home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler for Intel 80386.
- Copyright (C) 1988, 1992 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* The purpose of this file is to define the characteristics of the i386,
- independent of assembler syntax or operating system.
-
- Three other files build on this one to describe a specific assembler syntax:
- bsd386.h, att386.h, and sun386.h.
-
- The actual tm.h file for a particular system should include
- this file, and then the file for the appropriate assembler syntax.
-
- Many macros that specify assembler syntax are omitted entirely from
- this file because they really belong in the files for particular
- assemblers. These include AS1, AS2, AS3, RP, IP, LPREFIX, L_SIZE,
- PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE,
- PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define I386 1
-
- /* Stubs for half-pic support if not OSF/1 reference platform. */
-
- #ifndef HALF_PIC_P
- #define HALF_PIC_P() 0
- #define HALF_PIC_NUMBER_PTRS 0
- #define HALF_PIC_NUMBER_REFS 0
- #define HALF_PIC_ENCODE(DECL)
- #define HALF_PIC_DECLARE(NAME)
- #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
- #define HALF_PIC_ADDRESS_P(X) 0
- #define HALF_PIC_PTR(X) X
- #define HALF_PIC_FINISH(STREAM)
- #endif
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* Macros used in the machine description to test the flags. */
-
- /* configure can arrage to make this 2, to force a 486. */
- #ifndef TARGET_CPU_DEFAULT
- #define TARGET_CPU_DEFAULT 0
- #endif
-
- /* Compile 80387 insns for floating point (not library calls). */
- #define TARGET_80387 (target_flags & 1)
- /* Compile code for an i486. */
- #define TARGET_486 (target_flags & 2)
- /* Compile using ret insn that pops args.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
- #define TARGET_RTD (target_flags & 8)
- /* Compile passing first two args in regs 0 and 1.
- This exists only to test compiler features that will
- be needed for RISC chips. It is not usable
- and is not intended to be usable on this cpu. */
- #define TARGET_REGPARM (target_flags & 020)
-
- /* Put uninitialized locals into bss, not data.
- Meaningful only on svr3. */
- #define TARGET_SVR3_SHLIB (target_flags & 040)
-
- /* Use IEEE floating point comparisons. These handle correctly the cases
- where the result of a comparison is unordered. Normally SIGFPE is
- generated in such cases, in which case this isn't needed. */
- #define TARGET_IEEE_FP (target_flags & 0100)
-
- /* Functions that return a floating point value may return that value
- in the 387 FPU or in 386 integer registers. If set, this flag causes
- the 387 to be used, which is compatible with most calling conventions. */
- #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & 0200)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { { "80387", 1}, \
- { "no-80387", -1}, \
- { "soft-float", -1}, \
- { "no-soft-float", 1}, \
- { "486", 2}, \
- { "no-486", -2}, \
- { "386", -2}, \
- { "rtd", 8}, \
- { "no-rtd", -8}, \
- { "regparm", 020}, \
- { "no-regparm", -020}, \
- { "svr3-shlib", 040}, \
- { "no-svr3-shlib", -040}, \
- { "ieee-fp", 0100}, \
- { "no-ieee-fp", -0100}, \
- { "fp-ret-in-387", 0200}, \
- { "no-fp-ret-in-387", -0200}, \
- SUBTARGET_SWITCHES \
- { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT}}
-
- /* This is meant to be redefined in the host dependent files */
- #define SUBTARGET_SWITCHES
-
- #define OVERRIDE_OPTIONS \
- { \
- SUBTARGET_OVERRIDE_OPTIONS \
- }
-
- /* This is meant to be redefined in the host dependent files */
- #define SUBTARGET_OVERRIDE_OPTIONS
-
- /* target machine storage layout */
-
- /* Define for XFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined. */
- #define LONG_DOUBLE_TYPE_SIZE 96
-
- /* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
- /* #define REAL_ARITHMETIC */
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the 80386. */
-
- #define BITS_BIG_ENDIAN 0
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is not true on the 80386. */
- #define BYTES_BIG_ENDIAN 0
-
- /* Define this if most significant word of a multiword number is the lowest
- numbered. */
- /* Not true for 80386 */
- #define WORDS_BIG_ENDIAN 0
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 80386, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 32
-
- /* Allocation boundary (in *bits*) for the code of a function.
