_notes)
- {
- for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
- if (GET_CODE (XEXP (temp, 0)) == REG)
- reg_n_deaths[REGNO (XEXP (temp, 0))]++;
-
- distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
- }
-
- /* If I3DEST was used in I3SRC, it really died in I3. We may need to
- put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
- Show an additional death due to the REG_DEAD note we make here. If
- we discard it in distribute_notes, we will decrement it again. */
-
- if (i3dest_killed)
- {
- if (GET_CODE (i3dest_killed) == REG)
- reg_n_deaths[REGNO (i3dest_killed)]++;
-
- distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
- NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- NULL_RTX, NULL_RTX);
- }
-
- /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
- I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
- we passed I3 in that case, it might delete I2. */
-
- if (i2dest_in_i2src)
- {
- if (GET_CODE (i2dest) == REG)
- reg_n_deaths[REGNO (i2dest)]++;
-
- if (newi2pat && reg_set_p (i2dest, newi2pat))
- distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
- NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
- else
- distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- NULL_RTX, NULL_RTX);
- }
-
- if (i1dest_in_i1src)
- {
- if (GET_CODE (i1dest) == REG)
- reg_n_deaths[REGNO (i1dest)]++;
-
- if (newi2pat && reg_set_p (i1dest, newi2pat))
- distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
- NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
- else
- distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- NULL_RTX, NULL_RTX);
- }
-
- distribute_links (i3links);
- distribute_links (i2links);
- distribute_links (i1links);
-
- if (GET_CODE (i2dest) == REG)
- {
- rtx link;
- rtx i2_insn = 0, i2_val = 0, set;
-
- /* The insn that used to set this register doesn't exist, and
- this life of the register may not exist either. See if one of
- I3's links points to an insn that sets I2DEST. If it does,
- that is now the last known value for I2DEST. If we don't update
- this and I2 set the register to a value that depended on its old
- contents, we will get confused. If this insn is used, thing
- will be set correctly in combine_instructions. */
-
- for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
- if ((set = single_set (XEXP (link, 0))) != 0
- && rtx_equal_p (i2dest, SET_DEST (set)))
- i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
-
- record_value_for_reg (i2dest, i2_insn, i2_val);
-
- /* If the reg formerly set in I2 died only once and that was in I3,
- zero its use count so it won't make `reload' do any work. */
- if (! added_sets_2 && newi2pat == 0)
- {
- regno = REGNO (i2dest);
- reg_n_sets[regno]--;
- if (reg_n_sets[regno] == 0
- && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
- reg_n_refs[regno] = 0;
- }
- }
-
- if (i1 && GET_CODE (i1dest) == REG)
- {
- rtx link;
- rtx i1_insn = 0, i1_val = 0, set;
-
- for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
- if ((set = single_set (XEXP (link, 0))) != 0
- && rtx_equal_p (i1dest, SET_DEST (set)))
- i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
-
- record_value_for_reg (i1dest, i1_insn, i1_val);
-
- regno = REGNO (i1dest);
- if (! added_sets_1)
- {
- reg_n_sets[regno]--;
- if (reg_n_sets[regno] == 0
- && ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
- reg_n_refs[regno] = 0;
- }
- }
-
- /* Update reg_nonzero_bits et al for any changes that may have been made
- to this insn. */
-
- note_stores (newpat, set_nonzero_bits_and_sign_copies);
- if (newi2pat)
- note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
-
- /* If I3 is now an unconditional jump, ensure that it has a
- BARRIER following it since it may have initially been a
- conditional jump. It may also be the last nonnote insn. */
-
- if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
- && ((temp = next_nonnote_insn (i3)) == NULL_RTX
- || GET_CODE (temp) != BARRIER))
- emit_barrier_after (i3);
- }
-
- combine_successes++;
-
- return newi2pat ? i2 : i3;
- }
-
- /* Undo all the modifications recorded in undobuf. */
-
- static void
- undo_all ()
- {
- register int i;
- if (undobuf.num_undo > MAX_UNDO)
- undobuf.num_undo = MAX_UNDO;
- for (i = undobuf.num_undo - 1; i >= 0; i--)
- {
- if (undobuf.undo[i].is_int)
- *undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i;
- else
- *undobuf.undo[i].where.r = undobuf.undo[i].old_contents.r;
-
- }
-
- obfree (undobuf.storage);
- undobuf.num_undo = 0;
- }
-
- /* Find the innermost point within the rtx at LOC, possibly LOC itself,
- where we have an arithmetic expression and return that point. LOC will
- be inside INSN.
-
- try_combine will call this function to see if an insn can be split into
- two insns. */
-
- static rtx *
- find_split_point (loc, insn)
- rtx *loc;
- rtx insn;
- {
- rtx x = *loc;
- enum rtx_code code = GET_CODE (x);
- rtx *split;
- int len = 0, pos, unsignedp;
- rtx inner;
-
- /* First special-case some codes. */
- switch (code)
- {
- case SUBREG:
- #ifdef INSN_SCHEDULING
- /* If we are making a paradoxical SUBREG invalid, it becomes a split
- point. */
- if (GET_CODE (SUBREG_REG (x)) == MEM)
- return loc;
- #endif
- return find_split_point (&SUBREG_REG (x), insn);
-
- case MEM:
- #ifdef HAVE_lo_sum
- /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
- using LO_SUM and HIGH. */
- if (GET_CODE (XEXP (x, 0)) == CONST
- || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
- {
- SUBST (XEXP (x, 0),
- gen_rtx_combine (LO_SUM, Pmode,
- gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
- XEXP (x, 0)));
- return &XEXP (XEXP (x, 0), 0);
- }
- #endif
-
- /* If we have a PLUS whose second operand is a constant and the
- address is not valid, perhaps will can split it up using
- the machine-specific way to split large constants. We use
- the first psuedo-reg (one of the virtual regs) as a placeholder;
- it will not remain in the result. */
- if (GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
- {
- rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
- rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
- subst_insn);
-
- /* This should have produced two insns, each of which sets our
- placeholder. If the source of the second is a valid address,
- we can make put both sources together and make a split point
- in the middle. */
-
- if (seq && XVECLEN (seq, 0) == 2
- && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
- && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
- && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
- && ! reg_mentioned_p (reg,
- SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
- && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
- && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
- && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
- && memory_address_p (GET_MODE (x),
- SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
- {
- rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
- rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
-
- /* Replace the placeholder in SRC2 with SRC1. If we can
- find where in SRC2 it was placed, that can become our
- split point and we can replace this address with SRC2.
- Just try two obvious places. */
-
- src2 = replace_rtx (src2, reg, src1);
- split = 0;
- if (XEXP (src2, 0) == src1)
- split = &XEXP (src2, 0);
- else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
- && XEXP (XEXP (src2, 0), 0) == src1)
- split = &XEXP (XEXP (src2, 0), 0);
-
- if (split)
- {
- SUBST (XEXP (x, 0), src2);
- return split;
- }
- }
-
- /* If that didn't work, perhaps the first operand is complex and
- needs to be computed separately, so make a split point there.
- This will occur on machines that just support REG + CONST
- and have a constant moved through some previous computation. */
-
- else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
- && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
- && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
- == 'o')))
- return &XEXP (XEXP (x, 0), 0);
- }
- break;
-
- case SET:
- #ifdef HAVE_cc0
- /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
- ZERO_EXTRACT, the most likely reason why this doesn't match is that
- we need to put the operand into a register. So split at that
- point. */
-
- if (SET_DEST (x) == cc0_rtx
- && GET_CODE (SET_SRC (x)) != COMPARE
- && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
- && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
- && ! (GET_CODE (SET_SRC (x)) == SUBREG
- && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
- return &SET_SRC (x);
- #endif
-
- /* See if we can split SET_SRC as it stands. */
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
-
- /* See if this is a bitfield assignment with everything constant. If
- so, this is an IOR of an AND, so split it into that. */
- if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
- && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
- && GET_CODE (SET_SRC (x)) == CONST_INT
- && ((INTVAL (XEXP (SET_DEST (x), 1))
- + INTVAL (XEXP (SET_DEST (x), 2)))
- <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
- && ! side_effects_p (XEXP (SET_DEST (x), 0)))
- {
- int pos = INTVAL (XEXP (SET_DEST (x), 2));
- int len = INTVAL (XEXP (SET_DEST (x), 1));
- int src = INTVAL (SET_SRC (x));
- rtx dest = XEXP (SET_DEST (x), 0);
- enum machine_mode mode = GET_MODE (dest);
- unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
-
- #if BITS_BIG_ENDIAN
- pos = GET_MODE_BITSIZE (mode) - len - pos;
- #endif
-
- if (src == mask)
- SUBST (SET_SRC (x),
- gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
- else
- SUBST (SET_SRC (x),
- gen_binary (IOR, mode,
- gen_binary (AND, mode, dest,
- GEN_INT (~ (mask << pos)
- & GET_MODE_MASK (mode))),
- GEN_INT (src << pos)));
-
- SUBST (SET_DEST (x), dest);
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
-
- /* Otherwise, see if this is an operation that we can split into two.
- If so, try to split that. */
- code = GET_CODE (SET_SRC (x));
-
- switch (code)
- {
- case AND:
- /* If we are AND'ing with a large constant that is only a single
- bit and the result is only being used in a context where we
- need to know if it is zero or non-zero, replace it with a bit
- extraction. This will avoid the large constant, which might
- have taken more than one insn to make. If the constant were
- not a valid argument to the AND but took only one insn to make,
- this is no worse, but if it took more than one insn, it will
- be better. */
-
- if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
- && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
- && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
- && GET_CODE (SET_DEST (x)) == REG
- && (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
- && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
- && XEXP (*split, 0) == SET_DEST (x)
- && XEXP (*split, 1) == const0_rtx)
- {
- SUBST (SET_SRC (x),
- make_extraction (GET_MODE (SET_DEST (x)),
- XEXP (SET_SRC (x), 0),
- pos, NULL_RTX, 1, 1, 0, 0));
- return find_split_point (loc, insn);
- }
- break;
-
- case SIGN_EXTEND:
- inner = XEXP (SET_SRC (x), 0);
- pos = 0;
- len = GET_MODE_BITSIZE (GET_MODE (inner));
- unsignedp = 0;
- break;
-
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
- && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
- {
- inner = XEXP (SET_SRC (x), 0);
- len = INTVAL (XEXP (SET_SRC (x), 1));
- pos = INTVAL (XEXP (SET_SRC (x), 2));
-
- #if BITS_BIG_ENDIAN
- pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
- #endif
- unsignedp = (code == ZERO_EXTRACT);
- }
- break;
- }
-
- if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
- {
- enum machine_mode mode = GET_MODE (SET_SRC (x));
-
- /* For unsigned, we have a choice of a shift followed by an
- AND or two shifts. Use two shifts for field sizes where the
- constant might be too large. We assume here that we can
- always at least get 8-bit constants in an AND insn, which is
- true for every current RISC. */
-
- if (unsignedp && len <= 8)
- {
- SUBST (SET_SRC (x),
- gen_rtx_combine
- (AND, mode,
- gen_rtx_combine (LSHIFTRT, mode,
- gen_lowpart_for_combine (mode, inner),
- GEN_INT (pos)),
- GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
- else
- {
- SUBST (SET_SRC (x),
- gen_rtx_combine
- (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
- gen_rtx_combine (ASHIFT, mode,
- gen_lowpart_for_combine (mode, inner),
- GEN_INT (GET_MODE_BITSIZE (mode)
- - len - pos)),
- GEN_INT (GET_MODE_BITSIZE (mode) - len)));
-
- split = find_split_point (&SET_SRC (x), insn);
- if (split && split != &SET_SRC (x))
- return split;
- }
- }
-
- /* See if this is a simple operation with a constant as the second
- operand. It might be that this constant is out of range and hence
- could be used as a split point. */
- if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
- || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
- || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
- && CONSTANT_P (XEXP (SET_SRC (x), 1))
- && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
- || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
- && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
- == 'o'))))
- return &XEXP (SET_SRC (x), 1);
-
- /* Finally, see if this is a simple operation with its first operand
- not in a register. The operation might require this operand in a
- register, so return it as a split point. We can always do this
- because if the first operand were another operation, we would have
- already found it as a split point. */
- if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
- || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
- || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
- || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
- && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
- return &XEXP (SET_SRC (x), 0);
-
- return 0;
-
- case AND:
- case IOR:
- /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
- it is better to write this as (not (ior A B)) so we can split it.
- Similarly for IOR. */
- if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
- {
- SUBST (*loc,
- gen_rtx_combine (NOT, GET_MODE (x),
- gen_rtx_combine (code == IOR ? AND : IOR,
- GET_MODE (x),
- XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 1), 0))));
- return find_split_point (loc, insn);
- }
-
- /* Many RISC machines have a large set of logical insns. If the
- second operand is a NOT, put it first so we will try to split the
- other operand first. */
- if (GET_CODE (XEXP (x, 1)) == NOT)
- {
- rtx tem = XEXP (x, 0);
- SUBST (XEXP (x, 0), XEXP (x, 1));
- SUBST (XEXP (x, 1), tem);
- }
- break;
- }
-
- /* Otherwise, select our actions depending on our rtx class. */
- switch (GET_RTX_CLASS (code))
- {
- case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
- case '3':
- split = find_split_point (&XEXP (x, 2), insn);
- if (split)
- return split;
- /* ... fall through ... */
- case '2':
- case 'c':
- case '<':
- split = find_split_point (&XEXP (x, 1), insn);
- if (split)
- return split;
- /* ... fall through ... */
- case '1':
- /* Some machines have (and (shift ...) ...) insns. If X is not
- an AND, but XEXP (X, 0) is, use it as our split point. */
- if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
- return &XEXP (x, 0);
-
- split = find_split_point (&XEXP (x, 0), insn);
- if (split)
- return split;
- return loc;
- }
-
- /* Otherwise, we don't have a split point. */
- return 0;
- }
-
- /* Throughout X, replace FROM with TO, and return the result.
- The result is TO if X is FROM;
- otherwise the result is X, but its contents may have been modified.
- If they were modified, a record was made in undobuf so that
- undo_all will (among other things) return X to its original state.
-
- If the number of changes necessary is too much to record to undo,
- the excess changes are not made, so the result is invalid.
- The changes already made can still be undone.
- undobuf.num_undo is incremented for such changes, so by testing that
- the caller can tell whether the result is valid.
-
- `n_occurrences' is incremented each time FROM is replaced.
-
- IN_DEST is non-zero if we are processing the SET_DEST of a SET.
-
- UNIQUE_COPY is non-zero if each substitution must be unique. We do this
- by copying if `n_occurrences' is non-zero. */
-
- static rtx
- subst (x, from, to, in_dest, unique_copy)
- register rtx x, from, to;
- int in_dest;
- int unique_copy;
- {
- register char *fmt;
- register int len, i;
- register enum rtx_code code = GET_CODE (x), orig_code = code;
- rtx temp;
- enum machine_mode mode = GET_MODE (x);
- enum machine_mode op0_mode = VOIDmode;
- rtx other_insn;
- rtx *cc_use;
- int n_restarts = 0;
-
- /* FAKE_EXTEND_SAFE_P (MODE, FROM) is 1 if (subreg:MODE FROM 0) is a safe
- replacement for (zero_extend:MODE FROM) or (sign_extend:MODE FROM).
- If it is 0, that cannot be done. We can now do this for any MEM
- because (SUBREG (MEM...)) is guaranteed to cause the MEM to be reloaded.
- If not for that, MEM's would very rarely be safe. */
-
- /* Reject MODEs bigger than a word, because we might not be able
- to reference a two-register group starting with an arbitrary register
- (and currently gen_lowpart might crash for a SUBREG). */
-
- #define FAKE_EXTEND_SAFE_P(MODE, FROM) \
- (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
-
- /* Two expressions are equal if they are identical copies of a shared
- RTX or if they are both registers with the same register number
- and mode. */
-
- #define COMBINE_RTX_EQUAL_P(X,Y) \
- ((X) == (Y) \
- || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
- && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
-
- if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
- {
- n_occurrences++;
- return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
- }
-
- /* If X and FROM are the same register but different modes, they will
- not have been seen as equal above. However, flow.c will make a
- LOG_LINKS entry for that case. If we do nothing, we will try to
- rerecognize our original insn and, when it succeeds, we will
- delete the feeding insn, which is incorrect.
-
- So force this insn not to match in this (rare) case. */
- if (! in_dest && code == REG && GET_CODE (from) == REG
- && REGNO (x) == REGNO (from))
- return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
-
- /* If this is an object, we are done unless it is a MEM or LO_SUM, both
- of which may contain things that can be combined. */
- if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
- return x;
-
- /* It is possible to have a subexpression appear twice in the insn.
- Suppose that FROM is a register that appears within TO.
- Then, after that subexpression has been scanned once by `subst',
- the second time it is scanned, TO may be found. If we were
- to scan TO here, we would find FROM within it and create a
- self-referent rtl structure which is completely wrong. */
- if (COMBINE_RTX_EQUAL_P (x, to))
- return to;
-
- len = GET_RTX_LENGTH (code);
- fmt = GET_RTX_FORMAT (code);
-
- /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
- set up to skip this common case. All other cases where we want to
- suppress replacing something inside a SET_SRC are handled via the
- IN_DEST operand. */
- if (code == SET
- && (GET_CODE (SET_DEST (x)) == REG
- || GET_CODE (SET_DEST (x)) == CC0
- || GET_CODE (SET_DEST (x)) == PC))
- fmt = "ie";
-
- /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
- if (fmt[0] == 'e')
- op0_mode = GET_MODE (XEXP (x, 0));
-
- for (i = 0; i < len; i++)
- {
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- {
- register rtx new;
- if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
- {
- new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
- n_occurrences++;
- }
- else
- {
- new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
-
- /* If this substitution failed, this whole thing fails. */
- if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
- return new;
- }
-
- SUBST (XVECEXP (x, i, j), new);
- }
- }
- else if (fmt[i] == 'e')
- {
- register rtx new;
-
- if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
- {
- /* In general, don't install a subreg involving two modes not
- tieable. It can worsen register allocation, and can even
- make invalid reload insns, since the reg inside may need to
- be copied from in the outside mode, and that may be invalid
- if it is an fp reg copied in integer mode.
-
- We allow two exceptions to this: It is valid if it is inside
- another SUBREG and the mode of that SUBREG and the mode of
- the inside of TO is tieable and it is valid if X is a SET
- that copies FROM to CC0. */
- if (GET_CODE (to) == SUBREG
- && ! MODES_TIEABLE_P (GET_MODE (to),
- GET_MODE (SUBREG_REG (to)))
- && ! (code == SUBREG
- && MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (to))))
- #ifdef HAVE_cc0
- && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
- #endif
- )
- return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
-
- new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
- n_occurrences++;
- }
- else
- /* If we are in a SET_DEST, suppress most cases unless we
- have gone inside a MEM, in which case we want to
- simplify the address. We assume here that things that
- are actually part of the destination have their inner
- parts in the first expression. This is true for SUBREG,
- STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
- things aside from REG and MEM that should appear in a
- SET_DEST. */
- new = subst (XEXP (x, i), from, to,
- (((in_dest
- && (code == SUBREG || code == STRICT_LOW_PART
- || code == ZERO_EXTRACT))
- || code == SET)
- && i == 0), unique_copy);
-
- /* If we found that we will have to reject this combination,
- indicate that by returning the CLOBBER ourselves, rather than
- an expression containing it. This will speed things up as
- well as prevent accidents where two CLOBBERs are considered
- to be equal, thus producing an incorrect simplification. */
-
- if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
- return new;
-
- SUBST (XEXP (x, i), new);
- }
- }
-
- /* We come back to here if we have replaced the expression with one of
- a different code and it is likely that further simplification will be
- possible. */
-
- restart:
-
- /* If we have restarted more than 4 times, we are probably looping, so
- give up. */
- if (++n_restarts > 4)
- return x;
-
- /* If we are restarting at all, it means that we no longer know the
- original mode of operand 0 (since we have probably changed the
- form of X). */
-
- if (n_restarts > 1)
- op0_mode = VOIDmode;
-
- code = GET_CODE (x);
-
- /* If this is a commutative operation, put a constant last and a complex
- expression first. We don't need to do this for comparisons here. */
- if (GET_RTX_CLASS (code) == 'c'
- && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
- || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
- || (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
- {
- temp = XEXP (x, 0);
- SUBST (XEXP (x, 0), XEXP (x, 1));
- SUBST (XEXP (x, 1), temp);
- }
-
- /* If this is a PLUS, MINUS, or MULT, and the first operand is the
- sign extension of a PLUS with a constant, reverse the order of the sign
- extension and the addition. Note that this not the same as the original
- code, but overflow is undefined for signed values. Also note that the
- PLUS will have been partially moved "inside" the sign-extension, so that
- the first operand of X will really look like:
- (ashiftrt (plus (ashift A C4) C5) C4).
- We convert this to
- (plus (ashiftrt (ashift A C4) C2) C4)
- and replace the first operand of X with that expression. Later parts
- of this function may simplify the expression further.
-
- For example, if we start with (mult (sign_extend (plus A C1)) C2),
- we swap the SIGN_EXTEND and PLUS. Later code will apply the
- distributive law to produce (plus (mult (sign_extend X) C1) C3).