- For i486, we get better performance by aligning to a cache
- line (i.e. 16 byte) boundary. */
- #define FUNCTION_BOUNDARY (TARGET_486 ? 128 : 32)
-
- /* Alignment of field after `int : 0' in a structure. */
-
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* Minimum size in bits of the largest boundary to which any
- and all fundamental data types supported by the hardware
- might need to be aligned. No data type wants to be aligned
- rounder than this. The i386 supports 64-bit floating point
- quantities, but these can be aligned on any 32-bit boundary. */
- #define BIGGEST_ALIGNMENT 32
-
- /* Set this non-zero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 0
-
- /* If bit field type is int, don't let it cross an int,
- and give entire struct the alignment of an int. */
- /* Required on the 386 since it doesn't have bitfield insns. */
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* Align loop starts for optimal branching. */
- #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
- ASM_OUTPUT_ALIGN (FILE, 2)
-
- /* This is how to align an instruction for optimal branching.
- On i486 we'll get better performance by aligning on a
- cache line (i.e. 16 byte) boundary. */
- #define ASM_OUTPUT_ALIGN_CODE(FILE) \
- ASM_OUTPUT_ALIGN ((FILE), (TARGET_486 ? 4 : 2))
-
- /* Standard register usage. */
-
- /* This processor has special stack-like registers. See reg-stack.c
- for details. */
-
- #define STACK_REGS
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- In the 80386 we give the 8 general purpose registers the numbers 0-7.
- We number the floating point registers 8-15.
- Note that registers 0-7 can be accessed as a short or int,
- while only 0-3 may be used with byte `mov' instructions.
-
- Reg 16 does not correspond to any hardware register, but instead
- appears in the RTL as an argument pointer prior to reload, and is
- eliminated during reloading in favor of either the stack or frame
- pointer. */
-
- #define FIRST_PSEUDO_REGISTER 17
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 80386, the stack pointer is such, as is the arg pointer. */
- #define FIXED_REGISTERS \
- /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
- { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
- #define CALL_USED_REGISTERS \
- /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7,arg*/ \
- { 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
-
- /* Macro to conditionally modify fixed_regs/call_used_regs. */
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- if (flag_pic) \
- { \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- } \
- if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
- { \
- int i; \
- HARD_REG_SET x; \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- Actually there are no two word move instructions for consecutive
- registers. And only registers 0-3 may have mov byte instructions
- applied to them.
- */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- (FP_REGNO_P (REGNO) ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 80386, the first 4 cpu registers can hold any mode
- while the floating point registers may hold only floating point.
- Make it clear that the fp regs could not hold a 16-byte float. */
-
- /* The casts to int placate a compiler on a microvax,
- for cross-compiler testing. */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) < 2 ? 1 \
- : (REGNO) < 4 ? 1 \
- : FP_REGNO_P (REGNO) \
- ? (((int) GET_MODE_CLASS (MODE) == (int) MODE_FLOAT \
- || (int) GET_MODE_CLASS (MODE) == (int) MODE_COMPLEX_FLOAT) \
- && GET_MODE_UNIT_SIZE (MODE) <= 12) \
- : (int) (MODE) != (int) QImode)
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
- #define MODES_TIEABLE_P(MODE1, MODE2) ((MODE1) == (MODE2))
-
- /* A C expression returning the cost of moving data from a register of class
- CLASS1 to one of CLASS2.
-
- On the i386, copying between floating-point and fixed-point
- registers is expensive. */
-
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
- || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2))) ? 10 \
- : 2)
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* on the 386 the pc register is %eip, and is not usable as a general
- register. The ordinary mov instructions won't work */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 7
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 6
-
- /* First floating point reg */
- #define FIRST_FLOAT_REG 8
-
- /* First & last stack-like regs */
- #define FIRST_STACK_REG FIRST_FLOAT_REG
- #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 16
-
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 2
-
- /* Register to hold the addressing base for position independent
- code access to data items. */
- #define PIC_OFFSET_TABLE_REGNUM 3
-
- /* Register in which address to store a structure value
- arrives in the function. On the 386, the prologue
- copies this from the stack to register %eax. */
- #define STRUCT_VALUE_INCOMING 0
-
- /* Place in which caller passes the structure value address.
- 0 means push the value on the stack like an argument. */
- #define STRUCT_VALUE 0
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union.
-
- It might seem that class BREG is unnecessary, since no useful 386
- opcode needs reg %ebx. But some systems pass args to the OS in ebx,
- and the "b" register constraint is useful in asms for syscalls. */
-
- enum reg_class
- {
- NO_REGS,
- AREG, DREG, CREG, BREG,
- Q_REGS, /* %eax %ebx %ecx %edx */
- SIREG, DIREG,
- INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
- GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
- FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
- FLOAT_REGS,
- ALL_REGS, LIM_REG_CLASSES
- };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- #define FLOAT_CLASS_P(CLASS) (reg_class_subset_p (CLASS, FLOAT_REGS))
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", \
- "AREG", "DREG", "CREG", "BREG", \
- "Q_REGS", \
- "SIREG", "DIREG", \
- "INDEX_REGS", \
- "GENERAL_REGS", \
- "FP_TOP_REG", "FP_SECOND_REG", \
- "FLOAT_REGS", \
- "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { 0, \
- 0x1, 0x2, 0x4, 0x8, /* AREG, DREG, CREG, BREG */ \
- 0xf, /* Q_REGS */ \
- 0x10, 0x20, /* SIREG, DIREG */ \
- 0x1007f, /* INDEX_REGS */ \
- 0x100ff, /* GENERAL_REGS */ \
- 0x0100, 0x0200, /* FP_TOP_REG, FP_SECOND_REG */ \
- 0xff00, /* FLOAT_REGS */ \
- 0x1ffff }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- extern enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
- #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
-
- /* When defined, the compiler allows registers explicitly used in the
- rtl to be used as spill registers but prevents the compiler from
- extending the lifetime of these registers. */
-
- #define SMALL_REGISTER_CLASSES
-
- #define QI_REG_P(X) \
- (REG_P (X) && REGNO (X) < 4)
- #define NON_QI_REG_P(X) \
- (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
-
- #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
- #define FP_REGNO_P(n) ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG)
-
- #define STACK_REG_P(xop) (REG_P (xop) && \
- REGNO (xop) >= FIRST_STACK_REG && \
- REGNO (xop) <= LAST_STACK_REG)
-
- #define NON_STACK_REG_P(xop) (REG_P (xop) && ! STACK_REG_P (xop))
-
- #define STACK_TOP_P(xop) (REG_P (xop) && REGNO (xop) == FIRST_STACK_REG)
-
- /* Try to maintain the accuracy of the death notes for regs satisfying the
- following. Important for stack like regs, to know when to pop. */
-
- /* #define PRESERVE_DEATH_INFO_REGNO_P(x) FP_REGNO_P(x) */
-
- /* 1 if register REGNO can magically overlap other regs.
- Note that nonzero values work only in very special circumstances. */
-
- /* #define OVERLAPPING_REGNO_P(REGNO) FP_REGNO_P (REGNO) */
-
- /* The class value for index registers, and the one for base regs. */
-
- #define INDEX_REG_CLASS INDEX_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'r' ? GENERAL_REGS : \
- (C) == 'q' ? Q_REGS : \
- (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FLOAT_REGS \
- : NO_REGS) : \
- (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_TOP_REG \
- : NO_REGS) : \
- (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
- ? FP_SECOND_REG \
- : NO_REGS) : \
- (C) == 'a' ? AREG : \
- (C) == 'b' ? BREG : \
- (C) == 'c' ? CREG : \
- (C) == 'd' ? DREG : \
- (C) == 'D' ? DIREG : \
- (C) == 'S' ? SIREG : NO_REGS)
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- I is for non-DImode shifts.