-
- We do this to simplify address expressions. */
-
- if ((code == PLUS || code == MINUS || code == MULT)
- && GET_CODE (XEXP (x, 0)) == ASHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
- && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
- && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
- && (temp = simplify_binary_operation (ASHIFTRT, mode,
- XEXP (XEXP (XEXP (x, 0), 0), 1),
- XEXP (XEXP (x, 0), 1))) != 0)
- {
- rtx new
- = simplify_shift_const (NULL_RTX, ASHIFT, mode,
- XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
- INTVAL (XEXP (XEXP (x, 0), 1)));
-
- new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
- INTVAL (XEXP (XEXP (x, 0), 1)));
-
- SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
- }
-
- /* If this is a simple operation applied to an IF_THEN_ELSE, try
- applying it to the arms of the IF_THEN_ELSE. This often simplifies
- things. Don't deal with operations that change modes here. */
-
- if ((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c')
- && GET_CODE (XEXP (x, 0)) == IF_THEN_ELSE)
- {
- /* Don't do this by using SUBST inside X since we might be messing
- up a shared expression. */
- rtx cond = XEXP (XEXP (x, 0), 0);
- rtx t_arm = subst (gen_binary (code, mode, XEXP (XEXP (x, 0), 1),
- XEXP (x, 1)),
- pc_rtx, pc_rtx, 0, 0);
- rtx f_arm = subst (gen_binary (code, mode, XEXP (XEXP (x, 0), 2),
- XEXP (x, 1)),
- pc_rtx, pc_rtx, 0, 0);
-
-
- x = gen_rtx (IF_THEN_ELSE, mode, cond, t_arm, f_arm);
- goto restart;
- }
-
- else if ((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c')
- && GET_CODE (XEXP (x, 1)) == IF_THEN_ELSE)
- {
- /* Don't do this by using SUBST inside X since we might be messing
- up a shared expression. */
- rtx cond = XEXP (XEXP (x, 1), 0);
- rtx t_arm = subst (gen_binary (code, mode, XEXP (x, 0),
- XEXP (XEXP (x, 1), 1)),
- pc_rtx, pc_rtx, 0, 0);
- rtx f_arm = subst (gen_binary (code, mode, XEXP (x, 0),
- XEXP (XEXP (x, 1), 2)),
- pc_rtx, pc_rtx, 0, 0);
-
- x = gen_rtx (IF_THEN_ELSE, mode, cond, t_arm, f_arm);
- goto restart;
- }
-
- else if (GET_RTX_CLASS (code) == '1'
- && GET_CODE (XEXP (x, 0)) == IF_THEN_ELSE
- && GET_MODE (XEXP (x, 0)) == mode)
- {
- rtx cond = XEXP (XEXP (x, 0), 0);
- rtx t_arm = subst (gen_unary (code, mode, XEXP (XEXP (x, 0), 1)),
- pc_rtx, pc_rtx, 0, 0);
- rtx f_arm = subst (gen_unary (code, mode, XEXP (XEXP (x, 0), 2)),
- pc_rtx, pc_rtx, 0, 0);
-
- x = gen_rtx_combine (IF_THEN_ELSE, mode, cond, t_arm, f_arm);
- goto restart;
- }
-
- /* Try to fold this expression in case we have constants that weren't
- present before. */
- temp = 0;
- switch (GET_RTX_CLASS (code))
- {
- case '1':
- temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
- break;
- case '<':
- temp = simplify_relational_operation (code, op0_mode,
- XEXP (x, 0), XEXP (x, 1));
- #ifdef FLOAT_STORE_FLAG_VALUE
- if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
- temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
- : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
- #endif
- break;
- case 'c':
- case '2':
- temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
- break;
- case 'b':
- case '3':
- temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
- XEXP (x, 1), XEXP (x, 2));
- break;
- }
-
- if (temp)
- x = temp, code = GET_CODE (temp);
-
- /* First see if we can apply the inverse distributive law. */
- if (code == PLUS || code == MINUS
- || code == AND || code == IOR || code == XOR)
- {
- x = apply_distributive_law (x);
- code = GET_CODE (x);
- }
-
- /* If CODE is an associative operation not otherwise handled, see if we
- can associate some operands. This can win if they are constants or
- if they are logically related (i.e. (a & b) & a. */
- if ((code == PLUS || code == MINUS
- || code == MULT || code == AND || code == IOR || code == XOR
- || code == DIV || code == UDIV
- || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
- && INTEGRAL_MODE_P (mode))
- {
- if (GET_CODE (XEXP (x, 0)) == code)
- {
- rtx other = XEXP (XEXP (x, 0), 0);
- rtx inner_op0 = XEXP (XEXP (x, 0), 1);
- rtx inner_op1 = XEXP (x, 1);
- rtx inner;
-
- /* Make sure we pass the constant operand if any as the second
- one if this is a commutative operation. */
- if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
- {
- rtx tem = inner_op0;
- inner_op0 = inner_op1;
- inner_op1 = tem;
- }
- inner = simplify_binary_operation (code == MINUS ? PLUS
- : code == DIV ? MULT
- : code == UDIV ? MULT
- : code,
- mode, inner_op0, inner_op1);
-
- /* For commutative operations, try the other pair if that one
- didn't simplify. */
- if (inner == 0 && GET_RTX_CLASS (code) == 'c')
- {
- other = XEXP (XEXP (x, 0), 1);
- inner = simplify_binary_operation (code, mode,
- XEXP (XEXP (x, 0), 0),
- XEXP (x, 1));
- }
-
- if (inner)
- {
- x = gen_binary (code, mode, other, inner);
- goto restart;
-
- }
- }
- }
-
- /* A little bit of algebraic simplification here. */
- switch (code)
- {
- case MEM:
- /* Ensure that our address has any ASHIFTs converted to MULT in case
- address-recognizing predicates are called later. */
- temp = make_compound_operation (XEXP (x, 0), MEM);
- SUBST (XEXP (x, 0), temp);
- break;
-
- case SUBREG:
- /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
- is paradoxical. If we can't do that safely, then it becomes
- something nonsensical so that this combination won't take place. */
-
- if (GET_CODE (SUBREG_REG (x)) == MEM
- && (GET_MODE_SIZE (mode)
- <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
- {
- rtx inner = SUBREG_REG (x);
- int endian_offset = 0;
- /* Don't change the mode of the MEM
- if that would change the meaning of the address. */
- if (MEM_VOLATILE_P (SUBREG_REG (x))
- || mode_dependent_address_p (XEXP (inner, 0)))
- return gen_rtx (CLOBBER, mode, const0_rtx);
-
- #if BYTES_BIG_ENDIAN
- if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
- endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
- if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
- endian_offset -= UNITS_PER_WORD - GET_MODE_SIZE (GET_MODE (inner));
- #endif
- /* Note if the plus_constant doesn't make a valid address
- then this combination won't be accepted. */
- x = gen_rtx (MEM, mode,
- plus_constant (XEXP (inner, 0),
- (SUBREG_WORD (x) * UNITS_PER_WORD
- + endian_offset)));
- MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
- MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
- return x;
- }
-
- /* If we are in a SET_DEST, these other cases can't apply. */
- if (in_dest)
- return x;
-
- /* Changing mode twice with SUBREG => just change it once,
- or not at all if changing back to starting mode. */
- if (GET_CODE (SUBREG_REG (x)) == SUBREG)
- {
- if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
- && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
- return SUBREG_REG (SUBREG_REG (x));
-
- SUBST_INT (SUBREG_WORD (x),
- SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
- SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
- }
-
- /* SUBREG of a hard register => just change the register number
- and/or mode. If the hard register is not valid in that mode,
- suppress this combination. If the hard register is the stack,
- frame, or argument pointer, leave this as a SUBREG. */
-
- if (GET_CODE (SUBREG_REG (x)) == REG
- && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
- && REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
- #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
- #endif
- #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- && REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
- #endif
- && REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
- {
- if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
- mode))
- return gen_rtx (REG, mode,
- REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
- else
- return gen_rtx (CLOBBER, mode, const0_rtx);
- }
-
- /* For a constant, try to pick up the part we want. Handle a full
- word and low-order part. Only do this if we are narrowing
- the constant; if it is being widened, we have no idea what
- the extra bits will have been set to. */
-
- if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
- && GET_MODE_SIZE (mode) == UNITS_PER_WORD
- && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
- && GET_MODE_CLASS (mode) == MODE_INT)
- {
- temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
- 0, op0_mode);
- if (temp)
- return temp;
- }
-
- /* If we want a subreg of a constant, at offset 0,
- take the low bits. On a little-endian machine, that's
- always valid. On a big-endian machine, it's valid
- only if the constant's mode fits in one word. */
- if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
- && GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode)
- #if WORDS_BIG_ENDIAN
- && GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD
- #endif
- )
- return gen_lowpart_for_combine (mode, SUBREG_REG (x));
-
- /* If we are narrowing an integral object, we need to see if we can
- simplify the expression for the object knowing that we only need the
- low-order bits. */
-
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
- && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
- && subreg_lowpart_p (x))
- return force_to_mode (SUBREG_REG (x), mode, GET_MODE_MASK (mode),
- NULL_RTX, 0);
- break;
-
- case NOT:
- /* (not (plus X -1)) can become (neg X). */
- if (GET_CODE (XEXP (x, 0)) == PLUS
- && XEXP (XEXP (x, 0), 1) == constm1_rtx)
- {
- x = gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
- goto restart;
- }
-
- /* Similarly, (not (neg X)) is (plus X -1). */
- if (GET_CODE (XEXP (x, 0)) == NEG)
- {
- x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
- goto restart;
- }
-
- /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
- if (GET_CODE (XEXP (x, 0)) == XOR
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && (temp = simplify_unary_operation (NOT, mode,
- XEXP (XEXP (x, 0), 1),
- mode)) != 0)
- {
- SUBST (XEXP (XEXP (x, 0), 1), temp);
- return XEXP (x, 0);
- }
-
- /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
- other than 1, but that is not valid. We could do a similar
- simplification for (not (lshiftrt C X)) where C is just the sign bit,
- but this doesn't seem common enough to bother with. */
- if (GET_CODE (XEXP (x, 0)) == ASHIFT
- && XEXP (XEXP (x, 0), 0) == const1_rtx)
- {
- x = gen_rtx (ROTATE, mode, gen_unary (NOT, mode, const1_rtx),
- XEXP (XEXP (x, 0), 1));
- goto restart;
- }
-
- if (GET_CODE (XEXP (x, 0)) == SUBREG
- && subreg_lowpart_p (XEXP (x, 0))
- && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
- && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
- {
- enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
-
- x = gen_rtx (ROTATE, inner_mode,
- gen_unary (NOT, inner_mode, const1_rtx),
- XEXP (SUBREG_REG (XEXP (x, 0)), 1));
- x = gen_lowpart_for_combine (mode, x);
- goto restart;
- }
-
- #if STORE_FLAG_VALUE == -1
- /* (not (comparison foo bar)) can be done by reversing the comparison
- code if valid. */
- if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && reversible_comparison_p (XEXP (x, 0)))
- return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
- mode, XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 0), 1));
-
- /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
- is (lt foo (const_int 0)), so we can perform the above
- simplification. */
-
- if (XEXP (x, 1) == const1_rtx
- && GET_CODE (XEXP (x, 0)) == ASHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
- return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
- #endif
-
- /* Apply De Morgan's laws to reduce number of patterns for machines
- with negating logical insns (and-not, nand, etc.). If result has
- only one NOT, put it first, since that is how the patterns are
- coded. */
-
- if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
- {
- rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
-
- if (GET_CODE (in1) == NOT)
- in1 = XEXP (in1, 0);
- else
- in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
-
- if (GET_CODE (in2) == NOT)
- in2 = XEXP (in2, 0);
- else if (GET_CODE (in2) == CONST_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
- else
- in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
-
- if (GET_CODE (in2) == NOT)
- {
- rtx tem = in2;
- in2 = in1; in1 = tem;
- }
-
- x = gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
- mode, in1, in2);
- goto restart;
- }
- break;
-
- case NEG:
- /* (neg (plus X 1)) can become (not X). */
- if (GET_CODE (XEXP (x, 0)) == PLUS
- && XEXP (XEXP (x, 0), 1) == const1_rtx)
- {
- x = gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
- goto restart;
- }
-
- /* Similarly, (neg (not X)) is (plus X 1). */
- if (GET_CODE (XEXP (x, 0)) == NOT)
- {
- x = plus_constant (XEXP (XEXP (x, 0), 0), 1);
- goto restart;
- }
-
- /* (neg (minus X Y)) can become (minus Y X). */
- if (GET_CODE (XEXP (x, 0)) == MINUS
- && (! FLOAT_MODE_P (mode)
- /* x-y != -(y-x) with IEEE floating point. */
- || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT))
- {
- x = gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
- XEXP (XEXP (x, 0), 0));
- goto restart;
- }
-
- /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
- if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
- && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
- {
- x = gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
- goto restart;
- }
-
- /* NEG commutes with ASHIFT since it is multiplication. Only do this
- if we can then eliminate the NEG (e.g.,
- if the operand is a constant). */
-
- if (GET_CODE (XEXP (x, 0)) == ASHIFT)
- {
- temp = simplify_unary_operation (NEG, mode,
- XEXP (XEXP (x, 0), 0), mode);
- if (temp)
- {
- SUBST (XEXP (XEXP (x, 0), 0), temp);
- return XEXP (x, 0);
- }
- }
-
- temp = expand_compound_operation (XEXP (x, 0));
-
- /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
- replaced by (lshiftrt X C). This will convert
- (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
-
- if (GET_CODE (temp) == ASHIFTRT
- && GET_CODE (XEXP (temp, 1)) == CONST_INT
- && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
- {
- x = simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
- INTVAL (XEXP (temp, 1)));
- goto restart;
- }
-
- /* If X has only a single bit that might be nonzero, say, bit I, convert
- (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
- MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
- (sign_extract X 1 Y). But only do this if TEMP isn't a register
- or a SUBREG of one since we'd be making the expression more
- complex if it was just a register. */
-
- if (GET_CODE (temp) != REG
- && ! (GET_CODE (temp) == SUBREG
- && GET_CODE (SUBREG_REG (temp)) == REG)
- && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
- {
- rtx temp1 = simplify_shift_const
- (NULL_RTX, ASHIFTRT, mode,
- simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
- GET_MODE_BITSIZE (mode) - 1 - i),
- GET_MODE_BITSIZE (mode) - 1 - i);
-
- /* If all we did was surround TEMP with the two shifts, we
- haven't improved anything, so don't use it. Otherwise,
- we are better off with TEMP1. */
- if (GET_CODE (temp1) != ASHIFTRT
- || GET_CODE (XEXP (temp1, 0)) != ASHIFT
- || XEXP (XEXP (temp1, 0), 0) != temp)
- {
- x = temp1;
- goto restart;
- }
- }
- break;
-
- case FLOAT_TRUNCATE:
- /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
- if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
- && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
- return XEXP (XEXP (x, 0), 0);
- break;
-
- #ifdef HAVE_cc0
- case COMPARE:
- /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
- using cc0, in which case we want to leave it as a COMPARE
- so we can distinguish it from a register-register-copy. */
- if (XEXP (x, 1) == const0_rtx)
- return XEXP (x, 0);
-
- /* In IEEE floating point, x-0 is not the same as x. */
- if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
- || ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))))
- && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
- return XEXP (x, 0);
- break;
- #endif
-
- case CONST:
- /* (const (const X)) can become (const X). Do it this way rather than
- returning the inner CONST since CONST can be shared with a
- REG_EQUAL note. */
- if (GET_CODE (XEXP (x, 0)) == CONST)
- SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
- break;
-
- #ifdef HAVE_lo_sum
- case LO_SUM:
- /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
- can add in an offset. find_split_point will split this address up
- again if it doesn't match. */
- if (GET_CODE (XEXP (x, 0)) == HIGH
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
- return XEXP (x, 1);
- break;
- #endif
-
- case PLUS:
- /* If we have (plus (plus (A const) B)), associate it so that CONST is
- outermost. That's because that's the way indexed addresses are
- supposed to appear. This code used to check many more cases, but
- they are now checked elsewhere. */
- if (GET_CODE (XEXP (x, 0)) == PLUS
- && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
- return gen_binary (PLUS, mode,
- gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
- XEXP (x, 1)),
- XEXP (XEXP (x, 0), 1));
-
- /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
- when c is (const_int (pow2 + 1) / 2) is a sign extension of a
- bit-field and can be replaced by either a sign_extend or a
- sign_extract. The `and' may be a zero_extend. */
- if (GET_CODE (XEXP (x, 0)) == XOR
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
- && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
- && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
- && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
- == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
- || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
- == i + 1))))
- {
- x = simplify_shift_const
- (NULL_RTX, ASHIFTRT, mode,
- simplify_shift_const (NULL_RTX, ASHIFT, mode,
- XEXP (XEXP (XEXP (x, 0), 0), 0),
- GET_MODE_BITSIZE (mode) - (i + 1)),
- GET_MODE_BITSIZE (mode) - (i + 1));
- goto restart;
- }
-
- /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
- C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
- is 1. This produces better code than the alternative immediately
- below. */
- if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && reversible_comparison_p (XEXP (x, 0))
- && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
- || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
- {
- x = gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
- mode, XEXP (XEXP (x, 0), 0), XEXP (XEXP (x, 0), 1));
- x = gen_unary (NEG, mode, x);
- goto restart;
- }
-
- /* If only the low-order bit of X is possibly nonzero, (plus x -1)
- can become (ashiftrt (ashift (xor x 1) C) C) where C is
- the bitsize of the mode - 1. This allows simplification of
- "a = (b & 8) == 0;" */
- if (XEXP (x, 1) == constm1_rtx
- && GET_CODE (XEXP (x, 0)) != REG
- && ! (GET_CODE (XEXP (x,0)) == SUBREG
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
- && nonzero_bits (XEXP (x, 0), mode) == 1)
- {
- x = simplify_shift_const
- (NULL_RTX, ASHIFTRT, mode,
- simplify_shift_const (NULL_RTX, ASHIFT, mode,
- gen_rtx_combine (XOR, mode,
- XEXP (x, 0), const1_rtx),
- GET_MODE_BITSIZE (mode) - 1),
- GET_MODE_BITSIZE (mode) - 1);
- goto restart;
- }
-
- /* If we are adding two things that have no bits in common, convert
- the addition into an IOR. This will often be further simplified,
- for example in cases like ((a & 1) + (a & 2)), which can
- become a & 3. */
-
- if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 0), mode)
- & nonzero_bits (XEXP (x, 1), mode)) == 0)
- {
- x = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
- goto restart;
- }
- break;
-
- case MINUS:
- #if STORE_FLAG_VALUE == 1
- /* (minus 1 (comparison foo bar)) can be done by reversing the comparison
- code if valid. */
- if (XEXP (x, 0) == const1_rtx
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
- && reversible_comparison_p (XEXP (x, 1)))
- return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
- mode, XEXP (XEXP (x, 1), 0),
- XEXP (XEXP (x, 1), 1));
- #endif
-
- /* (minus <foo> (and <foo> (const_int -pow2))) becomes
- (and <foo> (const_int pow2-1)) */
- if (GET_CODE (XEXP (x, 1)) == AND
- && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
- && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
- && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
- {
- x = simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
- - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
- goto restart;
- }
- break;
-
- case MULT:
- /* If we have (mult (plus A B) C), apply the distributive law and then
- the inverse distributive law to see if things simplify. This
- occurs mostly in addresses, often when unrolling loops. */
-
- if (GET_CODE (XEXP (x, 0)) == PLUS)
- {
- x = apply_distributive_law
- (gen_binary (PLUS, mode,
- gen_binary (MULT, mode,
- XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
- gen_binary (MULT, mode,
- XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
-
- if (GET_CODE (x) != MULT)
- goto restart;
- }
-
- /* If this is multiplication by a power of two and its first operand is
- a shift, treat the multiply as a shift to allow the shifts to
- possibly combine. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
- && (GET_CODE (XEXP (x, 0)) == ASHIFT
- || GET_CODE (XEXP (x, 0)) == LSHIFTRT
- || GET_CODE (XEXP (x, 0)) == ASHIFTRT
- || GET_CODE (XEXP (x, 0)) == ROTATE
- || GET_CODE (XEXP (x, 0)) == ROTATERT))
- {
- x = simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0), i);
- goto restart;
- }
-
- /* Convert (mult (ashift (const_int 1) A) B) to (ashift B A). */
- if (GET_CODE (XEXP (x, 0)) == ASHIFT
- && XEXP (XEXP (x, 0), 0) == const1_rtx)
- return gen_rtx_combine (ASHIFT, mode, XEXP (x, 1),
- XEXP (XEXP (x, 0), 1));
- break;
-
- case UDIV:
- /* If this is a divide by a power of two, treat it as a shift if
- its first operand is a shift. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
- && (GET_CODE (XEXP (x, 0)) == ASHIFT
- || GET_CODE (XEXP (x, 0)) == LSHIFTRT
- || GET_CODE (XEXP (x, 0)) == ASHIFTRT
- || GET_CODE (XEXP (x, 0)) == ROTATE
- || GET_CODE (XEXP (x, 0)) == ROTATERT))
- {
- x = simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
- goto restart;
- }
- break;
-
- case EQ: case NE:
- case GT: case GTU: case GE: case GEU:
- case LT: case LTU: case LE: case LEU:
- /* If the first operand is a condition code, we can't do anything
- with it. */
- if (GET_CODE (XEXP (x, 0)) == COMPARE
- || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
- #ifdef HAVE_cc0
- && XEXP (x, 0) != cc0_rtx
- #endif
- ))
- {
- rtx op0 = XEXP (x, 0);
- rtx op1 = XEXP (x, 1);
- enum rtx_code new_code;
-
- if (GET_CODE (op0) == COMPARE)
- op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
-
- /* Simplify our comparison, if possible. */
- new_code = simplify_comparison (code, &op0, &op1);
-
- #if STORE_FLAG_VALUE == 1
- /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
- if only the low-order bit is possibly nonzero in X (such as when
- X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
- (xor X 1) or (minus 1 X); we use the former. Finally, if X is
- known to be either 0 or -1, NE becomes a NEG and EQ becomes
- (plus X 1).
-
- Remove any ZERO_EXTRACT we made when thinking this was a
- comparison. It may now be simpler to use, e.g., an AND. If a
- ZERO_EXTRACT is indeed appropriate, it will be placed back by
- the call to make_compound_operation in the SET case. */
-
- if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && nonzero_bits (op0, mode) == 1)
- return gen_lowpart_for_combine (mode,
- expand_compound_operation (op0));
-
- else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- {
- op0 = expand_compound_operation (op0);
- x = gen_unary (NEG, mode, gen_lowpart_for_combine (mode, op0));
- goto restart;
- }
-
- else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && nonzero_bits (op0, mode) == 1)
- {
- op0 = expand_compound_operation (op0);
- x = gen_binary (XOR, mode,
- gen_lowpart_for_combine (mode, op0),
- const1_rtx);
- goto restart;
- }
-
- else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- {
- op0 = expand_compound_operation (op0);
- x = plus_constant (gen_lowpart_for_combine (mode, op0), 1);
- goto restart;
- }
- #endif
-
- #if STORE_FLAG_VALUE == -1
- /* If STORE_FLAG_VALUE is -1, we have cases similar to
- those above. */
- if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- return gen_lowpart_for_combine (mode,
- expand_compound_operation (op0));
-
- else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && nonzero_bits (op0, mode) == 1)
- {
- op0 = expand_compound_operation (op0);
- x = gen_unary (NEG, mode, gen_lowpart_for_combine (mode, op0));
- goto restart;
- }
-
- else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && (num_sign_bit_copies (op0, mode)
- == GET_MODE_BITSIZE (mode)))
- {
- op0 = expand_compound_operation (op0);
- x = gen_unary (NOT, mode, gen_lowpart_for_combine (mode, op0));
- goto restart;
- }
-
- /* If X is 0/1, (eq X 0) is X-1. */
- else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
- && op1 == const0_rtx
- && nonzero_bits (op0, mode) == 1)
- {
- op0 = expand_compound_operation (op0);
- x = plus_constant (gen_lowpart_for_combine (mode, op0), -1);
- goto restart;
- }
- #endif
-
- /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
- one bit that might be nonzero, we can convert (ne x 0) to
- (ashift x c) where C puts the bit in the sign bit. Remove any
- AND with STORE_FLAG_VALUE when we are done, since we are only
- going to test the sign bit. */
- if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (STORE_FLAG_VALUE
- == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
- && op1 == const0_rtx
- && mode == GET_MODE (op0)
- && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
- {
- x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
- expand_compound_operation (op0),
- GET_MODE_BITSIZE (mode) - 1 - i);
- if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
- return XEXP (x, 0);
- else
- return x;
- }
-
- /* If the code changed, return a whole new comparison. */
- if (new_code != code)
- return gen_rtx_combine (new_code, mode, op0, op1);
-
- /* Otherwise, keep this operation, but maybe change its operands.
- This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
- SUBST (XEXP (x, 0), op0);
- SUBST (XEXP (x, 1), op1);
- }
- break;
-
- case IF_THEN_ELSE:
- /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register
- used in it is being compared against certain values. Get the
- true and false comparisons and see if that says anything about the
- value of each arm. */
-
- if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && reversible_comparison_p (XEXP (x, 0))
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG)
- {
- HOST_WIDE_INT nzb;
- rtx from = XEXP (XEXP (x, 0), 0);
- enum rtx_code true_code = GET_CODE (XEXP (x, 0));
- enum rtx_code false_code = reverse_condition (true_code);
- rtx true_val = XEXP (XEXP (x, 0), 1);
- rtx false_val = true_val;
- rtx true_arm = XEXP (x, 1);
- rtx false_arm = XEXP (x, 2);
- int swapped = 0;
-
- /* If FALSE_CODE is EQ, swap the codes and arms. */
-
- if (false_code == EQ)
- {
- swapped = 1, true_code = EQ, false_code = NE;
- true_arm = XEXP (x, 2), false_arm = XEXP (x, 1);
- }
-
- /* If we are comparing against zero and the expression being tested
- has only a single bit that might be nonzero, that is its value
- when it is not equal to zero. Similarly if it is known to be
- -1 or 0. */
-
- if (true_code == EQ && true_val == const0_rtx
- && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
- false_code = EQ, false_val = GEN_INT (nzb);
- else if (true_code == EQ && true_val == const0_rtx
- && (num_sign_bit_copies (from, GET_MODE (from))
- == GET_MODE_BITSIZE (GET_MODE (from))))
- false_code = EQ, false_val = constm1_rtx;
-
- /* Now simplify an arm if we know the value of the register
- in the branch and it is used in the arm. Be carefull due to
- the potential of locally-shared RTL. */
-
- if (reg_mentioned_p (from, true_arm))
- true_arm = subst (known_cond (copy_rtx (true_arm), true_code,
- from, true_val),
- pc_rtx, pc_rtx, 0, 0);
- if (reg_mentioned_p (from, false_arm))
- false_arm = subst (known_cond (copy_rtx (false_arm), false_code,
- from, false_val),
- pc_rtx, pc_rtx, 0, 0);
-
- SUBST (XEXP (x, 1), swapped ? false_arm : true_arm);
- SUBST (XEXP (x, 2), swapped ? true_arm : false_arm);
- }
-
- /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
- reversed, do so to avoid needing two sets of patterns for
- subtract-and-branch insns. Similarly if we have a constant in that
- position or if the third operand is the same as the first operand
- of the comparison. */
-
- if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && reversible_comparison_p (XEXP (x, 0))
- && (XEXP (x, 1) == pc_rtx || GET_CODE (XEXP (x, 1)) == CONST_INT
- || rtx_equal_p (XEXP (x, 2), XEXP (XEXP (x, 0), 0))))
- {
- SUBST (XEXP (x, 0),
- gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
- GET_MODE (XEXP (x, 0)),
- XEXP (XEXP (x, 0), 0), XEXP (XEXP (x, 0), 1)));
-
- temp = XEXP (x, 1);
- SUBST (XEXP (x, 1), XEXP (x, 2));
- SUBST (XEXP (x, 2), temp);
- }
-
- /* If the two arms are identical, we don't need the comparison. */
-
- if (rtx_equal_p (XEXP (x, 1), XEXP (x, 2))
- && ! side_effects_p (XEXP (x, 0)))
- return XEXP (x, 1);
-
- /* Look for cases where we have (abs x) or (neg (abs X)). */
-
- if (GET_MODE_CLASS (mode) == MODE_INT
- && GET_CODE (XEXP (x, 2)) == NEG
- && rtx_equal_p (XEXP (x, 1), XEXP (XEXP (x, 2), 0))
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && rtx_equal_p (XEXP (x, 1), XEXP (XEXP (x, 0), 0))
- && ! side_effects_p (XEXP (x, 1)))
- switch (GET_CODE (XEXP (x, 0)))
- {
- case GT:
- case GE:
- x = gen_unary (ABS, mode, XEXP (x, 1));
- goto restart;
- case LT:
- case LE:
- x = gen_unary (NEG, mode, gen_unary (ABS, mode, XEXP (x, 1)));
- goto restart;
- }
-
- /* Look for MIN or MAX. */
-
- if (! FLOAT_MODE_P (mode)
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
- && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 2))
- && ! side_effects_p (XEXP (x, 0)))
- switch (GET_CODE (XEXP (x, 0)))
- {
- case GE:
- case GT:
- x = gen_binary (SMAX, mode, XEXP (x, 1), XEXP (x, 2));
- goto restart;
- case LE:
- case LT:
- x = gen_binary (SMIN, mode, XEXP (x, 1), XEXP (x, 2));
- goto restart;
- case GEU:
- case GTU:
- x = gen_binary (UMAX, mode, XEXP (x, 1), XEXP (x, 2));
- goto restart;
- case LEU:
- case LTU:
- x = gen_binary (UMIN, mode, XEXP (x, 1), XEXP (x, 2));
- goto restart;
- }
-
- #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
-
- /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when
- its second operand is zero, this can be done as (OP Z (mult COND C2))
- where C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer
- ZERO_EXTEND or SIGN_EXTEND as long as Z is already extended (so
- we don't destroy it). We can do this kind of thing in some
- cases when STORE_FLAG_VALUE is neither of the above, but it isn't
- worth checking for. */
-
- if (mode != VOIDmode && ! side_effects_p (x))
- {
- rtx t = make_compound_operation (XEXP (x, 1), SET);
- rtx f = make_compound_operation (XEXP (x, 2), SET);
- rtx cond_op0 = XEXP (XEXP (x, 0), 0);
- rtx cond_op1 = XEXP (XEXP (x, 0), 1);
- enum rtx_code cond_op = GET_CODE (XEXP (x, 0));
- enum rtx_code op, extend_op = NIL;
- enum machine_mode m = mode;
- rtx z = 0, c1, c2;
-
- if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
- || GET_CODE (t) == IOR || GET_CODE (t) == XOR
- || GET_CODE (t) == ASHIFT
- || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
- && rtx_equal_p (XEXP (t, 0), f))
- c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
- else if (GET_CODE (t) == SIGN_EXTEND
- && (GET_CODE (XEXP (t, 0)) == PLUS
- || GET_CODE (XEXP (t, 0)) == MINUS
- || GET_CODE (XEXP (t, 0)) == IOR
- || GET_CODE (XEXP (t, 0)) == XOR
- || GET_CODE (XEXP (t, 0)) == ASHIFT
- || GET_CODE (XEXP (t, 0)) == LSHIFTRT
- || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
- && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
- && (num_sign_bit_copies (f, GET_MODE (f))
- > (GET_MODE_BITSIZE (mode)
- - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
- {
- c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
- extend_op = SIGN_EXTEND;
- m = GET_MODE (XEXP (t, 0));
- }
- else if (GET_CODE (t) == ZERO_EXTEND
- && (GET_CODE (XEXP (t, 0)) == PLUS
- || GET_CODE (XEXP (t, 0)) == MINUS
- || GET_CODE (XEXP (t, 0)) == IOR
- || GET_CODE (XEXP (t, 0)) == XOR
- || GET_CODE (XEXP (t, 0)) == ASHIFT
- || GET_CODE (XEXP (t, 0)) == LSHIFTRT
- || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
- && ((nonzero_bits (f, GET_MODE (f))
- & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
- == 0))
- {
- c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
- extend_op = ZERO_EXTEND;
- m = GET_MODE (XEXP (t, 0));
- }
-
- if (reversible_comparison_p (XEXP (x, 0))
- && (GET_CODE (f) == PLUS || GET_CODE (f) == MINUS
- || GET_CODE (f) == IOR || GET_CODE (f) == XOR
- || GET_CODE (f) == ASHIFT
- || GET_CODE (f) == LSHIFTRT || GET_CODE (f) == ASHIFTRT)
- && rtx_equal_p (XEXP (f, 0), t))
- {
- c1 = XEXP (f, 1), op = GET_CODE (f), z = t;
- cond_op = reverse_condition (cond_op);
- }
- else if (GET_CODE (f) == SIGN_EXTEND
- && (GET_CODE (XEXP (f, 0)) == PLUS
- || GET_CODE (XEXP (f, 0)) == MINUS
- || GET_CODE (XEXP (f, 0)) == IOR
- || GET_CODE (XEXP (f, 0)) == XOR
- || GET_CODE (XEXP (f, 0)) == ASHIFT
- || GET_CODE (XEXP (f, 0)) == LSHIFTRT
- || GET_CODE (XEXP (f, 0)) == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (f, 0), 0)) == SUBREG
- && subreg_lowpart_p (XEXP (XEXP (f, 0), 0))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (f, 0), 0)), f)
- && (num_sign_bit_copies (t, GET_MODE (t))
- > (GET_MODE_BITSIZE (mode)
- - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (f, 0), 0))))))
- {
- c1 = XEXP (XEXP (f, 0), 1); z = t; op = GET_CODE (XEXP (f, 0));
- extend_op = SIGN_EXTEND;
- m = GET_MODE (XEXP (f, 0));
- cond_op = reverse_condition (cond_op);
- }
- else if (GET_CODE (f) == ZERO_EXTEND
- && (GET_CODE (XEXP (f, 0)) == PLUS
- || GET_CODE (XEXP (f, 0)) == MINUS
- || GET_CODE (XEXP (f, 0)) == IOR
- || GET_CODE (XEXP (f, 0)) == XOR
- || GET_CODE (XEXP (f, 0)) == ASHIFT
- || GET_CODE (XEXP (f, 0)) == LSHIFTRT
- || GET_CODE (XEXP (f, 0)) == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (f, 0), 0)) == SUBREG
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && subreg_lowpart_p (XEXP (XEXP (f, 0), 0))
- && rtx_equal_p (SUBREG_REG (XEXP (XEXP (f, 0), 0)), t)
- && ((nonzero_bits (t, GET_MODE (t))
- & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (f, 0), 0))))
- == 0))
- {
- c1 = XEXP (XEXP (f, 0), 1); z = t; op = GET_CODE (XEXP (f, 0));
- extend_op = ZERO_EXTEND;
- m = GET_MODE (XEXP (f, 0));
- cond_op = reverse_condition (cond_op);
- }
-
- if (z)
- {
- temp = subst (gen_binary (cond_op, m, cond_op0, cond_op1),
- pc_rtx, pc_rtx, 0, 0);
-
-
- temp = gen_binary (MULT, m, temp,
- gen_binary (MULT, m, c1,
- GEN_INT (STORE_FLAG_VALUE)));
-
- temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
-
- if (extend_op != NIL)
- temp = gen_unary (extend_op, mode, temp);
-
- return temp;
- }
- }
- #endif
-
- /* If we have (if_then_else (ne A 0) C1 0) and either A is known to
- be 0 or 1 and C1 is a single bit or A is known to be 0 or -1 and
- C1 is the negation of a single bit, we can convert this operation
- to a shift. We can actually do this in more general cases, but it
- doesn't seem worth it. */
-
- if (GET_CODE (XEXP (x, 0)) == NE && XEXP (XEXP (x, 0), 1) == const0_rtx
- && XEXP (x, 2) == const0_rtx && GET_CODE (XEXP (x, 1)) == CONST_INT
- && ((1 == nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
- && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
- || ((num_sign_bit_copies (XEXP (XEXP (x, 0), 0), mode)
- == GET_MODE_BITSIZE (mode))
- && (i = exact_log2 (- INTVAL (XEXP (x, 1)))) >= 0)))
- return
- simplify_shift_const (NULL_RTX, ASHIFT, mode,
- gen_lowpart_for_combine (mode,
- XEXP (XEXP (x, 0), 0)),
- i);
- break;
-
- case ZERO_EXTRACT:
- case SIGN_EXTRACT:
- case ZERO_EXTEND:
- case SIGN_EXTEND:
- /* If we are processing SET_DEST, we are done. */
- if (in_dest)
- return x;
-
- x = expand_compound_operation (x);
- if (GET_CODE (x) != code)
- goto restart;
- break;
-
- case SET:
- /* (set (pc) (return)) gets written as (return). */
- if (GET_CODE (SET_DEST (x)) == PC && GET_CODE (SET_SRC (x)) == RETURN)
- return SET_SRC (x);
-
- /* Convert this into a field assignment operation, if possible. */
- x = make_field_assignment (x);
-
- /* If we are setting CC0 or if the source is a COMPARE, look for the
- use of the comparison result and try to simplify it unless we already
- have used undobuf.other_insn. */
- if ((GET_CODE (SET_SRC (x)) == COMPARE
- #ifdef HAVE_cc0
- || SET_DEST (x) == cc0_rtx
- #endif
- )
- && (cc_use = find_single_use (SET_DEST (x), subst_insn,
- &other_insn)) != 0
- && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
- && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
- && XEXP (*cc_use, 0) == SET_DEST (x))
- {
- enum rtx_code old_code = GET_CODE (*cc_use);
- enum rtx_code new_code;
- rtx op0, op1;
- int other_changed = 0;
- enum machine_mode compare_mode = GET_MODE (SET_DEST (x));
-
- if (GET_CODE (SET_SRC (x)) == COMPARE)
- op0 = XEXP (SET_SRC (x), 0), op1 = XEXP (SET_SRC (x), 1);
- else
- op0 = SET_SRC (x), op1 = const0_rtx;
-
- /* Simplify our comparison, if possible. */
- new_code = simplify_comparison (old_code, &op0, &op1);
-
- #ifdef EXTRA_CC_MODES
- /* If this machine has CC modes other than CCmode, check to see
- if we need to use a different CC mode here. */
- compare_mode = SELECT_CC_MODE (new_code, op0, op1);
- #endif /* EXTRA_CC_MODES */
-
- #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
- /* If the mode changed, we have to change SET_DEST, the mode
- in the compare, and the mode in the place SET_DEST is used.
- If SET_DEST is a hard register, just build new versions with
- the proper mode. If it is a pseudo, we lose unless it is only
- time we set the pseudo, in which case we can safely change
- its mode. */
- if (compare_mode != GET_MODE (SET_DEST (x)))
- {
- int regno = REGNO (SET_DEST (x));
- rtx new_dest = gen_rtx (REG, compare_mode, regno);
-
- if (regno < FIRST_PSEUDO_REGISTER
- || (reg_n_sets[regno] == 1
- && ! REG_USERVAR_P (SET_DEST (x))))
- {
- if (regno >= FIRST_PSEUDO_REGISTER)
- SUBST (regno_reg_rtx[regno], new_dest);
-
- SUBST (SET_DEST (x), new_dest);
- SUBST (XEXP (*cc_use, 0), new_dest);
- other_changed = 1;
- }
- }
- #endif
-
- /* If the code changed, we have to build a new comparison
- in undobuf.other_insn. */
- if (new_code != old_code)
- {
- unsigned HOST_WIDE_INT mask;
-
- SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
- SET_DEST (x), const0_rtx));
-
- /* If the only change we made was to change an EQ into an
- NE or vice versa, OP0 has only one bit that might be nonzero,
- and OP1 is zero, check if changing the user of the condition
- code will produce a valid insn. If it won't, we can keep
- the original code in that insn by surrounding our operation
- with an XOR. */
-
- if (((old_code == NE && new_code == EQ)
- || (old_code == EQ && new_code == NE))
- && ! other_changed && op1 == const0_rtx
- && (GET_MODE_BITSIZE (GET_MODE (op0))
- <= HOST_BITS_PER_WIDE_INT)
- && (exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0)))
- >= 0))
- {
- rtx pat = PATTERN (other_insn), note = 0;
-
- if ((recog_for_combine (&pat, other_insn, ¬e) < 0
- && ! check_asm_operands (pat)))
- {
- PUT_CODE (*cc_use, old_code);
- other_insn = 0;
-
- op0 = gen_binary (XOR, GET_MODE (op0), op0,
- GEN_INT (mask));
- }
- }
-
- other_changed = 1;
- }
-
- if (other_changed)
- undobuf.other_insn = other_insn;
-
- #ifdef HAVE_cc0
- /* If we are now comparing against zero, change our source if
- needed. If we do not use cc0, we always have a COMPARE. */
- if (op1 == const0_rtx && SET_DEST (x) == cc0_rtx)
- SUBST (SET_SRC (x), op0);
- else
- #endif
-
- /* Otherwise, if we didn't previously have a COMPARE in the
- correct mode, we need one. */
- if (GET_CODE (SET_SRC (x)) != COMPARE
- || GET_MODE (SET_SRC (x)) != compare_mode)
- SUBST (SET_SRC (x), gen_rtx_combine (COMPARE, compare_mode,
- op0, op1));
- else
- {
- /* Otherwise, update the COMPARE if needed. */
- SUBST (XEXP (SET_SRC (x), 0), op0);
- SUBST (XEXP (SET_SRC (x), 1), op1);
- }
- }
- else
- {
- /* Get SET_SRC in a form where we have placed back any
- compound expressions. Then do the checks below. */
- temp = make_compound_operation (SET_SRC (x), SET);
- SUBST (SET_SRC (x), temp);
- }
-
- /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some
- operation, and X being a REG or (subreg (reg)), we may be able to
- convert this to (set (subreg:m2 x) (op)).
-
- We can always do this if M1 is narrower than M2 because that
- means that we only care about the low bits of the result.
-
- However, on machines without WORD_REGISTER_OPERATIONS defined,
- we cannot perform a narrower operation that requested since the
- high-order bits will be undefined. On machine where it is defined,
- this transformation is safe as long as M1 and M2 have the same
- number of words. */
-
- if (GET_CODE (SET_SRC (x)) == SUBREG
- && subreg_lowpart_p (SET_SRC (x))
- && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) != 'o'
- && (((GET_MODE_SIZE (GET_MODE (SET_SRC (x))) + (UNITS_PER_WORD - 1))
- / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x))))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
- #ifndef WORD_REGISTER_OPERATIONS
- && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
- #endif
- && (GET_CODE (SET_DEST (x)) == REG
- || (GET_CODE (SET_DEST (x)) == SUBREG
- && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG)))
- {
- SUBST (SET_DEST (x),
- gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_SRC (x))),
- SET_DEST (x)));
- SUBST (SET_SRC (x), SUBREG_REG (SET_SRC (x)));
- }
-
- #ifdef LOAD_EXTEND_OP
- /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with
- M wider than N, this would require a paradoxical subreg.
- Replace the subreg with a zero_extend to avoid the reload that
- would otherwise be required. */
-
- if (GET_CODE (SET_SRC (x)) == SUBREG
- && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (SET_SRC (x)))) != NIL
- && subreg_lowpart_p (SET_SRC (x))
- && SUBREG_WORD (SET_SRC (x)) == 0
- && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
- && GET_CODE (SUBREG_REG (SET_SRC (x))) == MEM)
- SUBST (SET_SRC (x),
- gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE
- (SUBREG_REG (SET_SRC (x)))),
- GET_MODE (SET_SRC (x)),
- XEXP (SET_SRC (x), 0)));
- #endif
-
- #ifndef HAVE_conditional_move
-
- /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE,
- and we are comparing an item known to be 0 or -1 against 0, use a
- logical operation instead. Check for one of the arms being an IOR
- of the other arm with some value. We compute three terms to be
- IOR'ed together. In practice, at most two will be nonzero. Then
- we do the IOR's. */
-
- if (GET_CODE (SET_DEST (x)) != PC
- && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE
- && (GET_CODE (XEXP (SET_SRC (x), 0)) == EQ
- || GET_CODE (XEXP (SET_SRC (x), 0)) == NE)
- && XEXP (XEXP (SET_SRC (x), 0), 1) == const0_rtx
- && (num_sign_bit_copies (XEXP (XEXP (SET_SRC (x), 0), 0),
- GET_MODE (XEXP (XEXP (SET_SRC (x), 0), 0)))
- == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (SET_SRC (x), 0), 0))))
- && ! side_effects_p (SET_SRC (x)))
- {
- rtx true = (GET_CODE (XEXP (SET_SRC (x), 0)) == NE
- ? XEXP (SET_SRC (x), 1) : XEXP (SET_SRC (x), 2));
- rtx false = (GET_CODE (XEXP (SET_SRC (x), 0)) == NE
- ? XEXP (SET_SRC (x), 2) : XEXP (SET_SRC (x), 1));
- rtx term1 = const0_rtx, term2, term3;
-
- if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
- term1 = false, true = XEXP (true, 1), false = const0_rtx;
- else if (GET_CODE (true) == IOR
- && rtx_equal_p (XEXP (true, 1), false))
- term1 = false, true = XEXP (true, 0), false = const0_rtx;
- else if (GET_CODE (false) == IOR
- && rtx_equal_p (XEXP (false, 0), true))
- term1 = true, false = XEXP (false, 1), true = const0_rtx;
- else if (GET_CODE (false) == IOR
- && rtx_equal_p (XEXP (false, 1), true))
- term1 = true, false = XEXP (false, 0), true = const0_rtx;
-
- term2 = gen_binary (AND, GET_MODE (SET_SRC (x)),
- XEXP (XEXP (SET_SRC (x), 0), 0), true);
- term3 = gen_binary (AND, GET_MODE (SET_SRC (x)),
- gen_unary (NOT, GET_MODE (SET_SRC (x)),
- XEXP (XEXP (SET_SRC (x), 0), 0)),
- false);
-
- SUBST (SET_SRC (x),
- gen_binary (IOR, GET_MODE (SET_SRC (x)),
- gen_binary (IOR, GET_MODE (SET_SRC (x)),
- term1, term2),
- term3));
- }
- #endif
- break;
-
- case AND:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- x = simplify_and_const_int (x, mode, XEXP (x, 0),
- INTVAL (XEXP (x, 1)));
-
- /* If we have (ior (and (X C1) C2)) and the next restart would be
- the last, simplify this by making C1 as small as possible
- and then exit. */
- if (n_restarts >= 3 && GET_CODE (x) == IOR
- && GET_CODE (XEXP (x, 0)) == AND
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- temp = gen_binary (AND, mode, XEXP (XEXP (x, 0), 0),
- GEN_INT (INTVAL (XEXP (XEXP (x, 0), 1))
- & ~ INTVAL (XEXP (x, 1))));
- return gen_binary (IOR, mode, temp, XEXP (x, 1));
- }
-
- if (GET_CODE (x) != AND)
- goto restart;
- }
-
- /* Convert (A | B) & A to A. */
- if (GET_CODE (XEXP (x, 0)) == IOR
- && (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
- || rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
- && ! side_effects_p (XEXP (XEXP (x, 0), 0))
- && ! side_effects_p (XEXP (XEXP (x, 0), 1)))
- return XEXP (x, 1);
-
- /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
- insn (and may simplify more). */
- else if (GET_CODE (XEXP (x, 0)) == XOR
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
- && ! side_effects_p (XEXP (x, 1)))
- {
- x = gen_binary (AND, mode,
- gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
- XEXP (x, 1));
- goto restart;
- }
- else if (GET_CODE (XEXP (x, 0)) == XOR
- && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
- && ! side_effects_p (XEXP (x, 1)))
- {
- x = gen_binary (AND, mode,
- gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
- XEXP (x, 1));
- goto restart;
- }
-
- /* Similarly for (~ (A ^ B)) & A. */
- else if (GET_CODE (XEXP (x, 0)) == NOT
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
- && rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 0), XEXP (x, 1))
- && ! side_effects_p (XEXP (x, 1)))
- {
- x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 1),
- XEXP (x, 1));
- goto restart;
- }
- else if (GET_CODE (XEXP (x, 0)) == NOT
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
- && rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 1), XEXP (x, 1))
- && ! side_effects_p (XEXP (x, 1)))
- {
- x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 0),
- XEXP (x, 1));
- goto restart;
- }
-
- /* If we have (and A B) with A not an object but that is known to
- be -1 or 0, this is equivalent to the expression
- (if_then_else (ne A (const_int 0)) B (const_int 0))
- We make this conversion because it may allow further
- simplifications and then allow use of conditional move insns.
- If the machine doesn't have condition moves, code in case SET
- will convert the IF_THEN_ELSE back to the logical operation.
- We build the IF_THEN_ELSE here in case further simplification
- is possible (e.g., we can convert it to ABS). */
-
- if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
- && ! (GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o')
- && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
- == GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
- {
- rtx op0 = XEXP (x, 0);
- rtx op1 = const0_rtx;
- enum rtx_code comp_code
- = simplify_comparison (NE, &op0, &op1);
-
- x = gen_rtx_combine (IF_THEN_ELSE, mode,
- gen_binary (comp_code, VOIDmode, op0, op1),
- XEXP (x, 1), const0_rtx);
- goto restart;
- }
-
- /* In the following group of tests (and those in case IOR below),
- we start with some combination of logical operations and apply
- the distributive law followed by the inverse distributive law.
- Most of the time, this results in no change. However, if some of
- the operands are the same or inverses of each other, simplifications
- will result.
-
- For example, (and (ior A B) (not B)) can occur as the result of
- expanding a bit field assignment. When we apply the distributive
- law to this, we get (ior (and (A (not B))) (and (B (not B)))),
- which then simplifies to (and (A (not B))). */
-
- /* If we have (and (ior A B) C), apply the distributive law and then
- the inverse distributive law to see if things simplify. */
-
- if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == XOR)
- {
- x = apply_distributive_law
- (gen_binary (GET_CODE (XEXP (x, 0)), mode,
- gen_binary (AND, mode,
- XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
- gen_binary (AND, mode,
- XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
- if (GET_CODE (x) != AND)
- goto restart;
- }
-
- if (GET_CODE (XEXP (x, 1)) == IOR || GET_CODE (XEXP (x, 1)) == XOR)
- {
- x = apply_distributive_law
- (gen_binary (GET_CODE (XEXP (x, 1)), mode,
- gen_binary (AND, mode,
- XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
- gen_binary (AND, mode,
- XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
- if (GET_CODE (x) != AND)
- goto restart;
- }
-
- /* Similarly, taking advantage of the fact that
- (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
-
- if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == XOR)
- {
- x = apply_distributive_law
- (gen_binary (XOR, mode,
- gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 1), 0)),
- gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 1), 1))));
- if (GET_CODE (x) != AND)
- goto restart;
- }
-
- else if (GET_CODE (XEXP (x, 1)) == NOT && GET_CODE (XEXP (x, 0)) == XOR)
- {
- x = apply_distributive_law
- (gen_binary (XOR, mode,
- gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
- XEXP (XEXP (x, 0), 0)),
- gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
- XEXP (XEXP (x, 0), 1))));
- if (GET_CODE (x) != AND)
- goto restart;
- }
- break;
-
- case IOR:
- /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 0), mode) & ~ INTVAL (XEXP (x, 1))) == 0)
- return XEXP (x, 1);
-
- /* Convert (A & B) | A to A. */
- if (GET_CODE (XEXP (x, 0)) == AND
- && (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
- || rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
- && ! side_effects_p (XEXP (XEXP (x, 0), 0))
- && ! side_effects_p (XEXP (XEXP (x, 0), 1)))
- return XEXP (x, 1);
-
- /* If we have (ior (and A B) C), apply the distributive law and then
- the inverse distributive law to see if things simplify. */
-
- if (GET_CODE (XEXP (x, 0)) == AND)
- {
- x = apply_distributive_law
- (gen_binary (AND, mode,
- gen_binary (IOR, mode,
- XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
- gen_binary (IOR, mode,
- XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
-
- if (GET_CODE (x) != IOR)
- goto restart;
- }
-
- if (GET_CODE (XEXP (x, 1)) == AND)
- {
- x = apply_distributive_law
- (gen_binary (AND, mode,
- gen_binary (IOR, mode,
- XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
- gen_binary (IOR, mode,
- XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
-
- if (GET_CODE (x) != IOR)
- goto restart;
- }
-
- /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
- mode size to (rotate A CX). */
-
- if (((GET_CODE (XEXP (x, 0)) == ASHIFT
- && GET_CODE (XEXP (x, 1)) == LSHIFTRT)
- || (GET_CODE (XEXP (x, 1)) == ASHIFT
- && GET_CODE (XEXP (x, 0)) == LSHIFTRT))
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (XEXP (x, 1), 0))
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
- && (INTVAL (XEXP (XEXP (x, 0), 1)) + INTVAL (XEXP (XEXP (x, 1), 1))
- == GET_MODE_BITSIZE (mode)))
- {
- rtx shift_count;
-
- if (GET_CODE (XEXP (x, 0)) == ASHIFT)
- shift_count = XEXP (XEXP (x, 0), 1);
- else
- shift_count = XEXP (XEXP (x, 1), 1);
- x = gen_rtx (ROTATE, mode, XEXP (XEXP (x, 0), 0), shift_count);
- goto restart;
- }
- break;
-
- case XOR:
- /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
- Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
- (NOT y). */
- {
- int num_negated = 0;
- rtx in1 = XEXP (x, 0), in2 = XEXP (x, 1);
-
- if (GET_CODE (in1) == NOT)
- num_negated++, in1 = XEXP (in1, 0);
- if (GET_CODE (in2) == NOT)
- num_negated++, in2 = XEXP (in2, 0);
-
- if (num_negated == 2)
- {
- SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
- SUBST (XEXP (x, 1), XEXP (XEXP (x, 1), 0));
- }
- else if (num_negated == 1)
- {
- x = gen_unary (NOT, mode,
- gen_binary (XOR, mode, in1, in2));
- goto restart;
- }
- }
-
- /* Convert (xor (and A B) B) to (and (not A) B). The latter may
- correspond to a machine insn or result in further simplifications
- if B is a constant. */
-
- if (GET_CODE (XEXP (x, 0)) == AND
- && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
- && ! side_effects_p (XEXP (x, 1)))
- {
- x = gen_binary (AND, mode,
- gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
- XEXP (x, 1));
- goto restart;
- }
- else if (GET_CODE (XEXP (x, 0)) == AND
- && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
- && ! side_effects_p (XEXP (x, 1)))
- {
- x = gen_binary (AND, mode,
- gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
- XEXP (x, 1));
- goto restart;
- }
-
-
- #if STORE_FLAG_VALUE == 1
- /* (xor (comparison foo bar) (const_int 1)) can become the reversed
- comparison. */
- if (XEXP (x, 1) == const1_rtx
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && reversible_comparison_p (XEXP (x, 0)))
- return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
- mode, XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 0), 1));
-
- /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
- is (lt foo (const_int 0)), so we can perform the above
- simplification. */
-
- if (XEXP (x, 1) == const1_rtx
- && GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
- return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
- #endif
-
- /* (xor (comparison foo bar) (const_int sign-bit))
- when STORE_FLAG_VALUE is the sign bit. */
- if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (STORE_FLAG_VALUE
- == (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
- && XEXP (x, 1) == const_true_rtx
- && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
- && reversible_comparison_p (XEXP (x, 0)))
- return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
- mode, XEXP (XEXP (x, 0), 0),
- XEXP (XEXP (x, 0), 1));
- break;
-
- case ABS:
- /* (abs (neg <foo>)) -> (abs <foo>) */
- if (GET_CODE (XEXP (x, 0)) == NEG)
- SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
-
- /* If operand is something known to be positive, ignore the ABS. */
- if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
- || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
- & ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
- == 0)))
- return XEXP (x, 0);
-
-
- /* If operand is known to be only -1 or 0, convert ABS to NEG. */
- if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
- {
- x = gen_rtx_combine (NEG, mode, XEXP (x, 0));
- goto restart;
- }
- break;
-
- case FFS:
- /* (ffs (*_extend <X>)) = (ffs <X>) */
- if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
- || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
- SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
- break;
-
- case FLOAT:
- /* (float (sign_extend <X>)) = (float <X>). */
- if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
- SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
- break;
-
- case LSHIFT:
- case ASHIFT:
- case LSHIFTRT:
- case ASHIFTRT:
- case ROTATE:
- case ROTATERT:
- /* If this is a shift by a constant amount, simplify it. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- {
- x = simplify_shift_const (x, code, mode, XEXP (x, 0),
- INTVAL (XEXP (x, 1)));
- if (GET_CODE (x) != code)
- goto restart;
- }
-
- #ifdef SHIFT_COUNT_TRUNCATED
- else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
- SUBST (XEXP (x, 1),
- force_to_mode (XEXP (x, 1), GET_MODE (x),
- ((HOST_WIDE_INT) 1
- << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
- - 1,
- NULL_RTX, 0));
- #endif
-
- break;
- }
-
- return x;
- }
-
- /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
- operations" because they can be replaced with two more basic operations.
- ZERO_EXTEND is also considered "compound" because it can be replaced with
- an AND operation, which is simpler, though only one operation.
-
- The function expand_compound_operation is called with an rtx expression
- and will convert it to the appropriate shifts and AND operations,
- simplifying at each stage.
-
- The function make_compound_operation is called to convert an expression
- consisting of shifts and ANDs into the equivalent compound expression.
- It is the inverse of this function, loosely speaking. */
-
- static rtx
- expand_compound_operation (x)
- rtx x;
- {
- int pos = 0, len;
- int unsignedp = 0;
- int modewidth;
- rtx tem;
-
- switch (GET_CODE (x))
- {
- case ZERO_EXTEND:
- unsignedp = 1;
- case SIGN_EXTEND:
- /* We can't necessarily use a const_int for a multiword mode;
- it depends on implicitly extending the value.
- Since we don't know the right way to extend it,
- we can't tell whether the implicit way is right.
-
- Even for a mode that is no wider than a const_int,
- we can't win, because we need to sign extend one of its bits through
- the rest of it, and we don't know which bit. */
- if (GET_CODE (XEXP (x, 0)) == CONST_INT)
- return x;
-
- if (! FAKE_EXTEND_SAFE_P (GET_MODE (XEXP (x, 0)), XEXP (x, 0)))
- return x;
-
- len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
- /* If the inner object has VOIDmode (the only way this can happen
- is if it is a ASM_OPERANDS), we can't do anything since we don't
- know how much masking to do. */
- if (len == 0)
- return x;
-
- break;
-
- case ZERO_EXTRACT:
- unsignedp = 1;
- case SIGN_EXTRACT:
- /* If the operand is a CLOBBER, just return it. */
- if (GET_CODE (XEXP (x, 0)) == CLOBBER)
- return XEXP (x, 0);
-
- if (GET_CODE (XEXP (x, 1)) != CONST_INT
- || GET_CODE (XEXP (x, 2)) != CONST_INT
- || GET_MODE (XEXP (x, 0)) == VOIDmode)
- return x;
-
- len = INTVAL (XEXP (x, 1));
- pos = INTVAL (XEXP (x, 2));
-
- /* If this goes outside the object being extracted, replace the object
- with a (use (mem ...)) construct that only combine understands
- and is used only for this purpose. */
- if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
- SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
-
- #if BITS_BIG_ENDIAN
- pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
- #endif
- break;
-
- default:
- return x;
- }
-
- /* If we reach here, we want to return a pair of shifts. The inner
- shift is a left shift of BITSIZE - POS - LEN bits. The outer
- shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
- logical depending on the value of UNSIGNEDP.
-
- If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
- converted into an AND of a shift.
-
- We must check for the case where the left shift would have a negative
- count. This can happen in a case like (x >> 31) & 255 on machines
- that can't shift by a constant. On those machines, we would first
- combine the shift with the AND to produce a variable-position
- extraction. Then the constant of 31 would be substituted in to produce
- a such a position. */
-
- modewidth = GET_MODE_BITSIZE (GET_MODE (x));
- if (modewidth >= pos - len)
- tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
- GET_MODE (x),
- simplify_shift_const (NULL_RTX, ASHIFT,
- GET_MODE (x),
- XEXP (x, 0),
- modewidth - pos - len),
- modewidth - len);
-
- else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
- tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
- simplify_shift_const (NULL_RTX, LSHIFTRT,
- GET_MODE (x),
- XEXP (x, 0), pos),
- ((HOST_WIDE_INT) 1 << len) - 1);
- else
- /* Any other cases we can't handle. */
- return x;
-
-
- /* If we couldn't do this for some reason, return the original
- expression. */
- if (GET_CODE (tem) == CLOBBER)
- return x;
-
- return tem;
- }
-
- /* X is a SET which contains an assignment of one object into
- a part of another (such as a bit-field assignment, STRICT_LOW_PART,
- or certain SUBREGS). If possible, convert it into a series of
- logical operations.
-
- We half-heartedly support variable positions, but do not at all
- support variable lengths. */
-
- static rtx
- expand_field_assignment (x)
- rtx x;
- {
- rtx inner;
- rtx pos; /* Always counts from low bit. */
- int len;
- rtx mask;
- enum machine_mode compute_mode;
-
- /* Loop until we find something we can't simplify. */
- while (1)
- {
- if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
- && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
- {
- inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
- len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
- pos = const0_rtx;
- }
- else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
- && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
- {
- inner = XEXP (SET_DEST (x), 0);
- len = INTVAL (XEXP (SET_DEST (x), 1));
- pos = XEXP (SET_DEST (x), 2);
-
- /* If the position is constant and spans the width of INNER,
- surround INNER with a USE to indicate this. */
- if (GET_CODE (pos) == CONST_INT
- && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
- inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
-
- #if BITS_BIG_ENDIAN
- if (GET_CODE (pos) == CONST_INT)
- pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
- - INTVAL (pos));
- else if (GET_CODE (pos) == MINUS
- && GET_CODE (XEXP (pos, 1)) == CONST_INT
- && (INTVAL (XEXP (pos, 1))
- == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
- /* If position is ADJUST - X, new position is X. */
- pos = XEXP (pos, 0);
- else
- pos = gen_binary (MINUS, GET_MODE (pos),
- GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
- - len),
- pos);
- #endif
- }
-
- /* A SUBREG between two modes that occupy the same numbers of words
- can be done by moving the SUBREG to the source. */
- else if (GET_CODE (SET_DEST (x)) == SUBREG
- && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
- {
- x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
- gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
- SET_SRC (x)));
- continue;
- }
- else
- break;
-
- while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
- inner = SUBREG_REG (inner);
-
- compute_mode = GET_MODE (inner);
-
- /* Compute a mask of LEN bits, if we can do this on the host machine. */
- if (len < HOST_BITS_PER_WIDE_INT)
- mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
- else
- break;
-
- /* Now compute the equivalent expression. Make a copy of INNER
- for the SET_DEST in case it is a MEM into which we will substitute;
- we don't want shared RTL in that case. */
- x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
- gen_binary (IOR, compute_mode,
- gen_binary (AND, compute_mode,
- gen_unary (NOT, compute_mode,
- gen_binary (ASHIFT,
- compute_mode,
- mask, pos)),
- inner),
- gen_binary (ASHIFT, compute_mode,
- gen_binary (AND, compute_mode,
- gen_lowpart_for_combine
- (compute_mode,
- SET_SRC (x)),
- mask),
- pos)));
- }
-
- return x;
- }
-
- /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
- it is an RTX that represents a variable starting position; otherwise,
- POS is the (constant) starting bit position (counted from the LSB).
-
- INNER may be a USE. This will occur when we started with a bitfield
- that went outside the boundary of the object in memory, which is
- allowed on most machines. To isolate this case, we produce a USE
- whose mode is wide enough and surround the MEM with it. The only
- code that understands the USE is this routine. If it is not removed,
- it will cause the resulting insn not to match.
-
- UNSIGNEDP is non-zero for an unsigned reference and zero for a
- signed reference.
-
- IN_DEST is non-zero if this is a reference in the destination of a
- SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
- a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
- be used.
-
- IN_COMPARE is non-zero if we are in a COMPARE. This means that a
- ZERO_EXTRACT should be built even for bits starting at bit 0.
-
- MODE is the desired mode of the result (if IN_DEST == 0). */
-
- static rtx
- make_extraction (mode, inner, pos, pos_rtx, len,
- unsignedp, in_dest, in_compare)
- enum machine_mode mode;
- rtx inner;
- int pos;
- rtx pos_rtx;
- int len;
- int unsignedp;
- int in_dest, in_compare;
- {
- /* This mode describes the size of the storage area
- to fetch the overall value from. Within that, we
- ignore the POS lowest bits, etc. */
- enum machine_mode is_mode = GET_MODE (inner);
- enum machine_mode inner_mode;
- enum machine_mode wanted_mem_mode = byte_mode;
- enum machine_mode pos_mode = word_mode;
- enum machine_mode extraction_mode = word_mode;
- enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
- int spans_byte = 0;
- rtx new = 0;
- rtx orig_pos_rtx = pos_rtx;
- int orig_pos;
-
- /* Get some information about INNER and get the innermost object. */
- if (GET_CODE (inner) == USE)
- /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
- /* We don't need to adjust the position because we set up the USE
- to pretend that it was a full-word object. */
- spans_byte = 1, inner = XEXP (inner, 0);
- else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
- {
- /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
- consider just the QI as the memory to extract from.
- The subreg adds or removes high bits; its mode is
- irrelevant to the meaning of this extraction,
- since POS and LEN count from the lsb. */
- if (GET_CODE (SUBREG_REG (inner)) == MEM)
- is_mode = GET_MODE (SUBREG_REG (inner));
- inner = SUBREG_REG (inner);
- }
-
- inner_mode = GET_MODE (inner);
-
- if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
- pos = INTVAL (pos_rtx), pos_rtx = 0;
-
- /* See if this can be done without an extraction. We never can if the
- width of the field is not the same as that of some integer mode. For
- registers, we can only avoid the extraction if the position is at the
- low-order bit and this is either not in the destination or we have the
- appropriate STRICT_LOW_PART operation available.