- J is for DImode shifts.
- K and L are for an `andsi' optimization.
- M is for shifts that can be executed by the "lea" opcode.
- */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 : \
- (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 : \
- (C) == 'K' ? (VALUE) == 0xff : \
- (C) == 'L' ? (VALUE) == 0xffff : \
- (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 : \
- 0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
- TARGET_387 isn't set, because the stack register converter may need to
- load 0.0 into the function value register. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? standard_80387_constant_p (VALUE) : 0)
-
- /* Place additional restrictions on the register class to use when it
- is necessary to be able to hold a value of mode MODE in a reload
- register for which class CLASS would ordinarily be used. */
-
- #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
- ((MODE) == QImode && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS) \
- ? Q_REGS : (CLASS))
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 80386 series, we prevent floating constants from being
- reloaded into floating registers (since no move-insn can do that)
- and we ensure that QImodes aren't reloaded into the esi or edi reg. */
-
- /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
- QImode must go into class Q_REGS.
- Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
- movdf to do mem-to-mem moves through integer regs. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode ? NO_REGS \
- : GET_MODE (X) == QImode && ! reg_class_subset_p (CLASS, Q_REGS) ? Q_REGS \
- : ((CLASS) == ALL_REGS \
- && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) ? GENERAL_REGS \
- : (CLASS))
-
- /* If we are copying between general and FP registers, we need a memory
- location. */
-
- #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
- ((FLOAT_CLASS_P (CLASS1) && ! FLOAT_CLASS_P (CLASS2)) \
- || (! FLOAT_CLASS_P (CLASS1) && FLOAT_CLASS_P (CLASS2)))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On the 80386, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- (FLOAT_CLASS_P (CLASS) ? 1 : \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On 386 pushw decrements by exactly 2 no matter what the position was.
- On the 386 there is no pushb; we use pushw instead, and this
- has the effect of rounding up to 2. */
-
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & (-2))
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 0
-
- /* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the 80386, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
- (TREE_CODE (FUNTYPE) == IDENTIFIER_NODE ? 0 \
- : (TARGET_RTD \
- && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
- || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
- == void_type_node))) ? (SIZE) \
- : (aggregate_value_p (TREE_TYPE (FUNTYPE))) ? GET_MODE_SIZE (Pmode) : 0)
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), \
- VALUE_REGNO (TYPE_MODE (VALTYPE)))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, VALUE_REGNO (MODE))
-
- /* Define the size of the result block used for communication between
- untyped_call and untyped_return. The block contains a DImode value
- followed by the block used by fnsave and frstor. */
-
- #define APPLY_RESULT_SIZE (8+108)
-
- /* 1 if N is a possible register number for function argument passing.
- On the 80386, no registers are used in this way.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the 80386, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the 80386, the offset starts at 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
-
- /* On the 80386 all args are pushed, except if -mregparm is specified
- then the first two words of arguments are passed in EAX, EDX.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8 \
- && 8 < ((CUM) + ((MODE) == BLKmode \
- ? int_size_in_bytes (TYPE) \
- : GET_MODE_SIZE (MODE)))) \
- ? 2 - (CUM) / 4 : 0)
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- function_prologue (FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- { \
- if (flag_pic) \
- { \
- fprintf (FILE, "\tleal %sP%d@GOTOFF(%%ebx),%%edx\n", \
- LPREFIX, (LABELNO)); \
- fprintf (FILE, "\tcall *_mcount@GOT(%%ebx)\n"); \
- } \
- else \
- { \
- fprintf (FILE, "\tmovl $%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
- fprintf (FILE, "\tcall _mcount\n"); \
- } \
- }
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
- /* Note on the 386 it might be more efficient not to define this since
- we have to restore it ourselves from the frame pointer, in order to
- use pop */
-
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning.