-
- For MEM, we can avoid an extract if the field starts on an appropriate
- boundary and we can change the mode of the memory reference. However,
- we cannot directly access the MEM if we have a USE and the underlying
- MEM is not TMODE. This combination means that MEM was being used in a
- context where bits outside its mode were being referenced; that is only
- valid in bit-field insns. */
-
- if (tmode != BLKmode
- && ! (spans_byte && inner_mode != tmode)
- && ((pos_rtx == 0 && pos == 0 && GET_CODE (inner) != MEM
- && (! in_dest
- || (GET_CODE (inner) == REG
- && (movstrict_optab->handlers[(int) tmode].insn_code
- != CODE_FOR_nothing))))
- || (GET_CODE (inner) == MEM && pos_rtx == 0
- && (pos
- % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
- : BITS_PER_UNIT)) == 0
- /* We can't do this if we are widening INNER_MODE (it
- may not be aligned, for one thing). */
- && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
- && (inner_mode == tmode
- || (! mode_dependent_address_p (XEXP (inner, 0))
- && ! MEM_VOLATILE_P (inner))))))
- {
- /* If INNER is a MEM, make a new MEM that encompasses just the desired
- field. If the original and current mode are the same, we need not
- adjust the offset. Otherwise, we do if bytes big endian.
-
- If INNER is not a MEM, get a piece consisting of the just the field
- of interest (in this case POS must be 0). */
-
- if (GET_CODE (inner) == MEM)
- {
- int offset;
- /* POS counts from lsb, but make OFFSET count in memory order. */
- if (BYTES_BIG_ENDIAN)
- offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
- else
- offset = pos / BITS_PER_UNIT;
-
- new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
- RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
- MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
- MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
- }
- else if (GET_CODE (inner) == REG)
- /* We can't call gen_lowpart_for_combine here since we always want
- a SUBREG and it would sometimes return a new hard register. */
- new = gen_rtx (SUBREG, tmode, inner,
- (WORDS_BIG_ENDIAN
- && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
- ? ((GET_MODE_SIZE (inner_mode) - GET_MODE_SIZE (tmode))
- / UNITS_PER_WORD)
- : 0));
- else
- new = force_to_mode (inner, tmode,
- len >= HOST_BITS_PER_WIDE_INT
- ? GET_MODE_MASK (tmode)
- : ((HOST_WIDE_INT) 1 << len) - 1,
- NULL_RTX, 0);
-
- /* If this extraction is going into the destination of a SET,
- make a STRICT_LOW_PART unless we made a MEM. */
-
- if (in_dest)
- return (GET_CODE (new) == MEM ? new
- : (GET_CODE (new) != SUBREG
- ? gen_rtx (CLOBBER, tmode, const0_rtx)
- : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
-
- /* Otherwise, sign- or zero-extend unless we already are in the
- proper mode. */
-
- return (mode == tmode ? new
- : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
- mode, new));
- }
-
- /* Unless this is a COMPARE or we have a funny memory reference,
- don't do anything with zero-extending field extracts starting at
- the low-order bit since they are simple AND operations. */
- if (pos_rtx == 0 && pos == 0 && ! in_dest
- && ! in_compare && ! spans_byte && unsignedp)
- return 0;
-
- /* Get the mode to use should INNER be a MEM, the mode for the position,
- and the mode for the result. */
- #ifdef HAVE_insv
- if (in_dest)
- {
- wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
- pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
- extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
- }
- #endif
-
- #ifdef HAVE_extzv
- if (! in_dest && unsignedp)
- {
- wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
- pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
- extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
- }
- #endif
-
- #ifdef HAVE_extv
- if (! in_dest && ! unsignedp)
- {
- wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
- pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
- extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
- }
- #endif
-
- /* Never narrow an object, since that might not be safe. */
-
- if (mode != VOIDmode
- && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
- extraction_mode = mode;
-
- if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
- && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
- pos_mode = GET_MODE (pos_rtx);
-
- /* If this is not from memory or we have to change the mode of memory and
- cannot, the desired mode is EXTRACTION_MODE. */
- if (GET_CODE (inner) != MEM
- || (inner_mode != wanted_mem_mode
- && (mode_dependent_address_p (XEXP (inner, 0))
- || MEM_VOLATILE_P (inner))))
- wanted_mem_mode = extraction_mode;
-
- orig_pos = pos;
-
- #if BITS_BIG_ENDIAN
- /* If position is constant, compute new position. Otherwise, build
- subtraction. */
- if (pos_rtx == 0)
- pos = (MAX (GET_MODE_BITSIZE (is_mode), GET_MODE_BITSIZE (wanted_mem_mode))
- - len - pos);
- else
- pos_rtx
- = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
- GEN_INT (MAX (GET_MODE_BITSIZE (is_mode),
- GET_MODE_BITSIZE (wanted_mem_mode))
- - len),
- pos_rtx);
- #endif
-
- /* If INNER has a wider mode, make it smaller. If this is a constant
- extract, try to adjust the byte to point to the byte containing
- the value. */
- if (wanted_mem_mode != VOIDmode
- && GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
- && ((GET_CODE (inner) == MEM
- && (inner_mode == wanted_mem_mode
- || (! mode_dependent_address_p (XEXP (inner, 0))
- && ! MEM_VOLATILE_P (inner))))))
- {
- int offset = 0;
-
- /* The computations below will be correct if the machine is big
- endian in both bits and bytes or little endian in bits and bytes.
- If it is mixed, we must adjust. */
-
- /* If bytes are big endian and we had a paradoxical SUBREG, we must
- adjust OFFSET to compensate. */
- #if BYTES_BIG_ENDIAN
- if (! spans_byte
- && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
- offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
- #endif
-
- /* If this is a constant position, we can move to the desired byte. */
- if (pos_rtx == 0)
- {
- offset += pos / BITS_PER_UNIT;
- pos %= GET_MODE_BITSIZE (wanted_mem_mode);
- }
-
- #if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
- if (! spans_byte && is_mode != wanted_mem_mode)
- offset = (GET_MODE_SIZE (is_mode)
- - GET_MODE_SIZE (wanted_mem_mode) - offset);
- #endif
-
- if (offset != 0 || inner_mode != wanted_mem_mode)
- {
- rtx newmem = gen_rtx (MEM, wanted_mem_mode,
- plus_constant (XEXP (inner, 0), offset));
- RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
- MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
- MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
- inner = newmem;
- }
- }
-
- /* If INNER is not memory, we can always get it into the proper mode. */
- else if (GET_CODE (inner) != MEM)
- inner = force_to_mode (inner, extraction_mode,
- pos_rtx || len + orig_pos >= HOST_BITS_PER_WIDE_INT
- ? GET_MODE_MASK (extraction_mode)
- : (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
- NULL_RTX, 0);
-
- /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
- have to zero extend. Otherwise, we can just use a SUBREG. */
- if (pos_rtx != 0
- && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
- pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
- else if (pos_rtx != 0
- && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
- pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
-
- /* Make POS_RTX unless we already have it and it is correct. If we don't
- have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
- be a CONST_INT. */
- if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
- pos_rtx = orig_pos_rtx;
-
- else if (pos_rtx == 0)
- pos_rtx = GEN_INT (pos);
-
- /* Make the required operation. See if we can use existing rtx. */
- new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
- extraction_mode, inner, GEN_INT (len), pos_rtx);
- if (! in_dest)
- new = gen_lowpart_for_combine (mode, new);
-
- return new;
- }
-
- /* Look at the expression rooted at X. Look for expressions
- equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
- Form these expressions.
-
- Return the new rtx, usually just X.
-
- Also, for machines like the Vax that don't have logical shift insns,
- try to convert logical to arithmetic shift operations in cases where
- they are equivalent. This undoes the canonicalizations to logical
- shifts done elsewhere.
-
- We try, as much as possible, to re-use rtl expressions to save memory.
-
- IN_CODE says what kind of expression we are processing. Normally, it is
- SET. In a memory address (inside a MEM, PLUS or minus, the latter two
- being kludges), it is MEM. When processing the arguments of a comparison
- or a COMPARE against zero, it is COMPARE. */
-
- static rtx
- make_compound_operation (x, in_code)
- rtx x;
- enum rtx_code in_code;
- {
- enum rtx_code code = GET_CODE (x);
- enum machine_mode mode = GET_MODE (x);
- int mode_width = GET_MODE_BITSIZE (mode);
- enum rtx_code next_code;
- int i, count;
- rtx new = 0;
- rtx tem;
- char *fmt;
-
- /* Select the code to be used in recursive calls. Once we are inside an
- address, we stay there. If we have a comparison, set to COMPARE,
- but once inside, go back to our default of SET. */
-
- next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
- : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
- && XEXP (x, 1) == const0_rtx) ? COMPARE
- : in_code == COMPARE ? SET : in_code);
-
- /* Process depending on the code of this operation. If NEW is set
- non-zero, it will be returned. */
-
- switch (code)
- {
- case ASHIFT:
- case LSHIFT:
- /* Convert shifts by constants into multiplications if inside
- an address. */
- if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
- && INTVAL (XEXP (x, 1)) >= 0)
- {
- new = make_compound_operation (XEXP (x, 0), next_code);
- new = gen_rtx_combine (MULT, mode, new,
- GEN_INT ((HOST_WIDE_INT) 1
- << INTVAL (XEXP (x, 1))));
- }
- break;
-
- case AND:
- /* If the second operand is not a constant, we can't do anything
- with it. */
- if (GET_CODE (XEXP (x, 1)) != CONST_INT)
- break;
-
- /* If the constant is a power of two minus one and the first operand
- is a logical right shift, make an extraction. */
- if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- {
- new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
- new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
- 0, in_code == COMPARE);
- }
-
- /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
- else if (GET_CODE (XEXP (x, 0)) == SUBREG
- && subreg_lowpart_p (XEXP (x, 0))
- && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- {
- new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
- next_code);
- new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
- XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
- 0, in_code == COMPARE);
- }
- /* Same as previous, but for (xor/ior (lshift...) (lshift...)). */
- else if ((GET_CODE (XEXP (x, 0)) == XOR
- || GET_CODE (XEXP (x, 0)) == IOR)
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- {
- /* Apply the distributive law, and then try to make extractions. */
- new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
- gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
- XEXP (x, 1)),
- gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
- XEXP (x, 1)));
- new = make_compound_operation (new, in_code);
- }
-
- /* If we are have (and (rotate X C) M) and C is larger than the number
- of bits in M, this is an extraction. */
-
- else if (GET_CODE (XEXP (x, 0)) == ROTATE
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
- && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
- {
- new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
- new = make_extraction (mode, new,
- (GET_MODE_BITSIZE (mode)
- - INTVAL (XEXP (XEXP (x, 0), 1))),
- NULL_RTX, i, 1, 0, in_code == COMPARE);
- }
-
- /* On machines without logical shifts, if the operand of the AND is
- a logical shift and our mask turns off all the propagated sign
- bits, we can replace the logical shift with an arithmetic shift. */
- else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
- && (lshr_optab->handlers[(int) mode].insn_code
- == CODE_FOR_nothing)
- && GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
- && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- {
- unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
-
- mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
- if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
- SUBST (XEXP (x, 0),
- gen_rtx_combine (ASHIFTRT, mode,
- make_compound_operation (XEXP (XEXP (x, 0), 0),
- next_code),
- XEXP (XEXP (x, 0), 1)));
- }
-
- /* If the constant is one less than a power of two, this might be
- representable by an extraction even if no shift is present.
- If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
- we are in a COMPARE. */
- else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
- new = make_extraction (mode,
- make_compound_operation (XEXP (x, 0),
- next_code),
- 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
-
- /* If we are in a comparison and this is an AND with a power of two,
- convert this into the appropriate bit extract. */
- else if (in_code == COMPARE
- && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
- new = make_extraction (mode,
- make_compound_operation (XEXP (x, 0),
- next_code),
- i, NULL_RTX, 1, 1, 0, 1);
-
- break;
-
- case LSHIFTRT:
- /* If the sign bit is known to be zero, replace this with an
- arithmetic shift. */
- if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
- && lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
- {
- new = gen_rtx_combine (ASHIFTRT, mode,
- make_compound_operation (XEXP (x, 0),
- next_code),
- XEXP (x, 1));
- break;
- }
-
- /* ... fall through ... */
-
- case ASHIFTRT:
- /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
- this is a SIGN_EXTRACT. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_CODE (XEXP (x, 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (x, 0), 1)))
- {
- new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
- new = make_extraction (mode, new,
- (INTVAL (XEXP (x, 1))
- - INTVAL (XEXP (XEXP (x, 0), 1))),
- NULL_RTX, mode_width - INTVAL (XEXP (x, 1)),
- code == LSHIFTRT, 0, in_code == COMPARE);
- }
-
- /* Similarly if we have (ashifrt (OP (ashift foo C1) C3) C2). In these
- cases, we are better off returning a SIGN_EXTEND of the operation. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND
- || GET_CODE (XEXP (x, 0)) == XOR
- || GET_CODE (XEXP (x, 0)) == PLUS)
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)) < HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && 0 == (INTVAL (XEXP (XEXP (x, 0), 1))
- & (((HOST_WIDE_INT) 1
- << (MIN (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)),
- INTVAL (XEXP (x, 1)))
- - 1)))))
- {
- rtx c1 = XEXP (XEXP (XEXP (x, 0), 0), 1);
- rtx c2 = XEXP (x, 1);
- rtx c3 = XEXP (XEXP (x, 0), 1);
- HOST_WIDE_INT newop1;
- rtx inner = XEXP (XEXP (XEXP (x, 0), 0), 0);
-
- /* If C1 > C2, INNER needs to have the shift performed on it
- for C1-C2 bits. */
- if (INTVAL (c1) > INTVAL (c2))
- {
- inner = gen_binary (ASHIFT, mode, inner,
- GEN_INT (INTVAL (c1) - INTVAL (c2)));
- c1 = c2;
- }
-
- newop1 = INTVAL (c3) >> INTVAL (c1);
- new = make_compound_operation (inner,
- GET_CODE (XEXP (x, 0)) == PLUS
- ? MEM : GET_CODE (XEXP (x, 0)));
- new = make_extraction (mode,
- gen_binary (GET_CODE (XEXP (x, 0)), mode, new,
- GEN_INT (newop1)),
- INTVAL (c2) - INTVAL (c1),
- NULL_RTX, mode_width - INTVAL (c2),
- code == LSHIFTRT, 0, in_code == COMPARE);
- }
-
- /* Similarly for (ashiftrt (neg (ashift FOO C1)) C2). */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_CODE (XEXP (x, 0)) == NEG
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)))
- {
- new = make_compound_operation (XEXP (XEXP (XEXP (x, 0), 0), 0),
- next_code);
- new = make_extraction (mode,
- gen_unary (GET_CODE (XEXP (x, 0)), mode, new),
- (INTVAL (XEXP (x, 1))
- - INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))),
- NULL_RTX, mode_width - INTVAL (XEXP (x, 1)),
- code == LSHIFTRT, 0, in_code == COMPARE);
- }
- break;
-
- case SUBREG:
- /* Call ourselves recursively on the inner expression. If we are
- narrowing the object and it has a different RTL code from
- what it originally did, do this SUBREG as a force_to_mode. */
-
- tem = make_compound_operation (SUBREG_REG (x), in_code);
- if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
- && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
- && subreg_lowpart_p (x))
- {
- rtx newer = force_to_mode (tem, mode,
- GET_MODE_MASK (mode), NULL_RTX, 0);
-
- /* If we have something other than a SUBREG, we might have
- done an expansion, so rerun outselves. */
- if (GET_CODE (newer) != SUBREG)
- newer = make_compound_operation (newer, in_code);
-
- return newer;
- }
- }
-
- if (new)
- {
- x = gen_lowpart_for_combine (mode, new);
- code = GET_CODE (x);
- }
-
- /* Now recursively process each operand of this operation. */
- fmt = GET_RTX_FORMAT (code);
- for (i = 0; i < GET_RTX_LENGTH (code); i++)
- if (fmt[i] == 'e')
- {
- new = make_compound_operation (XEXP (x, i), next_code);
- SUBST (XEXP (x, i), new);
- }
-
- return x;
- }
-
- /* Given M see if it is a value that would select a field of bits
- within an item, but not the entire word. Return -1 if not.
- Otherwise, return the starting position of the field, where 0 is the
- low-order bit.
-
- *PLEN is set to the length of the field. */
-
- static int
- get_pos_from_mask (m, plen)
- unsigned HOST_WIDE_INT m;
- int *plen;
- {
- /* Get the bit number of the first 1 bit from the right, -1 if none. */
- int pos = exact_log2 (m & - m);
-
- if (pos < 0)
- return -1;
-
- /* Now shift off the low-order zero bits and see if we have a power of
- two minus 1. */
- *plen = exact_log2 ((m >> pos) + 1);
-
- if (*plen <= 0)
- return -1;
-
- return pos;
- }
-
- /* See if X can be simplified knowing that we will only refer to it in
- MODE and will only refer to those bits that are nonzero in MASK.
- If other bits are being computed or if masking operations are done
- that select a superset of the bits in MASK, they can sometimes be
- ignored.
-
- Return a possibly simplified expression, but always convert X to
- MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
-
- Also, if REG is non-zero and X is a register equal in value to REG,
- replace X with REG.
-
- If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
- are all off in X. This is used when X will be complemented, by either
- NOT or XOR. */
-
- static rtx
- force_to_mode (x, mode, mask, reg, just_select)
- rtx x;
- enum machine_mode mode;
- unsigned HOST_WIDE_INT mask;
- rtx reg;
- int just_select;
- {
- enum rtx_code code = GET_CODE (x);
- int next_select = just_select || code == XOR || code == NOT;
- enum machine_mode op_mode;
- unsigned HOST_WIDE_INT fuller_mask, nonzero;
- rtx op0, op1, temp;
-
- /* We want to perform the operation is its present mode unless we know
- that the operation is valid in MODE, in which case we do the operation
- in MODE. */
- op_mode = ((code_to_optab[(int) code] != 0
- && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
- != CODE_FOR_nothing))
- ? mode : GET_MODE (x));
-
- /* It is not valid to do a right-shift in a narrower mode
- than the one it came in with. */
- if ((code == LSHIFTRT || code == ASHIFTRT)
- && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
- op_mode = GET_MODE (x);
-
- /* Truncate MASK to fit OP_MODE. */
- if (op_mode)
- mask &= GET_MODE_MASK (op_mode);
-
- /* When we have an arithmetic operation, or a shift whose count we
- do not know, we need to assume that all bit the up to the highest-order
- bit in MASK will be needed. This is how we form such a mask. */
- if (op_mode)
- fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
- ? GET_MODE_MASK (op_mode)
- : ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
- else
- fuller_mask = ~ (HOST_WIDE_INT) 0;
-
- /* Determine what bits of X are guaranteed to be (non)zero. */
- nonzero = nonzero_bits (x, mode);
-
- /* If none of the bits in X are needed, return a zero. */
- if (! just_select && (nonzero & mask) == 0)
- return const0_rtx;
-
- /* If X is a CONST_INT, return a new one. Do this here since the
- test below will fail. */
- if (GET_CODE (x) == CONST_INT)
- {
- HOST_WIDE_INT cval = INTVAL (x) & mask;
- int width = GET_MODE_BITSIZE (mode);
-
- /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
- number, sign extend it. */
- if (width > 0 && width < HOST_BITS_PER_WIDE_INT
- && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
- cval |= (HOST_WIDE_INT) -1 << width;
-
- return GEN_INT (cval);
- }
-
- /* If X is narrower than MODE, just get X in the proper mode. */
- if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
- return gen_lowpart_for_combine (mode, x);
-
- /* If we aren't changing the mode and all zero bits in MASK are already
- known to be zero in X, we need not do anything. */
- if (GET_MODE (x) == mode && (~ mask & nonzero) == 0)
- return x;
-
- switch (code)
- {
- case CLOBBER:
- /* If X is a (clobber (const_int)), return it since we know we are
- generating something that won't match. */
- return x;
-
- #if ! BITS_BIG_ENDIAN
- case USE:
- /* X is a (use (mem ..)) that was made from a bit-field extraction that
- spanned the boundary of the MEM. If we are now masking so it is
- within that boundary, we don't need the USE any more. */
- if ((mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
- return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
- #endif
-
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- case ZERO_EXTRACT:
- case SIGN_EXTRACT:
- x = expand_compound_operation (x);
- if (GET_CODE (x) != code)
- return force_to_mode (x, mode, mask, reg, next_select);
- break;
-
- case REG:
- if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
- || rtx_equal_p (reg, get_last_value (x))))
- x = reg;
- break;
-
- case SUBREG:
- if (subreg_lowpart_p (x)
- /* We can ignore the effect this SUBREG if it narrows the mode or,
- on machines where register operations are performed on the full
- word, if the constant masks to zero all the bits the mode
- doesn't have. */
- && ((GET_MODE_SIZE (GET_MODE (x))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- #ifdef WORD_REGISTER_OPERATIONS
- || (0 == (mask
- & GET_MODE_MASK (GET_MODE (x))
- & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))
- #endif
- ))
- return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
- break;
-
- case AND:
- /* If this is an AND with a constant, convert it into an AND
- whose constant is the AND of that constant with MASK. If it
- remains an AND of MASK, delete it since it is redundant. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
- {
- x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
- mask & INTVAL (XEXP (x, 1)));
-
- /* If X is still an AND, see if it is an AND with a mask that
- is just some low-order bits. If so, and it is BITS wide (it
- can't be wider), we don't need it. */
-
- if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) == mask)
- x = XEXP (x, 0);
-
- break;
- }
-
- goto binop;
-
- case PLUS:
- /* In (and (plus FOO C1) M), if M is a mask that just turns off
- low-order bits (as in an alignment operation) and FOO is already
- aligned to that boundary, mask C1 to that boundary as well.
- This may eliminate that PLUS and, later, the AND. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && exact_log2 (- mask) >= 0
- && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
- && (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
- return force_to_mode (plus_constant (XEXP (x, 0),
- INTVAL (XEXP (x, 1)) & mask),
- mode, mask, reg, next_select);
-
- /* ... fall through ... */
-
- case MINUS:
- case MULT:
- /* For PLUS, MINUS and MULT, we need any bits less significant than the
- most significant bit in MASK since carries from those bits will
- affect the bits we are interested in. */
- mask = fuller_mask;
- goto binop;
-
- case IOR:
- case XOR:
- /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
- LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
- operation which may be a bitfield extraction. Ensure that the
- constant we form is not wider than the mode of X. */
-
- if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
- && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && ((INTVAL (XEXP (XEXP (x, 0), 1))
- + floor_log2 (INTVAL (XEXP (x, 1))))
- < GET_MODE_BITSIZE (GET_MODE (x)))
- && (INTVAL (XEXP (x, 1))
- & ~ nonzero_bits (XEXP (x, 0), GET_MODE (x)) == 0))
- {
- temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
- << INTVAL (XEXP (XEXP (x, 0), 1)));
- temp = gen_binary (GET_CODE (x), GET_MODE (x),
- XEXP (XEXP (x, 0), 0), temp);
- x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (x, 1));
- return force_to_mode (x, mode, mask, reg, next_select);
- }
-
- binop:
- /* For most binary operations, just propagate into the operation and
- change the mode if we have an operation of that mode. */
-
- op0 = gen_lowpart_for_combine (op_mode,
- force_to_mode (XEXP (x, 0), mode, mask,
- reg, next_select));
- op1 = gen_lowpart_for_combine (op_mode,
- force_to_mode (XEXP (x, 1), mode, mask,
- reg, next_select));
-
- /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
- MASK since OP1 might have been sign-extended but we never want
- to turn on extra bits, since combine might have previously relied
- on them being off. */
- if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
- && (INTVAL (op1) & mask) != 0)
- op1 = GEN_INT (INTVAL (op1) & mask);
-
- if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- x = gen_binary (code, op_mode, op0, op1);
- break;
-
- case ASHIFT:
- case LSHIFT:
- /* For left shifts, do the same, but just for the first operand.
- However, we cannot do anything with shifts where we cannot
- guarantee that the counts are smaller than the size of the mode
- because such a count will have a different meaning in a
- wider mode. */
-
- if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
- && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
- && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
- < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
- break;
-
- /* If the shift count is a constant and we can do arithmetic in
- the mode of the shift, refine which bits we need. Otherwise, use the
- conservative form of the mask. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
- && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
- mask >>= INTVAL (XEXP (x, 1));
- else
- mask = fuller_mask;
-
- op0 = gen_lowpart_for_combine (op_mode,
- force_to_mode (XEXP (x, 0), op_mode,
- mask, reg, next_select));
-
- if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
- x = gen_binary (code, op_mode, op0, XEXP (x, 1));
- break;
-
- case LSHIFTRT:
- /* Here we can only do something if the shift count is a constant,
- this shift constant is valid for the host, and we can do arithmetic
- in OP_MODE. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
- {
- rtx inner = XEXP (x, 0);
-
- /* Select the mask of the bits we need for the shift operand. */
- mask <<= INTVAL (XEXP (x, 1));
-
- /* We can only change the mode of the shift if we can do arithmetic
- in the mode of the shift and MASK is no wider than the width of
- OP_MODE. */
- if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
- || (mask & ~ GET_MODE_MASK (op_mode)) != 0)
- op_mode = GET_MODE (x);
-
- inner = force_to_mode (inner, op_mode, mask, reg, next_select);
-
- if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
- x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
- }
-
- /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
- shift and AND produces only copies of the sign bit (C2 is one less
- than a power of two), we can do this with just a shift. */
-
- if (GET_CODE (x) == LSHIFTRT
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && ((INTVAL (XEXP (x, 1))
- + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
- >= GET_MODE_BITSIZE (GET_MODE (x)))
- && exact_log2 (mask + 1) >= 0
- && (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
- >= exact_log2 (mask + 1)))
- x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
- GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
- - exact_log2 (mask + 1)));
- break;
-
- case ASHIFTRT:
- /* If we are just looking for the sign bit, we don't need this shift at
- all, even if it has a variable count. */
- if (mask == ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (x)) - 1)))
- return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
-
- /* If this is a shift by a constant, get a mask that contains those bits
- that are not copies of the sign bit. We then have two cases: If
- MASK only includes those bits, this can be a logical shift, which may
- allow simplifications. If MASK is a single-bit field not within
- those bits, we are requesting a copy of the sign bit and hence can
- shift the sign bit to the appropriate location. */
-
- if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- int i = -1;
-
- nonzero = GET_MODE_MASK (GET_MODE (x));
- nonzero >>= INTVAL (XEXP (x, 1));
-
- if ((mask & ~ nonzero) == 0
- || (i = exact_log2 (mask)) >= 0)
- {
- x = simplify_shift_const
- (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
- i < 0 ? INTVAL (XEXP (x, 1))
- : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
-
- if (GET_CODE (x) != ASHIFTRT)
- return force_to_mode (x, mode, mask, reg, next_select);
- }
- }
-
- /* If MASK is 1, convert this to a LSHIFTRT. This can be done
- even if the shift count isn't a constant. */
- if (mask == 1)
- x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
-
- /* If this is a sign-extension operation that just affects bits
- we don't care about, remove it. Be sure the call above returned
- something that is still a shift. */
-
- if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && (INTVAL (XEXP (x, 1))
- <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
- && GET_CODE (XEXP (x, 0)) == ASHIFT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
- return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
- reg, next_select);
-
- break;
-
- case ROTATE:
- case ROTATERT:
- /* If the shift count is constant and we can do computations
- in the mode of X, compute where the bits we care about are.
- Otherwise, we can't do anything. Don't change the mode of
- the shift or propagate MODE into the shift, though. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0)
- {
- temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
- GET_MODE (x), GEN_INT (mask),
- XEXP (x, 1));
- if (temp)
- SUBST (XEXP (x, 0),
- force_to_mode (XEXP (x, 0), GET_MODE (x),
- INTVAL (temp), reg, next_select));
- }
- break;
-
- case NEG:
- /* We need any bits less significant than the most significant bit in
- MASK since carries from those bits will affect the bits we are
- interested in. */
- mask = fuller_mask;
- goto unop;
-
- case NOT:
- /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
- same as the XOR case above. Ensure that the constant we form is not
- wider than the mode of X. */
-
- if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
- && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
- < GET_MODE_BITSIZE (GET_MODE (x)))
- && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
- {
- temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
- temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
- x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
-
- return force_to_mode (x, mode, mask, reg, next_select);
- }
-
- unop:
- op0 = gen_lowpart_for_combine (op_mode,
- force_to_mode (XEXP (x, 0), mode, mask,
- reg, next_select));
- if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
- x = gen_unary (code, op_mode, op0);
- break;
-
- case NE:
- /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
- in STORE_FLAG_VALUE and FOO has no bits that might be nonzero not
- in CONST. */
- if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 0) == const0_rtx
- && (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0)
- return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
-
- break;
-
- case IF_THEN_ELSE:
- /* We have no way of knowing if the IF_THEN_ELSE can itself be
- written in a narrower mode. We play it safe and do not do so. */
-
- SUBST (XEXP (x, 1),
- gen_lowpart_for_combine (GET_MODE (x),
- force_to_mode (XEXP (x, 1), mode,
- mask, reg, next_select)));
- SUBST (XEXP (x, 2),
- gen_lowpart_for_combine (GET_MODE (x),
- force_to_mode (XEXP (x, 2), mode,
- mask, reg,next_select)));
- break;
- }
-
- /* Ensure we return a value of the proper mode. */
- return gen_lowpart_for_combine (mode, x);
- }
-
- /* Return the value of expression X given the fact that condition COND
- is known to be true when applied to REG as its first operand and VAL
- as its second. X is known to not be shared and so can be modified in
- place.
-
- We only handle the simplest cases, and specifically those cases that
- arise with IF_THEN_ELSE expressions. */
-
- static rtx
- known_cond (x, cond, reg, val)
- rtx x;
- enum rtx_code cond;
- rtx reg, val;
- {
- enum rtx_code code = GET_CODE (x);
- rtx new, temp;
- char *fmt;
- int i, j;
-
- if (side_effects_p (x))
- return x;
-
- if (cond == EQ && rtx_equal_p (x, reg))
- return val;
-
- /* If X is (abs REG) and we know something about REG's relationship
- with zero, we may be able to simplify this. */
-
- if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
- switch (cond)
- {
- case GE: case GT: case EQ:
- return XEXP (x, 0);
- case LT: case LE:
- return gen_unary (NEG, GET_MODE (XEXP (x, 0)), XEXP (x, 0));
- }
-
- /* The only other cases we handle are MIN, MAX, and comparisons if the
- operands are the same as REG and VAL. */
-
- else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
- {
- if (rtx_equal_p (XEXP (x, 0), val))
- cond = swap_condition (cond), temp = val, val = reg, reg = temp;
-
- if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
- {
- if (GET_RTX_CLASS (code) == '<')
- return (comparison_dominates_p (cond, code) ? const_true_rtx
- : (comparison_dominates_p (cond,
- reverse_condition (code))
- ? const0_rtx : x));
-
- else if (code == SMAX || code == SMIN
- || code == UMIN || code == UMAX)
- {
- int unsignedp = (code == UMIN || code == UMAX);
-
- if (code == SMAX || code == UMAX)
- cond = reverse_condition (cond);
-
- switch (cond)
- {
- case GE: case GT:
- return unsignedp ? x : XEXP (x, 1);
- case LE: case LT:
- return unsignedp ? x : XEXP (x, 0);
- case GEU: case GTU:
- return unsignedp ? XEXP (x, 1) : x;
- case LEU: case LTU:
- return unsignedp ? XEXP (x, 0) : x;
- }
- }
- }
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
- cond, reg, val));
- }
-
- return x;
- }
-
- /* See if X, a SET operation, can be rewritten as a bit-field assignment.
- Return that assignment if so.
-
- We only handle the most common cases. */
-
- static rtx
- make_field_assignment (x)
- rtx x;
- {
- rtx dest = SET_DEST (x);
- rtx src = SET_SRC (x);
- rtx ourdest;
- rtx assign;
- HOST_WIDE_INT c1;
- int pos, len;
- rtx other;
- enum machine_mode mode;
-
- /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
- a clear of a one-bit field. We will have changed it to
- (and (rotate (const_int -2) POS) DEST), so check for that. Also check
- for a SUBREG. */
-
- if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
- && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
- && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
- && (rtx_equal_p (dest, XEXP (src, 1))
- || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
- || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
- {
- assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
- 1, 1, 1, 0);
- return gen_rtx (SET, VOIDmode, assign, const0_rtx);
- }
-
- else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
- && subreg_lowpart_p (XEXP (src, 0))
- && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
- && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
- && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
- && (rtx_equal_p (dest, XEXP (src, 1))
- || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
- || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
- {
- assign = make_extraction (VOIDmode, dest, 0,
- XEXP (SUBREG_REG (XEXP (src, 0)), 1),
- 1, 1, 1, 0);
- return gen_rtx (SET, VOIDmode, assign, const0_rtx);
- }
-
- /* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
- one-bit field. */
- else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
- && XEXP (XEXP (src, 0), 0) == const1_rtx
- && (rtx_equal_p (dest, XEXP (src, 1))
- || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
- || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
- {
- assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
- 1, 1, 1, 0);
- return gen_rtx (SET, VOIDmode, assign, const1_rtx);
- }
-
- /* The other case we handle is assignments into a constant-position
- field. They look like (ior (and DEST C1) OTHER). If C1 represents
- a mask that has all one bits except for a group of zero bits and
- OTHER is known to have zeros where C1 has ones, this is such an
- assignment. Compute the position and length from C1. Shift OTHER
- to the appropriate position, force it to the required mode, and
- make the extraction. Check for the AND in both operands. */
-
- if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
- && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
- && (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
- || rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
- || rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
- c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
- else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
- && GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
- && (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
- || rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
- || rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
- dest)))
- c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
- else
- return x;
-
- pos = get_pos_from_mask (c1 ^ GET_MODE_MASK (GET_MODE (dest)), &len);
- if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
- || (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
- && (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
- return x;
-
- assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
-
- /* The mode to use for the source is the mode of the assignment, or of
- what is inside a possible STRICT_LOW_PART. */
- mode = (GET_CODE (assign) == STRICT_LOW_PART
- ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
-
- /* Shift OTHER right POS places and make it the source, restricting it
- to the proper length and mode. */
-
- src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
- GET_MODE (src), other, pos),
- mode,
- GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
- ? GET_MODE_MASK (mode)
- : ((HOST_WIDE_INT) 1 << len) - 1,
- dest, 0);
-
- return gen_rtx_combine (SET, VOIDmode, assign, src);
- }
-
- /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
- if so. */
-
- static rtx
- apply_distributive_law (x)
- rtx x;
- {
- enum rtx_code code = GET_CODE (x);
- rtx lhs, rhs, other;
- rtx tem;
- enum rtx_code inner_code;
-
- /* Distributivity is not true for floating point.
- It can change the value. So don't do it.
- -- rms and moshier@world.std.com. */
- if (FLOAT_MODE_P (GET_MODE (x)))
- return x;
-
- /* The outer operation can only be one of the following: */
- if (code != IOR && code != AND && code != XOR
- && code != PLUS && code != MINUS)
- return x;
-
- lhs = XEXP (x, 0), rhs = XEXP (x, 1);
-
- /* If either operand is a primitive we can't do anything, so get out fast. */
- if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
- || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
- return x;
-
- lhs = expand_compound_operation (lhs);
- rhs = expand_compound_operation (rhs);
- inner_code = GET_CODE (lhs);
- if (inner_code != GET_CODE (rhs))
- return x;
-
- /* See if the inner and outer operations distribute. */
- switch (inner_code)
- {
- case LSHIFTRT:
- case ASHIFTRT:
- case AND:
- case IOR:
- /* These all distribute except over PLUS. */
- if (code == PLUS || code == MINUS)
- return x;
- break;
-
- case MULT:
- if (code != PLUS && code != MINUS)
- return x;
- break;
-
- case ASHIFT:
- case LSHIFT:
- /* These are also multiplies, so they distribute over everything. */
- break;
-
- case SUBREG:
- /* Non-paradoxical SUBREGs distributes over all operations, provided
- the inner modes and word numbers are the same, this is an extraction
- of a low-order part, we don't convert an fp operation to int or
- vice versa, and we would not be converting a single-word
- operation into a multi-word operation. The latter test is not
- required, but it prevents generating unneeded multi-word operations.
- Some of the previous tests are redundant given the latter test, but
- are retained because they are required for correctness.
-
- We produce the result slightly differently in this case. */
-
- if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
- || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
- || ! subreg_lowpart_p (lhs)
- || (GET_MODE_CLASS (GET_MODE (lhs))
- != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
- || (GET_MODE_SIZE (GET_MODE (lhs))
- < GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
- || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
- return x;
-
- tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
- SUBREG_REG (lhs), SUBREG_REG (rhs));
- return gen_lowpart_for_combine (GET_MODE (x), tem);
-
- default:
- return x;
- }
-
- /* Set LHS and RHS to the inner operands (A and B in the example
- above) and set OTHER to the common operand (C in the example).
- These is only one way to do this unless the inner operation is
- commutative. */
- if (GET_RTX_CLASS (inner_code) == 'c'
- && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
- other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
- else if (GET_RTX_CLASS (inner_code) == 'c'
- && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
- other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
- else if (GET_RTX_CLASS (inner_code) == 'c'
- && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
- other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
- else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
- other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
- else
- return x;
-
- /* Form the new inner operation, seeing if it simplifies first. */
- tem = gen_binary (code, GET_MODE (x), lhs, rhs);
-
- /* There is one exception to the general way of distributing:
- (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
- if (code == XOR && inner_code == IOR)
- {
- inner_code = AND;
- other = gen_unary (NOT, GET_MODE (x), other);
- }
-
- /* We may be able to continuing distributing the result, so call
- ourselves recursively on the inner operation before forming the
- outer operation, which we return. */
- return gen_binary (inner_code, GET_MODE (x),
- apply_distributive_law (tem), other);
- }
-
- /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
- in MODE.
-
- Return an equivalent form, if different from X. Otherwise, return X. If
- X is zero, we are to always construct the equivalent form. */
-
- static rtx
- simplify_and_const_int (x, mode, varop, constop)
- rtx x;
- enum machine_mode mode;
- rtx varop;
- unsigned HOST_WIDE_INT constop;
- {
- register enum machine_mode tmode;
- register rtx temp;
- unsigned HOST_WIDE_INT nonzero;
- int i;
-
- /* Simplify VAROP knowing that we will be only looking at some of the
- bits in it. */
- varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
-
- /* If VAROP is a CLOBBER, we will fail so return it; if it is a
- CONST_INT, we are done. */
- if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
- return varop;
-
- /* See what bits may be nonzero in VAROP. Unlike the general case of
- a call to nonzero_bits, here we don't care about bits outside
- MODE. */
-
- nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
-
- /* Turn off all bits in the constant that are known to already be zero.
- Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
- which is tested below. */
-
- constop &= nonzero;
-
- /* If we don't have any bits left, return zero. */
- if (constop == 0)
- return const0_rtx;
-
- /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
- a power of two, we can replace this with a ASHIFT. */
- if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
- && (i = exact_log2 (constop)) >= 0)
- return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
-
- /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
- or XOR, then try to apply the distributive law. This may eliminate
- operations if either branch can be simplified because of the AND.
- It may also make some cases more complex, but those cases probably
- won't match a pattern either with or without this. */
-
- if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
- return
- gen_lowpart_for_combine
- (mode,
- apply_distributive_law
- (gen_binary (GET_CODE (varop), GET_MODE (varop),
- simplify_and_const_int (NULL_RTX, GET_MODE (varop),
- XEXP (varop, 0), constop),
- simplify_and_const_int (NULL_RTX, GET_MODE (varop),
- XEXP (varop, 1), constop))));
-
- /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
- if we already had one (just check for the simplest cases). */
- if (x && GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_MODE (XEXP (x, 0)) == mode
- && SUBREG_REG (XEXP (x, 0)) == varop)
- varop = XEXP (x, 0);
- else
- varop = gen_lowpart_for_combine (mode, varop);
-
- /* If we can't make the SUBREG, try to return what we were given. */
- if (GET_CODE (varop) == CLOBBER)
- return x ? x : varop;
-
- /* If we are only masking insignificant bits, return VAROP. */
- if (constop == nonzero)
- x = varop;
-
- /* Otherwise, return an AND. See how much, if any, of X we can use. */
- else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
- x = gen_binary (AND, mode, varop, GEN_INT (constop));
-
- else
- {
- if (GET_CODE (XEXP (x, 1)) != CONST_INT
- || INTVAL (XEXP (x, 1)) != constop)
- SUBST (XEXP (x, 1), GEN_INT (constop));
-
- SUBST (XEXP (x, 0), varop);
- }
-
- return x;
- }
-
- /* Given an expression, X, compute which bits in X can be non-zero.
- We don't care about bits outside of those defined in MODE.
-
- For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
- a shift, AND, or zero_extract, we can do better. */
-
- static unsigned HOST_WIDE_INT
- nonzero_bits (x, mode)
- rtx x;
- enum machine_mode mode;
- {
- unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
- unsigned HOST_WIDE_INT inner_nz;
- enum rtx_code code;
- int mode_width = GET_MODE_BITSIZE (mode);
- rtx tem;
-
- /* If X is wider than MODE, use its mode instead. */
- if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
- {
- mode = GET_MODE (x);
- nonzero = GET_MODE_MASK (mode);
- mode_width = GET_MODE_BITSIZE (mode);
- }
-
- if (mode_width > HOST_BITS_PER_WIDE_INT)
- /* Our only callers in this case look for single bit values. So
- just return the mode mask. Those tests will then be false. */
- return nonzero;
-
- #ifndef WORD_REGISTER_OPERATIONS
- /* If MODE is wider than X, but both are a single word for both the host
- and target machines, we can compute this from which bits of the
- object might be nonzero in its own mode, taking into account the fact
- that on many CISC machines, accessing an object in a wider mode
- causes the high-order bits to become undefined. So they are
- not known to be zero. */
-
- if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
- && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
- && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
- {
- nonzero &= nonzero_bits (x, GET_MODE (x));
- nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
- return nonzero;
- }
- #endif
-
- code = GET_CODE (x);
- switch (code)
- {
- case REG:
- #ifdef STACK_BOUNDARY
- /* If this is the stack pointer, we may know something about its
- alignment. If PUSH_ROUNDING is defined, it is possible for the
- stack to be momentarily aligned only to that amount, so we pick
- the least alignment. */
-
- if (x == stack_pointer_rtx)
- {
- int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
-
- #ifdef PUSH_ROUNDING
- sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
- #endif
-
- return nonzero & ~ (sp_alignment - 1);
- }
- #endif
-
- /* If X is a register whose nonzero bits value is current, use it.
- Otherwise, if X is a register whose value we can find, use that
- value. Otherwise, use the previously-computed global nonzero bits
- for this register. */
-
- if (reg_last_set_value[REGNO (x)] != 0
- && reg_last_set_mode[REGNO (x)] == mode
- && (reg_n_sets[REGNO (x)] == 1
- || reg_last_set_label[REGNO (x)] == label_tick)
- && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
- return reg_last_set_nonzero_bits[REGNO (x)];
-
- tem = get_last_value (x);
-
- if (tem)
- {
- #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
- /* If X is narrower than MODE and TEM is a non-negative
- constant that would appear negative in the mode of X,
- sign-extend it for use in reg_nonzero_bits because some
- machines (maybe most) will actually do the sign-extension
- and this is the conservative approach.
-
- ??? For 2.5, try to tighten up the MD files in this regard
- instead of this kludge. */
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
- && GET_CODE (tem) == CONST_INT
- && INTVAL (tem) > 0
- && 0 != (INTVAL (tem)
- & ((HOST_WIDE_INT) 1
- << GET_MODE_BITSIZE (GET_MODE (x)))))
- tem = GEN_INT (INTVAL (tem)
- | ((HOST_WIDE_INT) (-1)
- << GET_MODE_BITSIZE (GET_MODE (x))));
- #endif
- return nonzero_bits (tem, mode);
- }
- else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
- return reg_nonzero_bits[REGNO (x)] & nonzero;
- else
- return nonzero;
-
- case CONST_INT:
- #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
- /* If X is negative in MODE, sign-extend the value. */
- if (INTVAL (x) > 0
- && 0 != (INTVAL (x)
- & ((HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (GET_MODE (x)))))
- return (INTVAL (x)
- | ((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (GET_MODE (x))));
- #endif
-
- return INTVAL (x);
-
- case MEM:
- #ifdef LOAD_EXTEND_OP
- /* In many, if not most, RISC machines, reading a byte from memory
- zeros the rest of the register. Noticing that fact saves a lot
- of extra zero-extends. */
- if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
- nonzero &= GET_MODE_MASK (GET_MODE (x));
- #endif
- break;
-
- case EQ: case NE:
- case GT: case GTU:
- case LT: case LTU:
- case GE: case GEU:
- case LE: case LEU:
-
- /* If this produces an integer result, we know which bits are set.
- Code here used to clear bits outside the mode of X, but that is
- now done above. */
-
- if (GET_MODE_CLASS (mode) == MODE_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- nonzero = STORE_FLAG_VALUE;
- break;
-
- case NEG:
- if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
- == GET_MODE_BITSIZE (GET_MODE (x)))
- nonzero = 1;
-
- if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
- nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
- break;
-
- case ABS:
- if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
- == GET_MODE_BITSIZE (GET_MODE (x)))
- nonzero = 1;
- break;
-
- case TRUNCATE:
- nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
- break;
-
- case ZERO_EXTEND:
- nonzero &= nonzero_bits (XEXP (x, 0), mode);
- if (GET_MODE (XEXP (x, 0)) != VOIDmode)
- nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
- break;
-
- case SIGN_EXTEND:
- /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
- Otherwise, show all the bits in the outer mode but not the inner
- may be non-zero. */
- inner_nz = nonzero_bits (XEXP (x, 0), mode);
- if (GET_MODE (XEXP (x, 0)) != VOIDmode)
- {
- inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
- if (inner_nz &
- (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
- inner_nz |= (GET_MODE_MASK (mode)
- & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
- }
-
- nonzero &= inner_nz;
- break;
-
- case AND:
- nonzero &= (nonzero_bits (XEXP (x, 0), mode)
- & nonzero_bits (XEXP (x, 1), mode));
- break;
-
- case XOR: case IOR:
- case UMIN: case UMAX: case SMIN: case SMAX:
- nonzero &= (nonzero_bits (XEXP (x, 0), mode)
- | nonzero_bits (XEXP (x, 1), mode));
- break;
-
- case PLUS: case MINUS:
- case MULT:
- case DIV: case UDIV:
- case MOD: case UMOD:
- /* We can apply the rules of arithmetic to compute the number of
- high- and low-order zero bits of these operations. We start by
- computing the width (position of the highest-order non-zero bit)
- and the number of low-order zero bits for each value. */
- {
- unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
- unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
- int width0 = floor_log2 (nz0) + 1;
- int width1 = floor_log2 (nz1) + 1;
- int low0 = floor_log2 (nz0 & -nz0);
- int low1 = floor_log2 (nz1 & -nz1);
- int op0_maybe_minusp = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
- int op1_maybe_minusp = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
- int result_width = mode_width;
- int result_low = 0;
-
- switch (code)
- {
- case PLUS:
- result_width = MAX (width0, width1) + 1;
- result_low = MIN (low0, low1);
- break;
- case MINUS:
- result_low = MIN (low0, low1);
- break;
- case MULT:
- result_width = width0 + width1;
- result_low = low0 + low1;
- break;
- case DIV:
- if (! op0_maybe_minusp && ! op1_maybe_minusp)
- result_width = width0;
- break;
- case UDIV:
- result_width = width0;
- break;
- case MOD:
- if (! op0_maybe_minusp && ! op1_maybe_minusp)
- result_width = MIN (width0, width1);
- result_low = MIN (low0, low1);
- break;
- case UMOD:
- result_width = MIN (width0, width1);
- result_low = MIN (low0, low1);
- break;
- }
-
- if (result_width < mode_width)
- nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
-
- if (result_low > 0)
- nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
- }
- break;
-
- case ZERO_EXTRACT:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
- nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
- break;
-
- case SUBREG:
- /* If this is a SUBREG formed for a promoted variable that has
- been zero-extended, we know that at least the high-order bits
- are zero, though others might be too. */
-
- if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
- nonzero = (GET_MODE_MASK (GET_MODE (x))
- & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
-
- /* If the inner mode is a single word for both the host and target
- machines, we can compute this from which bits of the inner
- object might be nonzero. */
- if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
- && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- <= HOST_BITS_PER_WIDE_INT))
- {
- nonzero &= nonzero_bits (SUBREG_REG (x), mode);
-
- #ifndef WORD_REGISTER_OPERATIONS
- /* On many CISC machines, accessing an object in a wider mode
- causes the high-order bits to become undefined. So they are
- not known to be zero. */
- if (GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- nonzero |= (GET_MODE_MASK (GET_MODE (x))
- & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
- #endif
- }
- break;
-
- case ASHIFTRT:
- case LSHIFTRT:
- case ASHIFT:
- case LSHIFT:
- case ROTATE:
- /* The nonzero bits are in two classes: any bits within MODE
- that aren't in GET_MODE (x) are always significant. The rest of the
- nonzero bits are those that are significant in the operand of
- the shift when shifted the appropriate number of bits. This
- shows that high-order bits are cleared by the right shift and
- low-order bits by left shifts. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0
- && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
- {
- enum machine_mode inner_mode = GET_MODE (x);
- int width = GET_MODE_BITSIZE (inner_mode);
- int count = INTVAL (XEXP (x, 1));
- unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
- unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
- unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
- unsigned HOST_WIDE_INT outer = 0;
-
- if (mode_width > width)
- outer = (op_nonzero & nonzero & ~ mode_mask);
-
- if (code == LSHIFTRT)
- inner >>= count;
- else if (code == ASHIFTRT)
- {
- inner >>= count;
-
- /* If the sign bit may have been nonzero before the shift, we
- need to mark all the places it could have been copied to
- by the shift as possibly nonzero. */
- if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
- inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
- }
- else if (code == LSHIFT || code == ASHIFT)
- inner <<= count;
- else
- inner = ((inner << (count % width)
- | (inner >> (width - (count % width)))) & mode_mask);
-
- nonzero &= (outer | inner);
- }
- break;
-
- case FFS:
- /* This is at most the number of bits in the mode. */
- nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
- break;
-
- case IF_THEN_ELSE:
- nonzero &= (nonzero_bits (XEXP (x, 1), mode)
- | nonzero_bits (XEXP (x, 2), mode));
- break;
- }
-
- return nonzero;
- }
-
- /* Return the number of bits at the high-order end of X that are known to
- be equal to the sign bit. X will be used in mode MODE; if MODE is
- VOIDmode, X will be used in its own mode. The returned value will always
- be between 1 and the number of bits in MODE. */
-
- static int
- num_sign_bit_copies (x, mode)
- rtx x;
- enum machine_mode mode;
- {
- enum rtx_code code = GET_CODE (x);
- int bitwidth;
- int num0, num1, result;
- unsigned HOST_WIDE_INT nonzero;
- rtx tem;
-
- /* If we weren't given a mode, use the mode of X. If the mode is still
- VOIDmode, we don't know anything. */
-
- if (mode == VOIDmode)
- mode = GET_MODE (x);
-
- if (mode == VOIDmode)
- return 1;
-
- bitwidth = GET_MODE_BITSIZE (mode);
-
- /* For a smaller object, just ignore the high bits. */
- if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
- return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
- - (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
-
- switch (code)
- {
- case REG:
-
- if (reg_last_set_value[REGNO (x)] != 0
- && reg_last_set_mode[REGNO (x)] == mode
- && (reg_n_sets[REGNO (x)] == 1
- || reg_last_set_label[REGNO (x)] == label_tick)
- && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
- return reg_last_set_sign_bit_copies[REGNO (x)];
-
- tem = get_last_value (x);
- if (tem != 0)
- return num_sign_bit_copies (tem, mode);
-
- if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
- return reg_sign_bit_copies[REGNO (x)];
- break;
-
- case MEM:
- #ifdef LOAD_EXTEND_OP
- /* Some RISC machines sign-extend all loads of smaller than a word. */
- if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
- return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
- #endif
- break;
-
- case CONST_INT:
- /* If the constant is negative, take its 1's complement and remask.
- Then see how many zero bits we have. */
- nonzero = INTVAL (x) & GET_MODE_MASK (mode);
- if (bitwidth <= HOST_BITS_PER_WIDE_INT
- && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- nonzero = (~ nonzero) & GET_MODE_MASK (mode);
-
- return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
-
- case SUBREG:
- /* If this is a SUBREG for a promoted object that is sign-extended
- and we are looking at it in a wider mode, we know that at least the
- high-order bits are known to be sign bit copies. */
-
- if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
- return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
- num_sign_bit_copies (SUBREG_REG (x), mode));
-
- /* For a smaller object, just ignore the high bits. */
- if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
- {
- num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
- return MAX (1, (num0
- - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- - bitwidth)));
- }
-
- #ifdef WORD_REGISTER_OPERATIONS
- /* For paradoxical SUBREGs on machines where all register operations
- affect the entire register, just look inside. Note that we are
- passing MODE to the recursive call, so the number of sign bit copies
- will remain relative to that mode, not the inner mode. */
-
- if (GET_MODE_SIZE (GET_MODE (x))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- return num_sign_bit_copies (SUBREG_REG (x), mode);
- #endif
- break;
-
- case SIGN_EXTRACT:
- if (GET_CODE (XEXP (x, 1)) == CONST_INT)
- return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
- break;
-
- case SIGN_EXTEND:
- return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
-
- case TRUNCATE:
- /* For a smaller object, just ignore the high bits. */
- num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
- return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- - bitwidth)));
-
- case NOT:
- return num_sign_bit_copies (XEXP (x, 0), mode);
-
- case ROTATE: case ROTATERT:
- /* If we are rotating left by a number of bits less than the number
- of sign bit copies, we can just subtract that amount from the
- number. */
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
- {
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
- : bitwidth - INTVAL (XEXP (x, 1))));
- }
- break;
-
- case NEG:
- /* In general, this subtracts one sign bit copy. But if the value
- is known to be positive, the number of sign bit copies is the
- same as that of the input. Finally, if the input has just one bit
- that might be nonzero, all the bits are copies of the sign bit. */
- nonzero = nonzero_bits (XEXP (x, 0), mode);
- if (nonzero == 1)
- return bitwidth;
-
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- if (num0 > 1
- && bitwidth <= HOST_BITS_PER_WIDE_INT
- && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
- num0--;
-
- return num0;
-
- case IOR: case AND: case XOR:
- case SMIN: case SMAX: case UMIN: case UMAX:
- /* Logical operations will preserve the number of sign-bit copies.
- MIN and MAX operations always return one of the operands. */
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- num1 = num_sign_bit_copies (XEXP (x, 1), mode);
- return MIN (num0, num1);
-
- case PLUS: case MINUS:
- /* For addition and subtraction, we can have a 1-bit carry. However,
- if we are subtracting 1 from a positive number, there will not
- be such a carry. Furthermore, if the positive number is known to
- be 0 or 1, we know the result is either -1 or 0. */
-
- if (code == PLUS && XEXP (x, 1) == constm1_rtx
- && bitwidth <= HOST_BITS_PER_WIDE_INT)
- {
- nonzero = nonzero_bits (XEXP (x, 0), mode);
- if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
- return (nonzero == 1 || nonzero == 0 ? bitwidth
- : bitwidth - floor_log2 (nonzero) - 1);
- }
-
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- num1 = num_sign_bit_copies (XEXP (x, 1), mode);
- return MAX (1, MIN (num0, num1) - 1);
-
- case MULT:
- /* The number of bits of the product is the sum of the number of
- bits of both terms. However, unless one of the terms if known
- to be positive, we must allow for an additional bit since negating
- a negative number can remove one sign bit copy. */
-
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- num1 = num_sign_bit_copies (XEXP (x, 1), mode);
-
- result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
- if (result > 0
- && bitwidth <= HOST_BITS_PER_WIDE_INT
- && ((nonzero_bits (XEXP (x, 0), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- && (nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0))
- result--;
-
- return MAX (1, result);
-
- case UDIV:
- /* The result must be <= the first operand. */
- return num_sign_bit_copies (XEXP (x, 0), mode);
-
- case UMOD:
- /* The result must be <= the scond operand. */
- return num_sign_bit_copies (XEXP (x, 1), mode);
-
- case DIV:
- /* Similar to unsigned division, except that we have to worry about
- the case where the divisor is negative, in which case we have
- to add 1. */
- result = num_sign_bit_copies (XEXP (x, 0), mode);
- if (result > 1
- && bitwidth <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- result --;
-
- return result;
-
- case MOD:
- result = num_sign_bit_copies (XEXP (x, 1), mode);
- if (result > 1
- && bitwidth <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (x, 1), mode)
- & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
- result --;
-
- return result;
-
- case ASHIFTRT:
- /* Shifts by a constant add to the number of bits equal to the
- sign bit. */
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- if (GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) > 0)
- num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
-
- return num0;
-
- case ASHIFT:
- case LSHIFT:
- /* Left shifts destroy copies. */
- if (GET_CODE (XEXP (x, 1)) != CONST_INT
- || INTVAL (XEXP (x, 1)) < 0
- || INTVAL (XEXP (x, 1)) >= bitwidth)
- return 1;
-
- num0 = num_sign_bit_copies (XEXP (x, 0), mode);
- return MAX (1, num0 - INTVAL (XEXP (x, 1)));
-
- case IF_THEN_ELSE:
- num0 = num_sign_bit_copies (XEXP (x, 1), mode);
- num1 = num_sign_bit_copies (XEXP (x, 2), mode);
- return MIN (num0, num1);
-
- #if STORE_FLAG_VALUE == -1
- case EQ: case NE: case GE: case GT: case LE: case LT:
- case GEU: case GTU: case LEU: case LTU:
- return bitwidth;
- #endif
- }
-
- /* If we haven't been able to figure it out by one of the above rules,
- see if some of the high-order bits are known to be zero. If so,
- count those bits and return one less than that amount. If we can't
- safely compute the mask for this mode, always return BITWIDTH. */
-
- if (bitwidth > HOST_BITS_PER_WIDE_INT)
- return 1;
-
- nonzero = nonzero_bits (x, mode);
- return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
- ? 1 : bitwidth - floor_log2 (nonzero) - 1);
- }
-
- /* Return the number of "extended" bits there are in X, when interpreted
- as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
- unsigned quantities, this is the number of high-order zero bits.