-
- If the last non-note insn in the function is a BARRIER, then there
- is no need to emit a function prologue, because control does not fall
- off the end. This happens if the function ends in an "exit" call, or
- if a `return' insn is emitted directly into the function. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- do { \
- rtx last = get_last_insn (); \
- if (last && GET_CODE (last) == NOTE) \
- last = prev_nonnote_insn (last); \
- if (! last || GET_CODE (last) != BARRIER) \
- function_epilogue (FILE, SIZE); \
- } while (0)
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
- /* On the 386, the trampoline contains three instructions:
- mov #STATIC,ecx
- mov #FUNCTION,eax
- jmp @eax */
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb9)); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xb8)); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xff)); \
- ASM_OUTPUT_CHAR (FILE, GEN_INT (0xe0)); \
- }
-
- /* Length in units of the trampoline for entering a nested function. */
-
- #define TRAMPOLINE_SIZE 12
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 1)), CXT); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 6)), FNADDR); \
- }
-
- /* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- We have two registers that can be eliminated on the i386. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer. */
-
- #define ELIMINABLE_REGS \
- {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
-
- /* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- For the i386, if frame pointer elimination is being done, we would like to
- convert ap into sp, not fp.
-
- All other eliminations are valid. */
-
- #define CAN_ELIMINATE(FROM, TO) \
- ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
- ? ! frame_pointer_needed \
- : 1)
-
- /* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
- #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- { \
- if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
- (OFFSET) = 8; /* Skip saved PC and previous frame pointer */ \
- else \
- { \
- int regno; \
- int offset = 0; \
- \
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if ((regs_ever_live[regno] && ! call_used_regs[regno]) \
- || (current_function_uses_pic_offset_table \
- && regno == PIC_OFFSET_TABLE_REGNUM)) \
- offset += 4; \
- \
- (OFFSET) = offset + get_frame_size (); \
- \
- if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
- (OFFSET) += 4; /* Skip saved PC */ \
- } \
- }
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < STACK_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO] < STACK_POINTER_REGNUM)
-
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) <= STACK_POINTER_REGNUM \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO] <= STACK_POINTER_REGNUM)
-
- #define REGNO_OK_FOR_SIREG_P(REGNO) ((REGNO) == 4 || reg_renumber[REGNO] == 4)
- #define REGNO_OK_FOR_DIREG_P(REGNO) ((REGNO) == 5 || reg_renumber[REGNO] == 5)
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index or if
- it is a pseudo reg. */
-
- #define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) < STACK_POINTER_REGNUM \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
- /* Nonzero if X is a hard reg that can be used as a base reg
- of if it is a pseudo reg. */
- /* ?wfs */
-
- #define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) <= STACK_POINTER_REGNUM \
- || REGNO (X) == ARG_POINTER_REGNUM \
- || REGNO(X) >= FIRST_PSEUDO_REGISTER)
-
- #define REG_OK_FOR_STRREG_P(X) \
- (REGNO (X) == 4 || REGNO (X) == 5 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
- #define REG_OK_FOR_STRREG_P(X) \
- (REGNO_OK_FOR_DIREG_P (REGNO (X)) || REGNO_OK_FOR_SIREG_P (REGNO (X)))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
- except for CONSTANT_ADDRESS_P which is usually machine-independent.
-
- See legitimize_pic_address in i386.c for details as to what
- constitutes a legitimate address when -fpic is used. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_CONSTANT_P(X) 1
-
- #define GO_IF_INDEXABLE_BASE(X, ADDR) \
- if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR
-
- #define LEGITIMATE_INDEX_REG_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
-
- /* Return 1 if X is an index or an index times a scale. */
-
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X) \
- || (GET_CODE (X) == MULT \
- && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 2 \
- || INTVAL (XEXP (X, 1)) == 4 \
- || INTVAL (XEXP (X, 1)) == 8)))
-
- /* Go to ADDR if X is an index term, a base reg, or a sum of those. */
-
- #define GO_IF_INDEXING(X, ADDR) \
- { if (LEGITIMATE_INDEX_P (X)) goto ADDR; \
- GO_IF_INDEXABLE_BASE (X, ADDR); \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
-
- /* We used to allow this, but it isn't ever used.
- || ((GET_CODE (X) == POST_DEC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_STRREG_P (XEXP (X, 0))) \
- */
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { \
- if (CONSTANT_ADDRESS_P (X) \
- && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
- goto ADDR; \
- GO_IF_INDEXING (X, ADDR); \
- if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- { \
- rtx x0 = XEXP (X, 0); \
- if (! flag_pic || ! SYMBOLIC_CONST (XEXP (X, 1))) \
- { GO_IF_INDEXING (x0, ADDR); } \
- else if (x0 == pic_offset_table_rtx) \
- goto ADDR; \
- else if (GET_CODE (x0) == PLUS) \
- { \
- if (XEXP (x0, 0) == pic_offset_table_rtx) \
- { GO_IF_INDEXABLE_BASE (XEXP (x0, 1), ADDR); } \
- if (XEXP (x0, 1) == pic_offset_table_rtx) \
- { GO_IF_INDEXABLE_BASE (XEXP (x0, 0), ADDR); } \
- } \
- } \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 80386, we handle X+REG by loading X into a register R and
- using R+REG. R will go in a general reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in a general reg.
-
- When -fpic is used, special handling is needed for symbolic references.
- See comments by legitimize_pic_address in i386.c for details. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { extern rtx legitimize_pic_address (); \
- int ch = (X) != (OLDX); \
- if (flag_pic && SYMBOLIC_CONST (X)) \
- { \
- (X) = legitimize_pic_address (X, 0); \
- if (memory_address_p (MODE, X)) \
- goto WIN; \
- } \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == MULT) \
- ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
- if (GET_CODE (XEXP (X, 1)) == MULT) \
- ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
- if (ch && GET_CODE (XEXP (X, 1)) == REG \
- && GET_CODE (XEXP (X, 0)) == REG) \
- goto WIN; \
- if (flag_pic && SYMBOLIC_CONST (XEXP (X, 1))) \
- ch = 1, (X) = legitimize_pic_address (X, 0); \
- if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
- if (GET_CODE (XEXP (X, 0)) == REG) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 1), temp); \
- if (val != temp) emit_move_insn (temp, val); \
- XEXP (X, 1) = temp; \
- goto WIN; } \
- else if (GET_CODE (XEXP (X, 1)) == REG) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 0), temp); \
- if (val != temp) emit_move_insn (temp, val); \
- XEXP (X, 0) = temp; \
- goto WIN; }}}
-
- /* Nonzero if the constant value X is a legitimate general operand
- when generating PIC code. It is given that flag_pic is on and
- that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_PIC_OPERAND_P(X) \
- (! SYMBOLIC_CONST (X) \
- || (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X)))
-
- #define SYMBOLIC_CONST(X) \
- (GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 80386, only postdecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
-
- /* Define this macro if references to a symbol must be treated
- differently depending on something about the variable or
- function named by the symbol (such as what section it is in).
-
- On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
- so that we may access it directly in the GOT. */
-
- #define ENCODE_SECTION_INFO(DECL) \
- do \
- { \
- if (flag_pic) \
- { \
- rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
- = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
- || ! TREE_PUBLIC (DECL)); \
- } \
- } \
- while (0)
-
- /* Initialize data used by insn expanders. This is called from
- init_emit, once for each function, before code is generated.
- For 386, clear stack slot assignments remembered from previous
- functions. */
-
- #define INIT_EXPANDERS clear_386_stack_locals ()
-
- /* The `FINALIZE_PIC' macro serves as a hook to emit these special
- codes once the function is being compiled into assembly code, but
- not before. (It is not done before, because in the case of
- compiling an inline function, it would lead to multiple PIC
- prologues being included in functions which used inline functions
- and were compiled to assembly language.) */
-
- #define FINALIZE_PIC \
- do \
- { \
- extern int current_function_uses_pic_offset_table; \
- \
- current_function_uses_pic_offset_table |= profile_flag | profile_block_flag; \
- } \
- while (0)
-
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE Pmode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers.