- For signed quantities, this is the number of copies of the sign bit
- minus 1. In both case, this function returns the number of "spare"
- bits. For example, if two quantities for which this function returns
- at least 1 are added, the addition is known not to overflow.
-
- This function will always return 0 unless called during combine, which
- implies that it must be called from a define_split. */
-
- int
- extended_count (x, mode, unsignedp)
- rtx x;
- enum machine_mode mode;
- int unsignedp;
- {
- if (nonzero_sign_valid == 0)
- return 0;
-
- return (unsignedp
- ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
- && (GET_MODE_BITSIZE (mode) - 1
- - floor_log2 (nonzero_bits (x, mode))))
- : num_sign_bit_copies (x, mode) - 1);
- }
-
- /* This function is called from `simplify_shift_const' to merge two
- outer operations. Specifically, we have already found that we need
- to perform operation *POP0 with constant *PCONST0 at the outermost
- position. We would now like to also perform OP1 with constant CONST1
- (with *POP0 being done last).
-
- Return 1 if we can do the operation and update *POP0 and *PCONST0 with
- the resulting operation. *PCOMP_P is set to 1 if we would need to
- complement the innermost operand, otherwise it is unchanged.
-
- MODE is the mode in which the operation will be done. No bits outside
- the width of this mode matter. It is assumed that the width of this mode
- is smaller than or equal to HOST_BITS_PER_WIDE_INT.
-
- If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
- IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
- result is simply *PCONST0.
-
- If the resulting operation cannot be expressed as one operation, we
- return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
-
- static int
- merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
- enum rtx_code *pop0;
- HOST_WIDE_INT *pconst0;
- enum rtx_code op1;
- HOST_WIDE_INT const1;
- enum machine_mode mode;
- int *pcomp_p;
- {
- enum rtx_code op0 = *pop0;
- HOST_WIDE_INT const0 = *pconst0;
-
- const0 &= GET_MODE_MASK (mode);
- const1 &= GET_MODE_MASK (mode);
-
- /* If OP0 is an AND, clear unimportant bits in CONST1. */
- if (op0 == AND)
- const1 &= const0;
-
- /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
- if OP0 is SET. */
-
- if (op1 == NIL || op0 == SET)
- return 1;
-
- else if (op0 == NIL)
- op0 = op1, const0 = const1;
-
- else if (op0 == op1)
- {
- switch (op0)
- {
- case AND:
- const0 &= const1;
- break;
- case IOR:
- const0 |= const1;
- break;
- case XOR:
- const0 ^= const1;
- break;
- case PLUS:
- const0 += const1;
- break;
- case NEG:
- op0 = NIL;
- break;
- }
- }
-
- /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
- else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
- return 0;
-
- /* If the two constants aren't the same, we can't do anything. The
- remaining six cases can all be done. */
- else if (const0 != const1)
- return 0;
-
- else
- switch (op0)
- {
- case IOR:
- if (op1 == AND)
- /* (a & b) | b == b */
- op0 = SET;
- else /* op1 == XOR */
- /* (a ^ b) | b == a | b */
- ;
- break;
-
- case XOR:
- if (op1 == AND)
- /* (a & b) ^ b == (~a) & b */
- op0 = AND, *pcomp_p = 1;
- else /* op1 == IOR */
- /* (a | b) ^ b == a & ~b */
- op0 = AND, *pconst0 = ~ const0;
- break;
-
- case AND:
- if (op1 == IOR)
- /* (a | b) & b == b */
- op0 = SET;
- else /* op1 == XOR */
- /* (a ^ b) & b) == (~a) & b */
- *pcomp_p = 1;
- break;
- }
-
- /* Check for NO-OP cases. */
- const0 &= GET_MODE_MASK (mode);
- if (const0 == 0
- && (op0 == IOR || op0 == XOR || op0 == PLUS))
- op0 = NIL;
- else if (const0 == 0 && op0 == AND)
- op0 = SET;
- else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
- op0 = NIL;
-
- *pop0 = op0;
- *pconst0 = const0;
-
- return 1;
- }
-
- /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
- The result of the shift is RESULT_MODE. X, if non-zero, is an expression
- that we started with.
-
- The shift is normally computed in the widest mode we find in VAROP, as
- long as it isn't a different number of words than RESULT_MODE. Exceptions
- are ASHIFTRT and ROTATE, which are always done in their original mode, */
-
- static rtx
- simplify_shift_const (x, code, result_mode, varop, count)
- rtx x;
- enum rtx_code code;
- enum machine_mode result_mode;
- rtx varop;
- int count;
- {
- enum rtx_code orig_code = code;
- int orig_count = count;
- enum machine_mode mode = result_mode;
- enum machine_mode shift_mode, tmode;
- int mode_words
- = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
- /* We form (outer_op (code varop count) (outer_const)). */
- enum rtx_code outer_op = NIL;
- HOST_WIDE_INT outer_const = 0;
- rtx const_rtx;
- int complement_p = 0;
- rtx new;
-
- /* If we were given an invalid count, don't do anything except exactly
- what was requested. */
-
- if (count < 0 || count > GET_MODE_BITSIZE (mode))
- {
- if (x)
- return x;
-
- return gen_rtx (code, mode, varop, GEN_INT (count));
- }
-
- /* Unless one of the branches of the `if' in this loop does a `continue',
- we will `break' the loop after the `if'. */
-
- while (count != 0)
- {
- /* If we have an operand of (clobber (const_int 0)), just return that
- value. */
- if (GET_CODE (varop) == CLOBBER)
- return varop;
-
- /* If we discovered we had to complement VAROP, leave. Making a NOT
- here would cause an infinite loop. */
- if (complement_p)
- break;
-
- /* Convert ROTATETRT to ROTATE. */
- if (code == ROTATERT)
- code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
-
- /* Canonicalize LSHIFT to ASHIFT. */
- if (code == LSHIFT)
- code = ASHIFT;
-
- /* We need to determine what mode we will do the shift in. If the
- shift is a ASHIFTRT or ROTATE, we must always do it in the mode it
- was originally done in. Otherwise, we can do it in MODE, the widest
- mode encountered. */
- shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
-
- /* Handle cases where the count is greater than the size of the mode
- minus 1. For ASHIFT, use the size minus one as the count (this can
- occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
- take the count modulo the size. For other shifts, the result is
- zero.
-
- Since these shifts are being produced by the compiler by combining
- multiple operations, each of which are defined, we know what the
- result is supposed to be. */
-
- if (count > GET_MODE_BITSIZE (shift_mode) - 1)
- {
- if (code == ASHIFTRT)
- count = GET_MODE_BITSIZE (shift_mode) - 1;
- else if (code == ROTATE || code == ROTATERT)
- count %= GET_MODE_BITSIZE (shift_mode);
- else
- {
- /* We can't simply return zero because there may be an
- outer op. */
- varop = const0_rtx;
- count = 0;
- break;
- }
- }
-
- /* Negative counts are invalid and should not have been made (a
- programmer-specified negative count should have been handled
- above). */
- else if (count < 0)
- abort ();
-
- /* An arithmetic right shift of a quantity known to be -1 or 0
- is a no-op. */
- if (code == ASHIFTRT
- && (num_sign_bit_copies (varop, shift_mode)
- == GET_MODE_BITSIZE (shift_mode)))
- {
- count = 0;
- break;
- }
-
- /* If we are doing an arithmetic right shift and discarding all but
- the sign bit copies, this is equivalent to doing a shift by the
- bitsize minus one. Convert it into that shift because it will often
- allow other simplifications. */
-
- if (code == ASHIFTRT
- && (count + num_sign_bit_copies (varop, shift_mode)
- >= GET_MODE_BITSIZE (shift_mode)))
- count = GET_MODE_BITSIZE (shift_mode) - 1;
-
- /* We simplify the tests below and elsewhere by converting
- ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
- `make_compound_operation' will convert it to a ASHIFTRT for
- those machines (such as Vax) that don't have a LSHIFTRT. */
- if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
- && code == ASHIFTRT
- && ((nonzero_bits (varop, shift_mode)
- & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
- == 0))
- code = LSHIFTRT;
-
- switch (GET_CODE (varop))
- {
- case SIGN_EXTEND:
- case ZERO_EXTEND:
- case SIGN_EXTRACT:
- case ZERO_EXTRACT:
- new = expand_compound_operation (varop);
- if (new != varop)
- {
- varop = new;
- continue;
- }
- break;
-
- case MEM:
- /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
- minus the width of a smaller mode, we can do this with a
- SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
- if ((code == ASHIFTRT || code == LSHIFTRT)
- && ! mode_dependent_address_p (XEXP (varop, 0))
- && ! MEM_VOLATILE_P (varop)
- && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
- MODE_INT, 1)) != BLKmode)
- {
- #if BYTES_BIG_ENDIAN
- new = gen_rtx (MEM, tmode, XEXP (varop, 0));
- #else
- new = gen_rtx (MEM, tmode,
- plus_constant (XEXP (varop, 0),
- count / BITS_PER_UNIT));
- RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
- MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
- MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
- #endif
- varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
- : ZERO_EXTEND, mode, new);
- count = 0;
- continue;
- }
- break;
-
- case USE:
- /* Similar to the case above, except that we can only do this if
- the resulting mode is the same as that of the underlying
- MEM and adjust the address depending on the *bits* endianness
- because of the way that bit-field extract insns are defined. */
- if ((code == ASHIFTRT || code == LSHIFTRT)
- && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
- MODE_INT, 1)) != BLKmode
- && tmode == GET_MODE (XEXP (varop, 0)))
- {
- #if BITS_BIG_ENDIAN
- new = XEXP (varop, 0);
- #else
- new = copy_rtx (XEXP (varop, 0));
- SUBST (XEXP (new, 0),
- plus_constant (XEXP (new, 0),
- count / BITS_PER_UNIT));
- #endif
-
- varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
- : ZERO_EXTEND, mode, new);
- count = 0;
- continue;
- }
- break;
-
- case SUBREG:
- /* If VAROP is a SUBREG, strip it as long as the inner operand has
- the same number of words as what we've seen so far. Then store
- the widest mode in MODE. */
- if (subreg_lowpart_p (varop)
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
- > GET_MODE_SIZE (GET_MODE (varop)))
- && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
- == mode_words))
- {
- varop = SUBREG_REG (varop);
- if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
- mode = GET_MODE (varop);
- continue;
- }
- break;
-
- case MULT:
- /* Some machines use MULT instead of ASHIFT because MULT
- is cheaper. But it is still better on those machines to
- merge two shifts into one. */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
- {
- varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
- GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
- continue;
- }
- break;
-
- case UDIV:
- /* Similar, for when divides are cheaper. */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
- {
- varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
- GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
- continue;
- }
- break;
-
- case ASHIFTRT:
- /* If we are extracting just the sign bit of an arithmetic right
- shift, that shift is not needed. */
- if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
- {
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* ... fall through ... */
-
- case LSHIFTRT:
- case ASHIFT:
- case LSHIFT:
- case ROTATE:
- /* Here we have two nested shifts. The result is usually the
- AND of a new shift with a mask. We compute the result below. */
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && INTVAL (XEXP (varop, 1)) >= 0
- && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
- && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- {
- enum rtx_code first_code = GET_CODE (varop);
- int first_count = INTVAL (XEXP (varop, 1));
- unsigned HOST_WIDE_INT mask;
- rtx mask_rtx;
- rtx inner;
-
- if (first_code == LSHIFT)
- first_code = ASHIFT;
-
- /* We have one common special case. We can't do any merging if
- the inner code is an ASHIFTRT of a smaller mode. However, if
- we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
- with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
- we can convert it to
- (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
- This simplifies certain SIGN_EXTEND operations. */
- if (code == ASHIFT && first_code == ASHIFTRT
- && (GET_MODE_BITSIZE (result_mode)
- - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
- {
- /* C3 has the low-order C1 bits zero. */
-
- mask = (GET_MODE_MASK (mode)
- & ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
-
- varop = simplify_and_const_int (NULL_RTX, result_mode,
- XEXP (varop, 0), mask);
- varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
- varop, count);
- count = first_count;
- code = ASHIFTRT;
- continue;
- }
-
- /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
- than C1 high-order bits equal to the sign bit, we can convert
- this to either an ASHIFT or a ASHIFTRT depending on the
- two counts.
-
- We cannot do this if VAROP's mode is not SHIFT_MODE. */
-
- if (code == ASHIFTRT && first_code == ASHIFT
- && GET_MODE (varop) == shift_mode
- && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
- > first_count))
- {
- count -= first_count;
- if (count < 0)
- count = - count, code = ASHIFT;
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* There are some cases we can't do. If CODE is ASHIFTRT,
- we can only do this if FIRST_CODE is also ASHIFTRT.
-
- We can't do the case when CODE is ROTATE and FIRST_CODE is
- ASHIFTRT.
-
- If the mode of this shift is not the mode of the outer shift,
- we can't do this if either shift is ASHIFTRT or ROTATE.
-
- Finally, we can't do any of these if the mode is too wide
- unless the codes are the same.
-
- Handle the case where the shift codes are the same
- first. */
-
- if (code == first_code)
- {
- if (GET_MODE (varop) != result_mode
- && (code == ASHIFTRT || code == ROTATE))
- break;
-
- count += first_count;
- varop = XEXP (varop, 0);
- continue;
- }
-
- if (code == ASHIFTRT
- || (code == ROTATE && first_code == ASHIFTRT)
- || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
- || (GET_MODE (varop) != result_mode
- && (first_code == ASHIFTRT || first_code == ROTATE
- || code == ROTATE)))
- break;
-
- /* To compute the mask to apply after the shift, shift the
- nonzero bits of the inner shift the same way the
- outer shift will. */
-
- mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
-
- mask_rtx
- = simplify_binary_operation (code, result_mode, mask_rtx,
- GEN_INT (count));
-
- /* Give up if we can't compute an outer operation to use. */
- if (mask_rtx == 0
- || GET_CODE (mask_rtx) != CONST_INT
- || ! merge_outer_ops (&outer_op, &outer_const, AND,
- INTVAL (mask_rtx),
- result_mode, &complement_p))
- break;
-
- /* If the shifts are in the same direction, we add the
- counts. Otherwise, we subtract them. */
- if ((code == ASHIFTRT || code == LSHIFTRT)
- == (first_code == ASHIFTRT || first_code == LSHIFTRT))
- count += first_count;
- else
- count -= first_count;
-
- /* If COUNT is positive, the new shift is usually CODE,
- except for the two exceptions below, in which case it is
- FIRST_CODE. If the count is negative, FIRST_CODE should
- always be used */
- if (count > 0
- && ((first_code == ROTATE && code == ASHIFT)
- || (first_code == ASHIFTRT && code == LSHIFTRT)))
- code = first_code;
- else if (count < 0)
- code = first_code, count = - count;
-
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* If we have (A << B << C) for any shift, we can convert this to
- (A << C << B). This wins if A is a constant. Only try this if
- B is not a constant. */
-
- else if (GET_CODE (varop) == code
- && GET_CODE (XEXP (varop, 1)) != CONST_INT
- && 0 != (new
- = simplify_binary_operation (code, mode,
- XEXP (varop, 0),
- GEN_INT (count))))
- {
- varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
- count = 0;
- continue;
- }
- break;
-
- case NOT:
- /* Make this fit the case below. */
- varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
- GEN_INT (GET_MODE_MASK (mode)));
- continue;
-
- case IOR:
- case AND:
- case XOR:
- /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
- with C the size of VAROP - 1 and the shift is logical if
- STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
- we have an (le X 0) operation. If we have an arithmetic shift
- and STORE_FLAG_VALUE is 1 or we have a logical shift with
- STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
-
- if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
- && XEXP (XEXP (varop, 0), 1) == constm1_rtx
- && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && (code == LSHIFTRT || code == ASHIFTRT)
- && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
- && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
- {
- count = 0;
- varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
- const0_rtx);
-
- if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
- varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
-
- continue;
- }
-
- /* If we have (shift (logical)), move the logical to the outside
- to allow it to possibly combine with another logical and the
- shift to combine with another shift. This also canonicalizes to
- what a ZERO_EXTRACT looks like. Also, some machines have
- (and (shift)) insns. */
-
- if (GET_CODE (XEXP (varop, 1)) == CONST_INT
- && (new = simplify_binary_operation (code, result_mode,
- XEXP (varop, 1),
- GEN_INT (count))) != 0
- && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
- INTVAL (new), result_mode, &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* If we can't do that, try to simplify the shift in each arm of the
- logical expression, make a new logical expression, and apply
- the inverse distributive law. */
- {
- rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
- XEXP (varop, 0), count);
- rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
- XEXP (varop, 1), count);
-
- varop = gen_binary (GET_CODE (varop), GET_MODE (varop), lhs, rhs);
- varop = apply_distributive_law (varop);
-
- count = 0;
- }
- break;
-
- case EQ:
- /* convert (lshift (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
- says that the sign bit can be tested, FOO has mode MODE, C is
- GET_MODE_BITSIZE (MODE) - 1, and FOO has only the low-order bit
- may be nonzero. */
- if (code == LSHIFT
- && XEXP (varop, 1) == const0_rtx
- && GET_MODE (XEXP (varop, 0)) == result_mode
- && count == GET_MODE_BITSIZE (result_mode) - 1
- && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
- && ((STORE_FLAG_VALUE
- & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
- && nonzero_bits (XEXP (varop, 0), result_mode) == 1
- && merge_outer_ops (&outer_op, &outer_const, XOR,
- (HOST_WIDE_INT) 1, result_mode,
- &complement_p))
- {
- varop = XEXP (varop, 0);
- count = 0;
- continue;
- }
- break;
-
- case NEG:
- /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
- than the number of bits in the mode is equivalent to A. */
- if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
- && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
- {
- varop = XEXP (varop, 0);
- count = 0;
- continue;
- }
-
- /* NEG commutes with ASHIFT since it is multiplication. Move the
- NEG outside to allow shifts to combine. */
- if (code == ASHIFT
- && merge_outer_ops (&outer_op, &outer_const, NEG,
- (HOST_WIDE_INT) 0, result_mode,
- &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
- break;
-
- case PLUS:
- /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
- is one less than the number of bits in the mode is
- equivalent to (xor A 1). */
- if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
- && XEXP (varop, 1) == constm1_rtx
- && nonzero_bits (XEXP (varop, 0), result_mode) == 1
- && merge_outer_ops (&outer_op, &outer_const, XOR,
- (HOST_WIDE_INT) 1, result_mode,
- &complement_p))
- {
- count = 0;
- varop = XEXP (varop, 0);
- continue;
- }
-
- /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
- that might be nonzero in BAR are those being shifted out and those
- bits are known zero in FOO, we can replace the PLUS with FOO.
- Similarly in the other operand order. This code occurs when
- we are computing the size of a variable-size array. */
-
- if ((code == ASHIFTRT || code == LSHIFTRT)
- && count < HOST_BITS_PER_WIDE_INT
- && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
- && (nonzero_bits (XEXP (varop, 1), result_mode)
- & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
- {
- varop = XEXP (varop, 0);
- continue;
- }
- else if ((code == ASHIFTRT || code == LSHIFTRT)
- && count < HOST_BITS_PER_WIDE_INT
- && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
- && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
- >> count)
- && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
- & nonzero_bits (XEXP (varop, 1),
- result_mode)))
- {
- varop = XEXP (varop, 1);
- continue;
- }
-
- /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
- if (code == ASHIFT
- && GET_CODE (XEXP (varop, 1)) == CONST_INT
- && (new = simplify_binary_operation (ASHIFT, result_mode,
- XEXP (varop, 1),
- GEN_INT (count))) != 0
- && merge_outer_ops (&outer_op, &outer_const, PLUS,
- INTVAL (new), result_mode, &complement_p))
- {
- varop = XEXP (varop, 0);
- continue;
- }
- break;
-
- case MINUS:
- /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
- with C the size of VAROP - 1 and the shift is logical if
- STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
- we have a (gt X 0) operation. If the shift is arithmetic with
- STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
- we have a (neg (gt X 0)) operation. */
-
- if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
- && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
- && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
- && (code == LSHIFTRT || code == ASHIFTRT)
- && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
- && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
- {
- count = 0;
- varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
- const0_rtx);
-
- if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
- varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
-
- continue;
- }
- break;
- }
-
- break;
- }
-
- /* We need to determine what mode to do the shift in. If the shift is
- a ASHIFTRT or ROTATE, we must always do it in the mode it was originally
- done in. Otherwise, we can do it in MODE, the widest mode encountered.
- The code we care about is that of the shift that will actually be done,
- not the shift that was originally requested. */
- shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
-
- /* We have now finished analyzing the shift. The result should be
- a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
- OUTER_OP is non-NIL, it is an operation that needs to be applied
- to the result of the shift. OUTER_CONST is the relevant constant,
- but we must turn off all bits turned off in the shift.
-
- If we were passed a value for X, see if we can use any pieces of
- it. If not, make new rtx. */
-
- if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
- && GET_CODE (XEXP (x, 1)) == CONST_INT
- && INTVAL (XEXP (x, 1)) == count)
- const_rtx = XEXP (x, 1);
- else
- const_rtx = GEN_INT (count);
-
- if (x && GET_CODE (XEXP (x, 0)) == SUBREG
- && GET_MODE (XEXP (x, 0)) == shift_mode
- && SUBREG_REG (XEXP (x, 0)) == varop)
- varop = XEXP (x, 0);
- else if (GET_MODE (varop) != shift_mode)
- varop = gen_lowpart_for_combine (shift_mode, varop);
-
- /* If we can't make the SUBREG, try to return what we were given. */
- if (GET_CODE (varop) == CLOBBER)
- return x ? x : varop;
-
- new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
- if (new != 0)
- x = new;
- else
- {
- if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
- x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
-
- SUBST (XEXP (x, 0), varop);
- SUBST (XEXP (x, 1), const_rtx);
- }
-
- /* If we have an outer operation and we just made a shift, it is
- possible that we could have simplified the shift were it not
- for the outer operation. So try to do the simplification
- recursively. */
-
- if (outer_op != NIL && GET_CODE (x) == code
- && GET_CODE (XEXP (x, 1)) == CONST_INT)
- x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
- INTVAL (XEXP (x, 1)));
-
- /* If we were doing a LSHIFTRT in a wider mode than it was originally,
- turn off all the bits that the shift would have turned off. */
- if (orig_code == LSHIFTRT && result_mode != shift_mode)
- x = simplify_and_const_int (NULL_RTX, shift_mode, x,
- GET_MODE_MASK (result_mode) >> orig_count);
-
- /* Do the remainder of the processing in RESULT_MODE. */
- x = gen_lowpart_for_combine (result_mode, x);
-
- /* If COMPLEMENT_P is set, we have to complement X before doing the outer
- operation. */
- if (complement_p)
- x = gen_unary (NOT, result_mode, x);
-
- if (outer_op != NIL)
- {
- if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
- outer_const &= GET_MODE_MASK (result_mode);
-
- if (outer_op == AND)
- x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
- else if (outer_op == SET)
- /* This means that we have determined that the result is
- equivalent to a constant. This should be rare. */
- x = GEN_INT (outer_const);
- else if (GET_RTX_CLASS (outer_op) == '1')
- x = gen_unary (outer_op, result_mode, x);
- else
- x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
- }
-
- return x;
- }
-
- /* Like recog, but we receive the address of a pointer to a new pattern.
- We try to match the rtx that the pointer points to.
- If that fails, we may try to modify or replace the pattern,
- storing the replacement into the same pointer object.
-
- Modifications include deletion or addition of CLOBBERs.
-
- PNOTES is a pointer to a location where any REG_UNUSED notes added for
- the CLOBBERs are placed.
-
- The value is the final insn code from the pattern ultimately matched,
- or -1. */
-
- static int
- recog_for_combine (pnewpat, insn, pnotes)
- rtx *pnewpat;
- rtx insn;
- rtx *pnotes;
- {
- register rtx pat = *pnewpat;
- int insn_code_number;
- int num_clobbers_to_add = 0;
- int i;
- rtx notes = 0;
-
- /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
- we use to indicate that something didn't match. If we find such a
- thing, force rejection. */
- if (GET_CODE (pat) == PARALLEL)
- for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
- if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
- && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
- return -1;
-
- /* Is the result of combination a valid instruction? */
- insn_code_number = recog (pat, insn, &num_clobbers_to_add);
-
- /* If it isn't, there is the possibility that we previously had an insn
- that clobbered some register as a side effect, but the combined
- insn doesn't need to do that. So try once more without the clobbers
- unless this represents an ASM insn. */
-
- if (insn_code_number < 0 && ! check_asm_operands (pat)
- && GET_CODE (pat) == PARALLEL)
- {
- int pos;
-
- for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
- if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
- {
- if (i != pos)
- SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
- pos++;
- }
-
- SUBST_INT (XVECLEN (pat, 0), pos);
-
- if (pos == 1)
- pat = XVECEXP (pat, 0, 0);
-
- insn_code_number = recog (pat, insn, &num_clobbers_to_add);
- }
-
- /* If we had any clobbers to add, make a new pattern than contains
- them. Then check to make sure that all of them are dead. */
- if (num_clobbers_to_add)
- {
- rtx newpat = gen_rtx (PARALLEL, VOIDmode,
- gen_rtvec (GET_CODE (pat) == PARALLEL
- ? XVECLEN (pat, 0) + num_clobbers_to_add
- : num_clobbers_to_add + 1));
-
- if (GET_CODE (pat) == PARALLEL)
- for (i = 0; i < XVECLEN (pat, 0); i++)
- XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
- else
- XVECEXP (newpat, 0, 0) = pat;
-
- add_clobbers (newpat, insn_code_number);
-
- for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
- i < XVECLEN (newpat, 0); i++)
- {
- if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
- && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
- return -1;
- notes = gen_rtx (EXPR_LIST, REG_UNUSED,
- XEXP (XVECEXP (newpat, 0, i), 0), notes);
- }
- pat = newpat;
- }
-
- *pnewpat = pat;
- *pnotes = notes;
-
- return insn_code_number;
- }
-
- /* Like gen_lowpart but for use by combine. In combine it is not possible
- to create any new pseudoregs. However, it is safe to create
- invalid memory addresses, because combine will try to recognize
- them and all they will do is make the combine attempt fail.
-
- If for some reason this cannot do its job, an rtx
- (clobber (const_int 0)) is returned.
- An insn containing that will not be recognized. */
-
- #undef gen_lowpart
-
- static rtx
- gen_lowpart_for_combine (mode, x)
- enum machine_mode mode;
- register rtx x;
- {
- rtx result;
-
- if (GET_MODE (x) == mode)
- return x;
-
- /* We can only support MODE being wider than a word if X is a
- constant integer or has a mode the same size. */
-
- if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && ! ((GET_MODE (x) == VOIDmode
- && (GET_CODE (x) == CONST_INT
- || GET_CODE (x) == CONST_DOUBLE))
- || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
- return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
-
- /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
- won't know what to do. So we will strip off the SUBREG here and
- process normally. */
- if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
- {
- x = SUBREG_REG (x);
- if (GET_MODE (x) == mode)
- return x;
- }
-
- result = gen_lowpart_common (mode, x);
- if (result)
- return result;
-
- if (GET_CODE (x) == MEM)
- {
- register int offset = 0;
- rtx new;
-
- /* Refuse to work on a volatile memory ref or one with a mode-dependent
- address. */
- if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
- return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
-
- /* If we want to refer to something bigger than the original memref,
- generate a perverse subreg instead. That will force a reload
- of the original memref X. */
- if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
- return gen_rtx (SUBREG, mode, x, 0);
-
- #if WORDS_BIG_ENDIAN
- offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
- #endif
- #if BYTES_BIG_ENDIAN
- /* Adjust the address so that the address-after-the-data
- is unchanged. */
- offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
- #endif
- new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
- RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
- MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
- MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
- return new;
- }
-
- /* If X is a comparison operator, rewrite it in a new mode. This
- probably won't match, but may allow further simplifications. */
- else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
- return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
-
- /* If we couldn't simplify X any other way, just enclose it in a
- SUBREG. Normally, this SUBREG won't match, but some patterns may
- include an explicit SUBREG or we may simplify it further in combine. */
- else
- {
- int word = 0;
-
- if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
- word = ((GET_MODE_SIZE (GET_MODE (x))
- - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
- / UNITS_PER_WORD);
- return gen_rtx (SUBREG, mode, x, word);
- }
- }
-
- /* Make an rtx expression. This is a subset of gen_rtx and only supports
- expressions of 1, 2, or 3 operands, each of which are rtx expressions.
-
- If the identical expression was previously in the insn (in the undobuf),
- it will be returned. Only if it is not found will a new expression
- be made. */
-
- /*VARARGS2*/
- static rtx
- gen_rtx_combine (va_alist)
- va_dcl
- {
- va_list p;
- enum rtx_code code;
- enum machine_mode mode;
- int n_args;
- rtx args[3];
- int i, j;
- char *fmt;
- rtx rt;
-
- va_start (p);
- code = va_arg (p, enum rtx_code);
- mode = va_arg (p, enum machine_mode);
- n_args = GET_RTX_LENGTH (code);
- fmt = GET_RTX_FORMAT (code);
-
- if (n_args == 0 || n_args > 3)
- abort ();
-
- /* Get each arg and verify that it is supposed to be an expression. */
- for (j = 0; j < n_args; j++)
- {
- if (*fmt++ != 'e')
- abort ();
-
- args[j] = va_arg (p, rtx);
- }
-
- /* See if this is in undobuf. Be sure we don't use objects that came
- from another insn; this could produce circular rtl structures. */
-
- for (i = previous_num_undos; i < undobuf.num_undo; i++)
- if (!undobuf.undo[i].is_int
- && GET_CODE (undobuf.undo[i].old_contents.r) == code
- && GET_MODE (undobuf.undo[i].old_contents.r) == mode)
- {
- for (j = 0; j < n_args; j++)
- if (XEXP (undobuf.undo[i].old_contents.r, j) != args[j])
- break;
-
- if (j == n_args)
- return undobuf.undo[i].old_contents.r;
- }
-
- /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
- Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
- rt = rtx_alloc (code);
- PUT_MODE (rt, mode);
- XEXP (rt, 0) = args[0];
- if (n_args > 1)
- {
- XEXP (rt, 1) = args[1];
- if (n_args > 2)
- XEXP (rt, 2) = args[2];
- }
- return rt;
- }
-
- /* These routines make binary and unary operations by first seeing if they
- fold; if not, a new expression is allocated. */
-
- static rtx
- gen_binary (code, mode, op0, op1)
- enum rtx_code code;
- enum machine_mode mode;
- rtx op0, op1;
- {
- rtx result;
- rtx tem;
-
- if (GET_RTX_CLASS (code) == 'c'
- && (GET_CODE (op0) == CONST_INT
- || (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
- tem = op0, op0 = op1, op1 = tem;
-
- if (GET_RTX_CLASS (code) == '<')
- {
- enum machine_mode op_mode = GET_MODE (op0);
- if (op_mode == VOIDmode)
- op_mode = GET_MODE (op1);
- result = simplify_relational_operation (code, op_mode, op0, op1);
- }
- else
- result = simplify_binary_operation (code, mode, op0, op1);
-
- if (result)
- return result;
-
- /* Put complex operands first and constants second. */
- if (GET_RTX_CLASS (code) == 'c'
- && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
- || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
- && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
- || (GET_CODE (op0) == SUBREG
- && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
- && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
- return gen_rtx_combine (code, mode, op1, op0);
-
- return gen_rtx_combine (code, mode, op0, op1);
- }
-
- static rtx
- gen_unary (code, mode, op0)
- enum rtx_code code;
- enum machine_mode mode;
- rtx op0;
- {
- rtx result = simplify_unary_operation (code, mode, op0, mode);
-
- if (result)
- return result;
-
- return gen_rtx_combine (code, mode, op0);
- }
-
- /* Simplify a comparison between *POP0 and *POP1 where CODE is the
- comparison code that will be tested.
-
- The result is a possibly different comparison code to use. *POP0 and
- *POP1 may be updated.
-
- It is possible that we might detect that a comparison is either always
- true or always false. However, we do not perform general constant
- folding in combine, so this knowledge isn't useful. Such tautologies
- should have been detected earlier. Hence we ignore all such cases. */
-
- static enum rtx_code
- simplify_comparison (code, pop0, pop1)
- enum rtx_code code;
- rtx *pop0;
- rtx *pop1;
- {
- rtx op0 = *pop0;
- rtx op1 = *pop1;
- rtx tem, tem1;
- int i;
- enum machine_mode mode, tmode;
-
- /* Try a few ways of applying the same transformation to both operands. */
- while (1)
- {
- /* If both operands are the same constant shift, see if we can ignore the
- shift. We can if the shift is a rotate or if the bits shifted out of
- this shift are known to be zero for both inputs and if the type of
- comparison is compatible with the shift. */
- if (GET_CODE (op0) == GET_CODE (op1)
- && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
- && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
- || ((GET_CODE (op0) == LSHIFTRT
- || GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
- && (code != GT && code != LT && code != GE && code != LE))
- || (GET_CODE (op0) == ASHIFTRT
- && (code != GTU && code != LTU
- && code != GEU && code != GEU)))
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) >= 0
- && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
- && XEXP (op0, 1) == XEXP (op1, 1))
- {
- enum machine_mode mode = GET_MODE (op0);
- unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
- int shift_count = INTVAL (XEXP (op0, 1));
-
- if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
- mask &= (mask >> shift_count) << shift_count;
- else if (GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
- mask = (mask & (mask << shift_count)) >> shift_count;
-
- if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
- && (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
- op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
- else
- break;
- }
-
- /* If both operands are AND's of a paradoxical SUBREG by constant, the
- SUBREGs are of the same mode, and, in both cases, the AND would
- be redundant if the comparison was done in the narrower mode,
- do the comparison in the narrower mode (e.g., we are AND'ing with 1
- and the operand's possibly nonzero bits are 0xffffff01; in that case
- if we only care about QImode, we don't need the AND). This case
- occurs if the output mode of an scc insn is not SImode and
- STORE_FLAG_VALUE == 1 (e.g., the 386). */
-
- else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op1, 1)) == CONST_INT
- && GET_CODE (XEXP (op0, 0)) == SUBREG
- && GET_CODE (XEXP (op1, 0)) == SUBREG
- && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
- && (GET_MODE (SUBREG_REG (XEXP (op0, 0)))
- == GET_MODE (SUBREG_REG (XEXP (op1, 0))))
- && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
- <= HOST_BITS_PER_WIDE_INT)
- && (nonzero_bits (SUBREG_REG (XEXP (op0, 0)),
- GET_MODE (SUBREG_REG (XEXP (op0, 0))))
- & ~ INTVAL (XEXP (op0, 1))) == 0
- && (nonzero_bits (SUBREG_REG (XEXP (op1, 0)),
- GET_MODE (SUBREG_REG (XEXP (op1, 0))))
- & ~ INTVAL (XEXP (op1, 1))) == 0)
- {
- op0 = SUBREG_REG (XEXP (op0, 0));
- op1 = SUBREG_REG (XEXP (op1, 0));
-
- /* the resulting comparison is always unsigned since we masked off
- the original sign bit. */
- code = unsigned_condition (code);
- }
- else
- break;
- }
-
- /* If the first operand is a constant, swap the operands and adjust the
- comparison code appropriately. */
- if (CONSTANT_P (op0))
- {
- tem = op0, op0 = op1, op1 = tem;
- code = swap_condition (code);
- }
-
- /* We now enter a loop during which we will try to simplify the comparison.
- For the most part, we only are concerned with comparisons with zero,
- but some things may really be comparisons with zero but not start
- out looking that way. */
-
- while (GET_CODE (op1) == CONST_INT)
- {
- enum machine_mode mode = GET_MODE (op0);
- int mode_width = GET_MODE_BITSIZE (mode);
- unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
- int equality_comparison_p;
- int sign_bit_comparison_p;
- int unsigned_comparison_p;
- HOST_WIDE_INT const_op;
-
- /* We only want to handle integral modes. This catches VOIDmode,
- CCmode, and the floating-point modes. An exception is that we
- can handle VOIDmode if OP0 is a COMPARE or a comparison
- operation. */
-
- if (GET_MODE_CLASS (mode) != MODE_INT
- && ! (mode == VOIDmode
- && (GET_CODE (op0) == COMPARE
- || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
- break;
-
- /* Get the constant we are comparing against and turn off all bits
- not on in our mode. */
- const_op = INTVAL (op1);
- if (mode_width <= HOST_BITS_PER_WIDE_INT)
- const_op &= mask;
-
- /* If we are comparing against a constant power of two and the value
- being compared can only have that single bit nonzero (e.g., it was
- `and'ed with that bit), we can replace this with a comparison
- with zero. */
- if (const_op
- && (code == EQ || code == NE || code == GE || code == GEU
- || code == LT || code == LTU)
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && exact_log2 (const_op) >= 0
- && nonzero_bits (op0, mode) == const_op)
- {
- code = (code == EQ || code == GE || code == GEU ? NE : EQ);
- op1 = const0_rtx, const_op = 0;
- }
-
- /* Similarly, if we are comparing a value known to be either -1 or
- 0 with -1, change it to the opposite comparison against zero. */
-
- if (const_op == -1
- && (code == EQ || code == NE || code == GT || code == LE
- || code == GEU || code == LTU)
- && num_sign_bit_copies (op0, mode) == mode_width)
- {
- code = (code == EQ || code == LE || code == GEU ? NE : EQ);
- op1 = const0_rtx, const_op = 0;
- }
-
- /* Do some canonicalizations based on the comparison code. We prefer
- comparisons against zero and then prefer equality comparisons.
- If we can reduce the size of a constant, we will do that too. */
-
- switch (code)
- {
- case LT:
- /* < C is equivalent to <= (C - 1) */
- if (const_op > 0)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = LE;
- /* ... fall through to LE case below. */
- }
- else
- break;
-
- case LE:
- /* <= C is equivalent to < (C + 1); we do this for C < 0 */
- if (const_op < 0)
- {
- const_op += 1;
- op1 = GEN_INT (const_op);
- code = LT;
- }
-
- /* If we are doing a <= 0 comparison on a value known to have
- a zero sign bit, we can replace this with == 0. */
- else if (const_op == 0
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (op0, mode)
- & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
- code = EQ;
- break;
-
- case GE:
- /* >= C is equivalent to > (C - 1). */
- if (const_op > 0)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = GT;
- /* ... fall through to GT below. */
- }
- else
- break;
-
- case GT:
- /* > C is equivalent to >= (C + 1); we do this for C < 0*/
- if (const_op < 0)
- {
- const_op += 1;
- op1 = GEN_INT (const_op);
- code = GE;
- }
-
- /* If we are doing a > 0 comparison on a value known to have
- a zero sign bit, we can replace this with != 0. */
- else if (const_op == 0
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (op0, mode)
- & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
- code = NE;
- break;
-
- case LTU:
- /* < C is equivalent to <= (C - 1). */
- if (const_op > 0)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = LEU;
- /* ... fall through ... */
- }
-
- /* (unsigned) < 0x80000000 is equivalent to >= 0. */
- else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
- {
- const_op = 0, op1 = const0_rtx;
- code = GE;
- break;
- }
- else
- break;
-
- case LEU:
- /* unsigned <= 0 is equivalent to == 0 */
- if (const_op == 0)
- code = EQ;
-
- /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
- else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
- {
- const_op = 0, op1 = const0_rtx;
- code = GE;
- }
- break;
-
- case GEU:
- /* >= C is equivalent to < (C - 1). */
- if (const_op > 1)
- {
- const_op -= 1;
- op1 = GEN_INT (const_op);
- code = GTU;
- /* ... fall through ... */
- }
-
- /* (unsigned) >= 0x80000000 is equivalent to < 0. */
- else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
- {
- const_op = 0, op1 = const0_rtx;
- code = LT;
- }
- else
- break;
-
- case GTU:
- /* unsigned > 0 is equivalent to != 0 */
- if (const_op == 0)
- code = NE;
-
- /* (unsigned) > 0x7fffffff is equivalent to < 0. */
- else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
- {
- const_op = 0, op1 = const0_rtx;
- code = LT;
- }
- break;
- }
-
- /* Compute some predicates to simplify code below. */
-
- equality_comparison_p = (code == EQ || code == NE);
- sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
- unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
- || code == LEU);
-
- /* If this is a sign bit comparison and we can do arithmetic in
- MODE, say that we will only be needing the sign bit of OP0. */
- if (sign_bit_comparison_p
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- op0 = force_to_mode (op0, mode,
- ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (mode) - 1)),
- NULL_RTX, 0);
-
- /* Now try cases based on the opcode of OP0. If none of the cases
- does a "continue", we exit this loop immediately after the
- switch. */
-
- switch (GET_CODE (op0))
- {
- case ZERO_EXTRACT:
- /* If we are extracting a single bit from a variable position in
- a constant that has only a single bit set and are comparing it
- with zero, we can convert this into an equality comparison
- between the position and the location of the single bit. We can't
- do this if bit endian and we don't have an extzv since we then
- can't know what mode to use for the endianness adjustment. */
-
- #if ! BITS_BIG_ENDIAN || defined (HAVE_extzv)
- if (GET_CODE (XEXP (op0, 0)) == CONST_INT
- && XEXP (op0, 1) == const1_rtx
- && equality_comparison_p && const_op == 0
- && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
- {
- #if BITS_BIG_ENDIAN
- i = (GET_MODE_BITSIZE
- (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
- #endif
-
- op0 = XEXP (op0, 2);
- op1 = GEN_INT (i);
- const_op = i;
-
- /* Result is nonzero iff shift count is equal to I. */
- code = reverse_condition (code);
- continue;
- }
- #endif
-
- /* ... fall through ... */
-
- case SIGN_EXTRACT:
- tem = expand_compound_operation (op0);
- if (tem != op0)
- {
- op0 = tem;
- continue;
- }
- break;
-
- case NOT:
- /* If testing for equality, we can take the NOT of the constant. */
- if (equality_comparison_p
- && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* If just looking at the sign bit, reverse the sense of the
- comparison. */
- if (sign_bit_comparison_p)
- {
- op0 = XEXP (op0, 0);
- code = (code == GE ? LT : GE);
- continue;
- }
- break;
-
- case NEG:
- /* If testing for equality, we can take the NEG of the constant. */
- if (equality_comparison_p
- && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* The remaining cases only apply to comparisons with zero. */
- if (const_op != 0)
- break;
-
- /* When X is ABS or is known positive,
- (neg X) is < 0 if and only if X != 0. */
-
- if (sign_bit_comparison_p
- && (GET_CODE (XEXP (op0, 0)) == ABS
- || (mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (op0, 0), mode)
- & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
- {
- op0 = XEXP (op0, 0);
- code = (code == LT ? NE : EQ);
- continue;
- }
-
- /* If we have NEG of something whose two high-order bits are the
- same, we know that "(-a) < 0" is equivalent to "a > 0". */
- if (num_sign_bit_copies (op0, mode) >= 2)
- {
- op0 = XEXP (op0, 0);
- code = swap_condition (code);
- continue;
- }
- break;
-
- case ROTATE:
- /* If we are testing equality and our count is a constant, we
- can perform the inverse operation on our RHS. */
- if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && (tem = simplify_binary_operation (ROTATERT, mode,
- op1, XEXP (op0, 1))) != 0)
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* If we are doing a < 0 or >= 0 comparison, it means we are testing
- a particular bit. Convert it to an AND of a constant of that
- bit. This will be converted into a ZERO_EXTRACT. */
- if (const_op == 0 && sign_bit_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- {
- op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
- ((HOST_WIDE_INT) 1
- << (mode_width - 1
- - INTVAL (XEXP (op0, 1)))));
- code = (code == LT ? NE : EQ);
- continue;
- }
-
- /* ... fall through ... */
-
- case ABS:
- /* ABS is ignorable inside an equality comparison with zero. */
- if (const_op == 0 && equality_comparison_p)
- {
- op0 = XEXP (op0, 0);
- continue;
- }
- break;
-
-
- case SIGN_EXTEND:
- /* Can simplify (compare (zero/sign_extend FOO) CONST)
- to (compare FOO CONST) if CONST fits in FOO's mode and we
- are either testing inequality or have an unsigned comparison
- with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
- if (! unsigned_comparison_p
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && ((unsigned HOST_WIDE_INT) const_op
- < (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
- {
- op0 = XEXP (op0, 0);
- continue;
- }
- break;
-
- case SUBREG:
- /* Check for the case where we are comparing A - C1 with C2,
- both constants are smaller than 1/2 the maxium positive
- value in MODE, and the comparison is equality or unsigned.
- In that case, if A is either zero-extended to MODE or has
- sufficient sign bits so that the high-order bit in MODE
- is a copy of the sign in the inner mode, we can prove that it is
- safe to do the operation in the wider mode. This simplifies
- many range checks. */
-
- if (mode_width <= HOST_BITS_PER_WIDE_INT
- && subreg_lowpart_p (op0)
- && GET_CODE (SUBREG_REG (op0)) == PLUS
- && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
- && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
- && (- INTVAL (XEXP (SUBREG_REG (op0), 1))
- < GET_MODE_MASK (mode) / 2)
- && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
- && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
- GET_MODE (SUBREG_REG (op0)))
- & ~ GET_MODE_MASK (mode))
- || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
- GET_MODE (SUBREG_REG (op0)))
- > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
- - GET_MODE_BITSIZE (mode)))))
- {
- op0 = SUBREG_REG (op0);
- continue;
- }
-
- /* If the inner mode is narrower and we are extracting the low part,
- we can treat the SUBREG as if it were a ZERO_EXTEND. */
- if (subreg_lowpart_p (op0)
- && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
- /* Fall through */ ;
- else
- break;
-
- /* ... fall through ... */
-
- case ZERO_EXTEND:
- if ((unsigned_comparison_p || equality_comparison_p)
- && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
- <= HOST_BITS_PER_WIDE_INT)
- && ((unsigned HOST_WIDE_INT) const_op
- < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
- {
- op0 = XEXP (op0, 0);
- continue;
- }
- break;
-
- case PLUS:
- /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
- this for equality comparisons due to pathological cases involving
- overflows. */
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (MINUS, mode,
- op1, XEXP (op0, 1))))
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
- if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
- && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
- {
- op0 = XEXP (XEXP (op0, 0), 0);
- code = (code == LT ? EQ : NE);
- continue;
- }
- break;
-
- case MINUS:
- /* (eq (minus A B) C) -> (eq A (plus B C)) or
- (eq B (minus A C)), whichever simplifies. We can only do
- this for equality comparisons due to pathological cases involving
- overflows. */
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (PLUS, mode,
- XEXP (op0, 1), op1)))
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
-
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (MINUS, mode,
- XEXP (op0, 0), op1)))
- {
- op0 = XEXP (op0, 1);
- op1 = tem;
- continue;
- }
-
- /* The sign bit of (minus (ashiftrt X C) X), where C is the number
- of bits in X minus 1, is one iff X > 0. */
- if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
- && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
- && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
- {
- op0 = XEXP (op0, 1);
- code = (code == GE ? LE : GT);
- continue;
- }
- break;
-
- case XOR:
- /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
- if C is zero or B is a constant. */
- if (equality_comparison_p
- && 0 != (tem = simplify_binary_operation (XOR, mode,
- XEXP (op0, 1), op1)))
- {
- op0 = XEXP (op0, 0);
- op1 = tem;
- continue;
- }
- break;
-
- case EQ: case NE:
- case LT: case LTU: case LE: case LEU:
- case GT: case GTU: case GE: case GEU:
- /* We can't do anything if OP0 is a condition code value, rather
- than an actual data value. */
- if (const_op != 0
- #ifdef HAVE_cc0
- || XEXP (op0, 0) == cc0_rtx
- #endif
- || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
- break;
-
- /* Get the two operands being compared. */
- if (GET_CODE (XEXP (op0, 0)) == COMPARE)
- tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
- else
- tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
-
- /* Check for the cases where we simply want the result of the
- earlier test or the opposite of that result. */
- if (code == NE
- || (code == EQ && reversible_comparison_p (op0))
- || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
- && (STORE_FLAG_VALUE
- & (((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
- && (code == LT
- || (code == GE && reversible_comparison_p (op0)))))
- {
- code = (code == LT || code == NE
- ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
- op0 = tem, op1 = tem1;
- continue;
- }
- break;
-
- case IOR:
- /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
- iff X <= 0. */
- if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
- && XEXP (XEXP (op0, 0), 1) == constm1_rtx
- && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
- {
- op0 = XEXP (op0, 1);
- code = (code == GE ? GT : LE);
- continue;
- }
- break;
-
- case AND:
- /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
- will be converted to a ZERO_EXTRACT later. */
- if (const_op == 0 && equality_comparison_p
- && (GET_CODE (XEXP (op0, 0)) == ASHIFT
- || GET_CODE (XEXP (op0, 0)) == LSHIFT)
- && XEXP (XEXP (op0, 0), 0) == const1_rtx)
- {
- op0 = simplify_and_const_int
- (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
- XEXP (op0, 1),
- XEXP (XEXP (op0, 0), 1)),
- (HOST_WIDE_INT) 1);
- continue;
- }
-
- /* If we are comparing (and (lshiftrt X C1) C2) for equality with
- zero and X is a comparison and C1 and C2 describe only bits set
- in STORE_FLAG_VALUE, we can compare with X. */
- if (const_op == 0 && equality_comparison_p
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
- && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
- && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
- && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
- {
- mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
- << INTVAL (XEXP (XEXP (op0, 0), 1)));
- if ((~ STORE_FLAG_VALUE & mask) == 0
- && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
- || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
- && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
- {
- op0 = XEXP (XEXP (op0, 0), 0);
- continue;
- }
- }
-
- /* If we are doing an equality comparison of an AND of a bit equal
- to the sign bit, replace this with a LT or GE comparison of
- the underlying value. */
- if (equality_comparison_p
- && const_op == 0
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
- == (HOST_WIDE_INT) 1 << (mode_width - 1)))
- {
- op0 = XEXP (op0, 0);
- code = (code == EQ ? GE : LT);
- continue;
- }
-
- /* If this AND operation is really a ZERO_EXTEND from a narrower
- mode, the constant fits within that mode, and this is either an
- equality or unsigned comparison, try to do this comparison in
- the narrower mode. */
- if ((equality_comparison_p || unsigned_comparison_p)
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
- & GET_MODE_MASK (mode))
- + 1)) >= 0
- && const_op >> i == 0
- && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
- {
- op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
- continue;
- }
- break;
-
- case ASHIFT:
- case LSHIFT:
- /* If we have (compare (xshift FOO N) (const_int C)) and
- the high order N bits of FOO (N+1 if an inequality comparison)
- are known to be zero, we can do this by comparing FOO with C
- shifted right N bits so long as the low-order N bits of C are
- zero. */
- if (GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) >= 0
- && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
- < HOST_BITS_PER_WIDE_INT)
- && ((const_op
- & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (op0, 0), mode)
- & ~ (mask >> (INTVAL (XEXP (op0, 1))
- + ! equality_comparison_p))) == 0)
- {
- const_op >>= INTVAL (XEXP (op0, 1));
- op1 = GEN_INT (const_op);
- op0 = XEXP (op0, 0);
- continue;
- }
-
- /* If we are doing a sign bit comparison, it means we are testing
- a particular bit. Convert it to the appropriate AND. */
- if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT)
- {
- op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
- ((HOST_WIDE_INT) 1
- << (mode_width - 1
- - INTVAL (XEXP (op0, 1)))));
- code = (code == LT ? NE : EQ);
- continue;
- }
-
- /* If this an equality comparison with zero and we are shifting
- the low bit to the sign bit, we can convert this to an AND of the
- low-order bit. */
- if (const_op == 0 && equality_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) == mode_width - 1)
- {
- op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
- (HOST_WIDE_INT) 1);
- continue;
- }
- break;
-
- case ASHIFTRT:
- /* If this is an equality comparison with zero, we can do this
- as a logical shift, which might be much simpler. */
- if (equality_comparison_p && const_op == 0
- && GET_CODE (XEXP (op0, 1)) == CONST_INT)
- {
- op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
- XEXP (op0, 0),
- INTVAL (XEXP (op0, 1)));
- continue;
- }
-
- /* If OP0 is a sign extension and CODE is not an unsigned comparison,
- do the comparison in a narrower mode. */
- if (! unsigned_comparison_p
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && GET_CODE (XEXP (op0, 0)) == ASHIFT
- && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
- && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
- MODE_INT, 1)) != BLKmode
- && ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
- || ((unsigned HOST_WIDE_INT) - const_op
- <= GET_MODE_MASK (tmode))))
- {
- op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
- continue;
- }
-
- /* ... fall through ... */
- case LSHIFTRT:
- /* If we have (compare (xshiftrt FOO N) (const_int C)) and
- the low order N bits of FOO are known to be zero, we can do this
- by comparing FOO with C shifted left N bits so long as no
- overflow occurs. */
- if (GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) >= 0
- && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
- && mode_width <= HOST_BITS_PER_WIDE_INT
- && (nonzero_bits (XEXP (op0, 0), mode)
- & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
- && (const_op == 0
- || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
- < mode_width)))
- {
- const_op <<= INTVAL (XEXP (op0, 1));
- op1 = GEN_INT (const_op);
- op0 = XEXP (op0, 0);
- continue;
- }
-
- /* If we are using this shift to extract just the sign bit, we
- can replace this with an LT or GE comparison. */
- if (const_op == 0
- && (equality_comparison_p || sign_bit_comparison_p)
- && GET_CODE (XEXP (op0, 1)) == CONST_INT
- && INTVAL (XEXP (op0, 1)) == mode_width - 1)
- {
- op0 = XEXP (op0, 0);
- code = (code == NE || code == GT ? LT : GE);
- continue;
- }
- break;
- }
-
- break;
- }
-
- /* Now make any compound operations involved in this comparison. Then,
- check for an outmost SUBREG on OP0 that isn't doing anything or is
- paradoxical. The latter case can only occur when it is known that the
- "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
- We can never remove a SUBREG for a non-equality comparison because the
- sign bit is in a different place in the underlying object. */
-
- op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
- op1 = make_compound_operation (op1, SET);
-
- if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
- && (code == NE || code == EQ)
- && ((GET_MODE_SIZE (GET_MODE (op0))
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
- {
- op0 = SUBREG_REG (op0);
- op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
- }
-
- else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
- && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
- && (code == NE || code == EQ)
- && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
- <= HOST_BITS_PER_WIDE_INT)
- && (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
- & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
- && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
- op1),
- (nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
- & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
- op0 = SUBREG_REG (op0), op1 = tem;
-
- /* We now do the opposite procedure: Some machines don't have compare
- insns in all modes. If OP0's mode is an integer mode smaller than a
- word and we can't do a compare in that mode, see if there is a larger
- mode for which we can do the compare. There are a number of cases in
- which we can use the wider mode. */
-
- mode = GET_MODE (op0);
- if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
- && GET_MODE_SIZE (mode) < UNITS_PER_WORD
- && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
- for (tmode = GET_MODE_WIDER_MODE (mode);
- (tmode != VOIDmode
- && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
- tmode = GET_MODE_WIDER_MODE (tmode))
- if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
- {
- /* If the only nonzero bits in OP0 and OP1 are those in the
- narrower mode and this is an equality or unsigned comparison,
- we can use the wider mode. Similarly for sign-extended
- values and equality or signed comparisons. */
- if (((code == EQ || code == NE
- || code == GEU || code == GTU || code == LEU || code == LTU)
- && (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
- && (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
- || ((code == EQ || code == NE
- || code == GE || code == GT || code == LE || code == LT)
- && (num_sign_bit_copies (op0, tmode)
- > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
- && (num_sign_bit_copies (op1, tmode)
- > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
- {
- op0 = gen_lowpart_for_combine (tmode, op0);
- op1 = gen_lowpart_for_combine (tmode, op1);
- break;
- }
-
- /* If this is a test for negative, we can make an explicit
- test of the sign bit. */
-
- if (op1 == const0_rtx && (code == LT || code == GE)
- && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
- {
- op0 = gen_binary (AND, tmode,
- gen_lowpart_for_combine (tmode, op0),
- GEN_INT ((HOST_WIDE_INT) 1
- << (GET_MODE_BITSIZE (mode) - 1)));
- code = (code == LT) ? NE : EQ;
- break;
- }
- }
-
- *pop0 = op0;
- *pop1 = op1;
-
- return code;
- }
-
- /* Return 1 if we know that X, a comparison operation, is not operating
- on a floating-point value or is EQ or NE, meaning that we can safely
- reverse it. */
-
- static int
- reversible_comparison_p (x)
- rtx x;
- {
- if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
- || GET_CODE (x) == NE || GET_CODE (x) == EQ)
- return 1;
-
- switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
- {
- case MODE_INT:
- case MODE_PARTIAL_INT:
- case MODE_COMPLEX_INT:
- return 1;
-
- case MODE_CC:
- x = get_last_value (XEXP (x, 0));
- return (x && GET_CODE (x) == COMPARE
- && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
- }
-
- return 0;
- }
-
- /* Utility function for following routine. Called when X is part of a value
- being stored into reg_last_set_value. Sets reg_last_set_table_tick
- for each register mentioned. Similar to mention_regs in cse.c */
-
- static void
- update_table_tick (x)
- rtx x;
- {
- register enum rtx_code code = GET_CODE (x);
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
-
- if (code == REG)
- {
- int regno = REGNO (x);
- int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
-
- for (i = regno; i < endregno; i++)
- reg_last_set_table_tick[i] = label_tick;
-
- return;
- }
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- /* Note that we can't have an "E" in values stored; see
- get_last_value_validate. */
- if (fmt[i] == 'e')
- update_table_tick (XEXP (x, i));
- }
-
- /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
- are saying that the register is clobbered and we no longer know its
- value. If INSN is zero, don't update reg_last_set; this is only permitted
- with VALUE also zero and is used to invalidate the register. */
-
- static void
- record_value_for_reg (reg, insn, value)
- rtx reg;
- rtx insn;
- rtx value;
- {
- int regno = REGNO (reg);
- int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
- int i;
-
- /* If VALUE contains REG and we have a previous value for REG, substitute
- the previous value. */
- if (value && insn && reg_overlap_mentioned_p (reg, value))
- {
- rtx tem;
-
- /* Set things up so get_last_value is allowed to see anything set up to
- our insn. */
- subst_low_cuid = INSN_CUID (insn);
- tem = get_last_value (reg);
-
- if (tem)
- value = replace_rtx (copy_rtx (value), reg, tem);
- }
-
- /* For each register modified, show we don't know its value, that
- we don't know about its bitwise content, that its value has been
- updated, and that we don't know the location of the death of the
- register. */
- for (i = regno; i < endregno; i ++)
- {
- if (insn)
- reg_last_set[i] = insn;
- reg_last_set_value[i] = 0;
- reg_last_set_mode[i] = 0;
- reg_last_set_nonzero_bits[i] = 0;
- reg_last_set_sign_bit_copies[i] = 0;
- reg_last_death[i] = 0;
- }
-
- /* Mark registers that are being referenced in this value. */
- if (value)
- update_table_tick (value);
-
- /* Now update the status of each register being set.