- This should be changed to take advantage of fist --wfs ??
- */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* MOVE_RATIO is the number of move instructions that is better than a
- block move. Make this large on i386, since the block move is very
- inefficient with small blocks, and the hard register needs of the
- block move require much reload work. */
- #define MOVE_RATIO 5
-
- /* Define this if zero-extension is slow (more than one real instruction). */
- /* #define SLOW_ZERO_EXTEND */
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- /* One i386, shifts do truncate the count. But bit opcodes don't. */
-
- /* #define SHIFT_COUNT_TRUNCATED */
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* When a prototype says `char' or `short', really pass an `int'.
- (The 386 can't easily push less than an int.) */
-
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on the 386 because a CALL with a constant address is
- not much slower than one with a register address. */
- #define NO_FUNCTION_CSE
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. */
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case MULT: \
- return COSTS_N_INSNS (10); \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- return COSTS_N_INSNS (40); \
- case PLUS: \
- if (GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == CONST_INT) \
- return 1; \
- break;
-
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return flag_pic && SYMBOLIC_CONST (RTX) ? 2 : 0; \
- case CONST_DOUBLE: \
- { \
- int code; \
- if (GET_MODE (RTX) == VOIDmode) \
- return 2; \
- code = standard_80387_constant_p (RTX); \
- return code == 1 ? 0 : \
- code == 2 ? 1 : \
- 2; \
- }
-
- /* Compute the cost of an address. This is meant to approximate the size
- and/or execution delay of an insn using that address. If the cost is
- approximated by the RTL complexity, including CONST_COSTS above, as
- is usually the case for CISC machines, this macro should not be defined.
- For aggressively RISCy machines, only one insn format is allowed, so
- this macro should be a constant. The value of this macro only matters
- for valid addresses.
-
- For i386, it is better to use a complex address than let gcc copy
- the address into a reg and make a new pseudo. But not if the address
- requires to two regs - that would mean more pseudos with longer
- lifetimes. */
-
- #define ADDRESS_COST(RTX) \
- ((CONSTANT_P (RTX) \
- || (GET_CODE (RTX) == PLUS && CONSTANT_P (XEXP (RTX, 1)) \
- && REG_P (XEXP (RTX, 0)))) ? 0 \
- : REG_P (RTX) ? 1 \
- : 2)
-
- /* Add any extra modes needed to represent the condition code.
-
- For the i386, we need separate modes when floating-point equality
- comparisons are being done. */
-
- #define EXTRA_CC_MODES CCFPEQmode
-
- /* Define the names for the modes specified above. */
- #define EXTRA_CC_NAMES "CCFPEQ"
-
- /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
-
- For floating-point equality comparisons, CCFPEQmode should be used.
- VOIDmode should be used in all other cases. */
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- && ((OP) == EQ || (OP) == NE) ? CCFPEQmode : VOIDmode)
-
- /* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
- extern struct rtx_def *i386_compare_op0, *i386_compare_op1;
- extern struct rtx_def *(*i386_compare_gen)(), *(*i386_compare_gen_eq)();
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- /* Set if the cc value is actually in the 80387, so a floating point
- conditional branch must be output. */
- #define CC_IN_80387 04000
-
- /* Set if the CC value was stored in a nonstandard way, so that
- the state of equality is indicated by zero in the carry bit. */
- #define CC_Z_IN_NOT_C 010000
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- notice_update_cc((EXP))
-
- /* Output a signed jump insn. Use template NORMAL ordinarily, or
- FLOAT following a floating point comparison.
- Use NO_OV following an arithmetic insn that set the cc's
- before a test insn that was deleted.
- NO_OV may be zero, meaning final should reinsert the test insn
- because the jump cannot be handled properly without it. */
-
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { \
- if (cc_prev_status.flags & CC_IN_80387) \
- return FLOAT; \
- if (cc_prev_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; \
- }
-
- /* Control the assembler format that we output, to the extent
- this does not vary between assemblers. */
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
- For non floating point regs, the following are the HImode names.