- If someone is using this register in this block, set this register
- to invalid since we will get confused between the two lives in this
- basic block. This makes using this register always invalid. In cse, we
- scan the table to invalidate all entries using this register, but this
- is too much work for us. */
-
- for (i = regno; i < endregno; i++)
- {
- reg_last_set_label[i] = label_tick;
- if (value && reg_last_set_table_tick[i] == label_tick)
- reg_last_set_invalid[i] = 1;
- else
- reg_last_set_invalid[i] = 0;
- }
-
- /* The value being assigned might refer to X (like in "x++;"). In that
- case, we must replace it with (clobber (const_int 0)) to prevent
- infinite loops. */
- if (value && ! get_last_value_validate (&value,
- reg_last_set_label[regno], 0))
- {
- value = copy_rtx (value);
- if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
- value = 0;
- }
-
- /* For the main register being modified, update the value, the mode, the
- nonzero bits, and the number of sign bit copies. */
-
- reg_last_set_value[regno] = value;
-
- if (value)
- {
- subst_low_cuid = INSN_CUID (insn);
- reg_last_set_mode[regno] = GET_MODE (reg);
- reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
- reg_last_set_sign_bit_copies[regno]
- = num_sign_bit_copies (value, GET_MODE (reg));
- }
- }
-
- /* Used for communication between the following two routines. */
- static rtx record_dead_insn;
-
- /* Called via note_stores from record_dead_and_set_regs to handle one
- SET or CLOBBER in an insn. */
-
- static void
- record_dead_and_set_regs_1 (dest, setter)
- rtx dest, setter;
- {
- if (GET_CODE (dest) == REG)
- {
- /* If we are setting the whole register, we know its value. Otherwise
- show that we don't know the value. We can handle SUBREG in
- some cases. */
- if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
- record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
- else if (GET_CODE (setter) == SET
- && GET_CODE (SET_DEST (setter)) == SUBREG
- && SUBREG_REG (SET_DEST (setter)) == dest
- && subreg_lowpart_p (SET_DEST (setter)))
- record_value_for_reg (dest, record_dead_insn,
- gen_lowpart_for_combine (GET_MODE (dest),
- SET_SRC (setter)));
- else
- record_value_for_reg (dest, record_dead_insn, NULL_RTX);
- }
- else if (GET_CODE (dest) == MEM
- /* Ignore pushes, they clobber nothing. */
- && ! push_operand (dest, GET_MODE (dest)))
- mem_last_set = INSN_CUID (record_dead_insn);
- }
-
- /* Update the records of when each REG was most recently set or killed
- for the things done by INSN. This is the last thing done in processing
- INSN in the combiner loop.
-
- We update reg_last_set, reg_last_set_value, reg_last_set_mode,
- reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
- and also the similar information mem_last_set (which insn most recently
- modified memory) and last_call_cuid (which insn was the most recent
- subroutine call). */
-
- static void
- record_dead_and_set_regs (insn)
- rtx insn;
- {
- register rtx link;
- int i;
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- {
- if (REG_NOTE_KIND (link) == REG_DEAD
- && GET_CODE (XEXP (link, 0)) == REG)
- {
- int regno = REGNO (XEXP (link, 0));
- int endregno
- = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
- : 1);
-
- for (i = regno; i < endregno; i++)
- reg_last_death[i] = insn;
- }
- else if (REG_NOTE_KIND (link) == REG_INC)
- record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
- }
-
- if (GET_CODE (insn) == CALL_INSN)
- {
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i])
- {
- reg_last_set_value[i] = 0;
- reg_last_set_mode[i] = 0;
- reg_last_set_nonzero_bits[i] = 0;
- reg_last_set_sign_bit_copies[i] = 0;
- reg_last_death[i] = 0;
- }
-
- last_call_cuid = mem_last_set = INSN_CUID (insn);
- }
-
- record_dead_insn = insn;
- note_stores (PATTERN (insn), record_dead_and_set_regs_1);
- }
-
- /* Utility routine for the following function. Verify that all the registers
- mentioned in *LOC are valid when *LOC was part of a value set when
- label_tick == TICK. Return 0 if some are not.
-
- If REPLACE is non-zero, replace the invalid reference with
- (clobber (const_int 0)) and return 1. This replacement is useful because
- we often can get useful information about the form of a value (e.g., if
- it was produced by a shift that always produces -1 or 0) even though
- we don't know exactly what registers it was produced from. */
-
- static int
- get_last_value_validate (loc, tick, replace)
- rtx *loc;
- int tick;
- int replace;
- {
- rtx x = *loc;
- char *fmt = GET_RTX_FORMAT (GET_CODE (x));
- int len = GET_RTX_LENGTH (GET_CODE (x));
- int i;
-
- if (GET_CODE (x) == REG)
- {
- int regno = REGNO (x);
- int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
- int j;
-
- for (j = regno; j < endregno; j++)
- if (reg_last_set_invalid[j]
- /* If this is a pseudo-register that was only set once, it is
- always valid. */
- || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
- && reg_last_set_label[j] > tick))
- {
- if (replace)
- *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
- return replace;
- }
-
- return 1;
- }
-
- for (i = 0; i < len; i++)
- if ((fmt[i] == 'e'
- && get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
- /* Don't bother with these. They shouldn't occur anyway. */
- || fmt[i] == 'E')
- return 0;
-
- /* If we haven't found a reason for it to be invalid, it is valid. */
- return 1;
- }
-
- /* Get the last value assigned to X, if known. Some registers
- in the value may be replaced with (clobber (const_int 0)) if their value
- is known longer known reliably. */
-
- static rtx
- get_last_value (x)
- rtx x;
- {
- int regno;
- rtx value;
-
- /* If this is a non-paradoxical SUBREG, get the value of its operand and
- then convert it to the desired mode. If this is a paradoxical SUBREG,
- we cannot predict what values the "extra" bits might have. */
- if (GET_CODE (x) == SUBREG
- && subreg_lowpart_p (x)
- && (GET_MODE_SIZE (GET_MODE (x))
- <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- && (value = get_last_value (SUBREG_REG (x))) != 0)
- return gen_lowpart_for_combine (GET_MODE (x), value);
-
- if (GET_CODE (x) != REG)
- return 0;
-
- regno = REGNO (x);
- value = reg_last_set_value[regno];
-
- /* If we don't have a value or if it isn't for this basic block, return 0. */
-
- if (value == 0
- || (reg_n_sets[regno] != 1
- && reg_last_set_label[regno] != label_tick))
- return 0;
-
- /* If the value was set in a later insn that the ones we are processing,
- we can't use it even if the register was only set once, but make a quick
- check to see if the previous insn set it to something. This is commonly
- the case when the same pseudo is used by repeated insns. */
-
- if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
- {
- rtx insn, set;
-
- /* If there is an insn that is supposed to be immediately
- in front of subst_insn, use it. */
- if (subst_prev_insn != 0)
- insn = subst_prev_insn;
- else
- for (insn = prev_nonnote_insn (subst_insn);
- insn && INSN_CUID (insn) >= subst_low_cuid;
- insn = prev_nonnote_insn (insn))
- ;
-
- if (insn
- && (set = single_set (insn)) != 0
- && rtx_equal_p (SET_DEST (set), x))
- {
- value = SET_SRC (set);
-
- /* Make sure that VALUE doesn't reference X. Replace any
- expliit references with a CLOBBER. If there are any remaining
- references (rare), don't use the value. */
-
- if (reg_mentioned_p (x, value))
- value = replace_rtx (copy_rtx (value), x,
- gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
-
- if (reg_overlap_mentioned_p (x, value))
- return 0;
- }
- else
- return 0;
- }
-
- /* If the value has all its registers valid, return it. */
- if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
- return value;
-
- /* Otherwise, make a copy and replace any invalid register with
- (clobber (const_int 0)). If that fails for some reason, return 0. */
-
- value = copy_rtx (value);
- if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
- return value;
-
- return 0;
- }
-
- /* Return nonzero if expression X refers to a REG or to memory
- that is set in an instruction more recent than FROM_CUID. */
-
- static int
- use_crosses_set_p (x, from_cuid)
- register rtx x;
- int from_cuid;
- {
- register char *fmt;
- register int i;
- register enum rtx_code code = GET_CODE (x);
-
- if (code == REG)
- {
- register int regno = REGNO (x);
- int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
-
- #ifdef PUSH_ROUNDING
- /* Don't allow uses of the stack pointer to be moved,
- because we don't know whether the move crosses a push insn. */
- if (regno == STACK_POINTER_REGNUM)
- return 1;
- #endif
- for (;regno < endreg; regno++)
- if (reg_last_set[regno]
- && INSN_CUID (reg_last_set[regno]) > from_cuid)
- return 1;
- return 0;
- }
-
- if (code == MEM && mem_last_set > from_cuid)
- return 1;
-
- fmt = GET_RTX_FORMAT (code);
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
- return 1;
- }
- else if (fmt[i] == 'e'
- && use_crosses_set_p (XEXP (x, i), from_cuid))
- return 1;
- }
- return 0;
- }
-
- /* Define three variables used for communication between the following
- routines. */
-
- static int reg_dead_regno, reg_dead_endregno;
- static int reg_dead_flag;
-
- /* Function called via note_stores from reg_dead_at_p.
-
- If DEST is within [reg_dead_rengno, reg_dead_endregno), set
- reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
-
- static void
- reg_dead_at_p_1 (dest, x)
- rtx dest;
- rtx x;
- {
- int regno, endregno;
-
- if (GET_CODE (dest) != REG)
- return;
-
- regno = REGNO (dest);
- endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
-
- if (reg_dead_endregno > regno && reg_dead_regno < endregno)
- reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
- }
-
- /* Return non-zero if REG is known to be dead at INSN.
-
- We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
- referencing REG, it is dead. If we hit a SET referencing REG, it is
- live. Otherwise, see if it is live or dead at the start of the basic
- block we are in. */
-
- static int
- reg_dead_at_p (reg, insn)
- rtx reg;
- rtx insn;
- {
- int block, i;
-
- /* Set variables for reg_dead_at_p_1. */
- reg_dead_regno = REGNO (reg);
- reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (reg_dead_regno,
- GET_MODE (reg))
- : 1);
-
- reg_dead_flag = 0;
-
- /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
- beginning of function. */
- for (; insn && GET_CODE (insn) != CODE_LABEL;
- insn = prev_nonnote_insn (insn))
- {
- note_stores (PATTERN (insn), reg_dead_at_p_1);
- if (reg_dead_flag)
- return reg_dead_flag == 1 ? 1 : 0;
-
- if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
- return 1;
- }
-
- /* Get the basic block number that we were in. */
- if (insn == 0)
- block = 0;
- else
- {
- for (block = 0; block < n_basic_blocks; block++)
- if (insn == basic_block_head[block])
- break;
-
- if (block == n_basic_blocks)
- return 0;
- }
-
- for (i = reg_dead_regno; i < reg_dead_endregno; i++)
- if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
- return 0;
-
- return 1;
- }
-
- /* Remove register number REGNO from the dead registers list of INSN.
-
- Return the note used to record the death, if there was one. */
-
- rtx
- remove_death (regno, insn)
- int regno;
- rtx insn;
- {
- register rtx note = find_regno_note (insn, REG_DEAD, regno);
-
- if (note)
- {
- reg_n_deaths[regno]--;
- remove_note (insn, note);
- }
-
- return note;
- }
-
- /* For each register (hardware or pseudo) used within expression X, if its
- death is in an instruction with cuid between FROM_CUID (inclusive) and
- TO_INSN (exclusive), put a REG_DEAD note for that register in the
- list headed by PNOTES.
-
- This is done when X is being merged by combination into TO_INSN. These
- notes will then be distributed as needed. */
-
- static void
- move_deaths (x, from_cuid, to_insn, pnotes)
- rtx x;
- int from_cuid;
- rtx to_insn;
- rtx *pnotes;
- {
- register char *fmt;
- register int len, i;
- register enum rtx_code code = GET_CODE (x);
-
- if (code == REG)
- {
- register int regno = REGNO (x);
- register rtx where_dead = reg_last_death[regno];
-
- if (where_dead && INSN_CUID (where_dead) >= from_cuid
- && INSN_CUID (where_dead) < INSN_CUID (to_insn))
- {
- rtx note = remove_death (regno, where_dead);
-
- /* It is possible for the call above to return 0. This can occur
- when reg_last_death points to I2 or I1 that we combined with.
- In that case make a new note.
-
- We must also check for the case where X is a hard register
- and NOTE is a death note for a range of hard registers
- including X. In that case, we must put REG_DEAD notes for
- the remaining registers in place of NOTE. */
-
- if (note != 0 && regno < FIRST_PSEUDO_REGISTER
- && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
- != GET_MODE_SIZE (GET_MODE (x))))
- {
- int deadregno = REGNO (XEXP (note, 0));
- int deadend
- = (deadregno + HARD_REGNO_NREGS (deadregno,
- GET_MODE (XEXP (note, 0))));
- int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
- int i;
-
- for (i = deadregno; i < deadend; i++)
- if (i < regno || i >= ourend)
- REG_NOTES (where_dead)
- = gen_rtx (EXPR_LIST, REG_DEAD,
- gen_rtx (REG, word_mode, i),
- REG_NOTES (where_dead));
- }
-
- if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
- {
- XEXP (note, 1) = *pnotes;
- *pnotes = note;
- }
- else
- *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
-
- reg_n_deaths[regno]++;
- }
-
- return;
- }
-
- else if (GET_CODE (x) == SET)
- {
- rtx dest = SET_DEST (x);
-
- move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
-
- /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
- that accesses one word of a multi-word item, some
- piece of everything register in the expression is used by
- this insn, so remove any old death. */
-
- if (GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART
- || (GET_CODE (dest) == SUBREG
- && (((GET_MODE_SIZE (GET_MODE (dest))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
- + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
- {
- move_deaths (dest, from_cuid, to_insn, pnotes);
- return;
- }
-
- /* If this is some other SUBREG, we know it replaces the entire
- value, so use that as the destination. */
- if (GET_CODE (dest) == SUBREG)
- dest = SUBREG_REG (dest);
-
- /* If this is a MEM, adjust deaths of anything used in the address.
- For a REG (the only other possibility), the entire value is
- being replaced so the old value is not used in this insn. */
-
- if (GET_CODE (dest) == MEM)
- move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
- return;
- }
-
- else if (GET_CODE (x) == CLOBBER)
- return;
-
- len = GET_RTX_LENGTH (code);
- fmt = GET_RTX_FORMAT (code);
-
- for (i = 0; i < len; i++)
- {
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
- }
- else if (fmt[i] == 'e')
- move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
- }
- }
-
- /* Return 1 if X is the target of a bit-field assignment in BODY, the
- pattern of an insn. X must be a REG. */
-
- static int
- reg_bitfield_target_p (x, body)
- rtx x;
- rtx body;
- {
- int i;
-
- if (GET_CODE (body) == SET)
- {
- rtx dest = SET_DEST (body);
- rtx target;
- int regno, tregno, endregno, endtregno;
-
- if (GET_CODE (dest) == ZERO_EXTRACT)
- target = XEXP (dest, 0);
- else if (GET_CODE (dest) == STRICT_LOW_PART)
- target = SUBREG_REG (XEXP (dest, 0));
- else
- return 0;
-
- if (GET_CODE (target) == SUBREG)
- target = SUBREG_REG (target);
-
- if (GET_CODE (target) != REG)
- return 0;
-
- tregno = REGNO (target), regno = REGNO (x);
- if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
- return target == x;
-
- endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
- endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
-
- return endregno > tregno && regno < endtregno;
- }
-
- else if (GET_CODE (body) == PARALLEL)
- for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
- if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
- return 1;
-
- return 0;
- }
-
- /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
- as appropriate. I3 and I2 are the insns resulting from the combination
- insns including FROM (I2 may be zero).
-
- ELIM_I2 and ELIM_I1 are either zero or registers that we know will
- not need REG_DEAD notes because they are being substituted for. This
- saves searching in the most common cases.
-
- Each note in the list is either ignored or placed on some insns, depending
- on the type of note. */
-
- static void
- distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
- rtx notes;
- rtx from_insn;
- rtx i3, i2;
- rtx elim_i2, elim_i1;
- {
- rtx note, next_note;
- rtx tem;
-
- for (note = notes; note; note = next_note)
- {
- rtx place = 0, place2 = 0;
-
- /* If this NOTE references a pseudo register, ensure it references
- the latest copy of that register. */
- if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
- && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
- XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
-
- next_note = XEXP (note, 1);
- switch (REG_NOTE_KIND (note))
- {
- case REG_UNUSED:
- /* If this note is from any insn other than i3, then we have no
- use for it, and must ignore it.
-
- Any clobbers for i3 may still exist, and so we must process
- REG_UNUSED notes from that insn.
-
- Any clobbers from i2 or i1 can only exist if they were added by
- recog_for_combine. In that case, recog_for_combine created the
- necessary REG_UNUSED notes. Trying to keep any original
- REG_UNUSED notes from these insns can cause incorrect output
- if it is for the same register as the original i3 dest.
- In that case, we will notice that the register is set in i3,
- and then add a REG_UNUSED note for the destination of i3, which
- is wrong. */
- if (from_insn != i3)
- break;
-
- /* If this register is set or clobbered in I3, put the note there
- unless there is one already. */
- else if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
- {
- if (! (GET_CODE (XEXP (note, 0)) == REG
- ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
- : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
- place = i3;
- }
- /* Otherwise, if this register is used by I3, then this register
- now dies here, so we must put a REG_DEAD note here unless there
- is one already. */
- else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
- && ! (GET_CODE (XEXP (note, 0)) == REG
- ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
- : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
- {
- PUT_REG_NOTE_KIND (note, REG_DEAD);
- place = i3;
- }
- break;
-
- case REG_EQUAL:
- case REG_EQUIV:
- case REG_NONNEG:
- /* These notes say something about results of an insn. We can
- only support them if they used to be on I3 in which case they
- remain on I3. Otherwise they are ignored.
-
- If the note refers to an expression that is not a constant, we
- must also ignore the note since we cannot tell whether the
- equivalence is still true. It might be possible to do
- slightly better than this (we only have a problem if I2DEST
- or I1DEST is present in the expression), but it doesn't
- seem worth the trouble. */
-
- if (from_insn == i3
- && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
- place = i3;
- break;
-
- case REG_INC:
- case REG_NO_CONFLICT:
- case REG_LABEL:
- /* These notes say something about how a register is used. They must
- be present on any use of the register in I2 or I3. */
- if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
- place = i3;
-
- if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
- {
- if (place)
- place2 = i2;
- else
- place = i2;
- }
- break;
-
- case REG_WAS_0:
- /* It is too much trouble to try to see if this note is still
- correct in all situations. It is better to simply delete it. */
- break;
-
- case REG_RETVAL:
- /* If the insn previously containing this note still exists,
- put it back where it was. Otherwise move it to the previous
- insn. Adjust the corresponding REG_LIBCALL note. */
- if (GET_CODE (from_insn) != NOTE)
- place = from_insn;
- else
- {
- tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
- place = prev_real_insn (from_insn);
- if (tem && place)
- XEXP (tem, 0) = place;
- }
- break;
-
- case REG_LIBCALL:
- /* This is handled similarly to REG_RETVAL. */
- if (GET_CODE (from_insn) != NOTE)
- place = from_insn;
- else
- {
- tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
- place = next_real_insn (from_insn);
- if (tem && place)
- XEXP (tem, 0) = place;
- }
- break;
-
- case REG_DEAD:
- /* If the register is used as an input in I3, it dies there.
- Similarly for I2, if it is non-zero and adjacent to I3.
-
- If the register is not used as an input in either I3 or I2
- and it is not one of the registers we were supposed to eliminate,
- there are two possibilities. We might have a non-adjacent I2
- or we might have somehow eliminated an additional register
- from a computation. For example, we might have had A & B where
- we discover that B will always be zero. In this case we will
- eliminate the reference to A.
-
- In both cases, we must search to see if we can find a previous
- use of A and put the death note there. */
-
- if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
- place = i3;
- else if (i2 != 0 && next_nonnote_insn (i2) == i3
- && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
- place = i2;
-
- if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
- break;
-
- /* If the register is used in both I2 and I3 and it dies in I3,
- we might have added another reference to it. If reg_n_refs
- was 2, bump it to 3. This has to be correct since the
- register must have been set somewhere. The reason this is
- done is because local-alloc.c treats 2 references as a
- special case. */
-
- if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
- && reg_n_refs[REGNO (XEXP (note, 0))]== 2
- && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
- reg_n_refs[REGNO (XEXP (note, 0))] = 3;
-
- if (place == 0)
- for (tem = prev_nonnote_insn (i3);
- tem && (GET_CODE (tem) == INSN
- || GET_CODE (tem) == CALL_INSN);
- tem = prev_nonnote_insn (tem))
- {
- /* If the register is being set at TEM, see if that is all
- TEM is doing. If so, delete TEM. Otherwise, make this
- into a REG_UNUSED note instead. */
- if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
- {
- rtx set = single_set (tem);
-
- /* Verify that it was the set, and not a clobber that
- modified the register. */
-
- if (set != 0 && ! side_effects_p (SET_SRC (set))
- && rtx_equal_p (XEXP (note, 0), SET_DEST (set)))
- {
- /* Move the notes and links of TEM elsewhere.
- This might delete other dead insns recursively.
- First set the pattern to something that won't use
- any register. */
-
- PATTERN (tem) = pc_rtx;
-
- distribute_notes (REG_NOTES (tem), tem, tem,
- NULL_RTX, NULL_RTX, NULL_RTX);
- distribute_links (LOG_LINKS (tem));
-
- PUT_CODE (tem, NOTE);
- NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (tem) = 0;
- }
- else
- {
- PUT_REG_NOTE_KIND (note, REG_UNUSED);
-
- /* If there isn't already a REG_UNUSED note, put one
- here. */
- if (! find_regno_note (tem, REG_UNUSED,
- REGNO (XEXP (note, 0))))
- place = tem;
- break;
- }
- }
- else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem)))
- {
- place = tem;
- break;
- }
- }
-
- /* If the register is set or already dead at PLACE, we needn't do
- anything with this note if it is still a REG_DEAD note.
-
- Note that we cannot use just `dead_or_set_p' here since we can
- convert an assignment to a register into a bit-field assignment.
- Therefore, we must also omit the note if the register is the
- target of a bitfield assignment. */
-
- if (place && REG_NOTE_KIND (note) == REG_DEAD)
- {
- int regno = REGNO (XEXP (note, 0));
-
- if (dead_or_set_p (place, XEXP (note, 0))
- || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
- {
- /* Unless the register previously died in PLACE, clear
- reg_last_death. [I no longer understand why this is
- being done.] */
- if (reg_last_death[regno] != place)
- reg_last_death[regno] = 0;
- place = 0;
- }
- else
- reg_last_death[regno] = place;
-
- /* If this is a death note for a hard reg that is occupying
- multiple registers, ensure that we are still using all
- parts of the object. If we find a piece of the object
- that is unused, we must add a USE for that piece before
- PLACE and put the appropriate REG_DEAD note on it.
-
- An alternative would be to put a REG_UNUSED for the pieces
- on the insn that set the register, but that can't be done if
- it is not in the same block. It is simpler, though less
- efficient, to add the USE insns. */
-
- if (place && regno < FIRST_PSEUDO_REGISTER
- && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
- {
- int endregno
- = regno + HARD_REGNO_NREGS (regno,
- GET_MODE (XEXP (note, 0)));
- int all_used = 1;
- int i;
-
- for (i = regno; i < endregno; i++)
- if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0))
- {
- rtx piece = gen_rtx (REG, word_mode, i);
- rtx p;
-
- /* See if we already placed a USE note for this
- register in front of PLACE. */
- for (p = place;
- GET_CODE (PREV_INSN (p)) == INSN
- && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
- p = PREV_INSN (p))
- if (rtx_equal_p (piece,
- XEXP (PATTERN (PREV_INSN (p)), 0)))
- {
- p = 0;
- break;
- }
-
- if (p)
- {
- rtx use_insn
- = emit_insn_before (gen_rtx (USE, VOIDmode,
- piece),
- p);
- REG_NOTES (use_insn)
- = gen_rtx (EXPR_LIST, REG_DEAD, piece,
- REG_NOTES (use_insn));
- }
-
- all_used = 0;
- }
-
- /* Check for the case where the register dying partially
- overlaps the register set by this insn. */
- if (all_used)
- for (i = regno; i < endregno; i++)
- if (dead_or_set_regno_p (place, i))
- {
- all_used = 0;
- break;
- }
-
- if (! all_used)
- {
- /* Put only REG_DEAD notes for pieces that are
- still used and that are not already dead or set. */
-
- for (i = regno; i < endregno; i++)
- {
- rtx piece = gen_rtx (REG, word_mode, i);
-
- if (reg_referenced_p (piece, PATTERN (place))
- && ! dead_or_set_p (place, piece)
- && ! reg_bitfield_target_p (piece,
- PATTERN (place)))
- REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
- piece,
- REG_NOTES (place));
- }
-
- place = 0;
- }
- }
- }
- break;
-
- default:
- /* Any other notes should not be present at this point in the
- compilation. */
- abort ();
- }
-
- if (place)
- {
- XEXP (note, 1) = REG_NOTES (place);
- REG_NOTES (place) = note;
- }
- else if ((REG_NOTE_KIND (note) == REG_DEAD
- || REG_NOTE_KIND (note) == REG_UNUSED)
- && GET_CODE (XEXP (note, 0)) == REG)
- reg_n_deaths[REGNO (XEXP (note, 0))]--;
-
- if (place2)
- {
- if ((REG_NOTE_KIND (note) == REG_DEAD
- || REG_NOTE_KIND (note) == REG_UNUSED)
- && GET_CODE (XEXP (note, 0)) == REG)
- reg_n_deaths[REGNO (XEXP (note, 0))]++;
-
- REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
- XEXP (note, 0), REG_NOTES (place2));
- }
- }
- }
-
- /* Similarly to above, distribute the LOG_LINKS that used to be present on
- I3, I2, and I1 to new locations. This is also called in one case to
- add a link pointing at I3 when I3's destination is changed. */
-
- static void
- distribute_links (links)
- rtx links;
- {
- rtx link, next_link;
-
- for (link = links; link; link = next_link)
- {
- rtx place = 0;
- rtx insn;
- rtx set, reg;
-
- next_link = XEXP (link, 1);
-
- /* If the insn that this link points to is a NOTE or isn't a single
- set, ignore it. In the latter case, it isn't clear what we
- can do other than ignore the link, since we can't tell which
- register it was for. Such links wouldn't be used by combine
- anyway.
-
- It is not possible for the destination of the target of the link to
- have been changed by combine. The only potential of this is if we
- replace I3, I2, and I1 by I3 and I2. But in that case the
- destination of I2 also remains unchanged. */
-
- if (GET_CODE (XEXP (link, 0)) == NOTE
- || (set = single_set (XEXP (link, 0))) == 0)
- continue;
-
- reg = SET_DEST (set);
- while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
- || GET_CODE (reg) == SIGN_EXTRACT
- || GET_CODE (reg) == STRICT_LOW_PART)
- reg = XEXP (reg, 0);
-
- /* A LOG_LINK is defined as being placed on the first insn that uses
- a register and points to the insn that sets the register. Start
- searching at the next insn after the target of the link and stop
- when we reach a set of the register or the end of the basic block.
-
- Note that this correctly handles the link that used to point from
- I3 to I2. Also note that not much searching is typically done here
- since most links don't point very far away. */
-
- for (insn = NEXT_INSN (XEXP (link, 0));
- (insn && (this_basic_block == n_basic_blocks - 1
- || basic_block_head[this_basic_block + 1] != insn));
- insn = NEXT_INSN (insn))
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && reg_overlap_mentioned_p (reg, PATTERN (insn)))
- {
- if (reg_referenced_p (reg, PATTERN (insn)))
- place = insn;
- break;
- }
-
- /* If we found a place to put the link, place it there unless there
- is already a link to the same insn as LINK at that point. */
-
- if (place)
- {
- rtx link2;
-
- for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
- if (XEXP (link2, 0) == XEXP (link, 0))
- break;
-
- if (link2 == 0)
- {
- XEXP (link, 1) = LOG_LINKS (place);
- LOG_LINKS (place) = link;
- }
- }
- }
- }
-
- void
- dump_combine_stats (file)
- FILE *file;
- {
- fprintf
- (file,
- ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
- combine_attempts, combine_merges, combine_extras, combine_successes);
- }
-
- void
- dump_combine_total_stats (file)
- FILE *file;
- {
- fprintf
- (file,
- "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
- total_attempts, total_merges, total_extras, total_successes);
- }
-