-
- For float regs, the stack top is sometimes referred to as "%st(0)"
- instead of just "%st". PRINT_REG handles this with the "y" code. */
-
- #define HI_REGISTER_NAMES \
- {"ax","dx","cx","bx","si","di","bp","sp", \
- "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","" }
-
- #define REGISTER_NAMES HI_REGISTER_NAMES
-
- /* Table of additional register names to use in user input. */
-
- #define ADDITIONAL_REGISTER_NAMES \
- { "eax", 0, "edx", 1, "ecx", 2, "ebx", 3, \
- "esi", 4, "edi", 5, "ebp", 6, "esp", 7, \
- "al", 0, "dl", 1, "cl", 2, "bl", 3, \
- "ah", 0, "dh", 1, "ch", 2, "bh", 3 }
-
- /* Note we are omitting these since currently I don't know how
- to get gcc to use these, since they want the same but different
- number as al, and ax.
- */
-
- /* note the last four are not really qi_registers, but
- the md will have to never output movb into one of them
- only a movw . There is no movb into the last four regs */
-
- #define QI_REGISTER_NAMES \
- {"al", "dl", "cl", "bl", "si", "di", "bp", "sp",}
-
- /* These parallel the array above, and can be used to access bits 8:15
- of regs 0 through 3. */
-
- #define QI_HIGH_REGISTER_NAMES \
- {"ah", "dh", "ch", "bh", }
-
- /* How to renumber registers for dbx and gdb. */
-
- /* {0,2,1,3,6,7,4,5,12,13,14,15,16,17} */
- #define DBX_REGISTER_NUMBER(n) \
- ((n) == 0 ? 0 : \
- (n) == 1 ? 2 : \
- (n) == 2 ? 1 : \
- (n) == 3 ? 3 : \
- (n) == 4 ? 6 : \
- (n) == 5 ? 7 : \
- (n) == 6 ? 4 : \
- (n) == 7 ? 5 : \
- (n) + 4)
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- (assemble_name (FILE, NAME), fputs (":\n", FILE))
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- do { long l[2]; \
- REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (FILE, "%s 0x%x,0x%x\n", ASM_LONG, l[0], l[1]); \
- else \
- fprintf (FILE, "%s 0x%lx,0x%lx\n", ASM_LONG, l[0], l[1]); \
- } while (0)
-
- /* This is how to output a `long double' extended real constant. */
-
- #undef ASM_OUTPUT_LONG_DOUBLE
- #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
- do { long l[3]; \
- REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (FILE, "%s 0x%x,0x%x,0x%x\n", ASM_LONG, l[0], l[1], l[2]); \
- else \
- fprintf (FILE, "%s 0x%lx,0x%lx,0x%lx\n", ASM_LONG, l[0], l[1], l[2]); \
- } while (0)
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { long l; \
- REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf ((FILE), "%s 0x%x\n", ASM_LONG, l); \
- else \
- fprintf ((FILE), "%s 0x%lx\n", ASM_LONG, l); \
- } while (0)
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
-
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "%s ", ASM_LONG), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
- /* Likewise for `char' and `short' constants. */
- /* is this supposed to do align too?? */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "%s ", ASM_SHORT), \
- output_addr_const (FILE,(VALUE)), \
- putc('\n',FILE))
-
- /*
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
- output_addr_const (FILE,(VALUE)), \
- fputs (",", FILE), \
- output_addr_const (FILE,(VALUE)), \
- fputs (" >> 8\n",FILE))
- */
-
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "%s ", ASM_BYTE_OP), \
- output_addr_const (FILE, (VALUE)), \
- putc ('\n', FILE))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf ((FILE), "%s 0x%x\n", ASM_BYTE_OP, (VALUE))
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tpushl e%s\n", reg_names[REGNO])
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tpopl e%s\n", reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute.
- */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "%s %s%d\n", ASM_LONG, LPREFIX, VALUE)
-
- /* This is how to output an element of a case-vector that is relative.
- We don't use these on the 386 yet, because the ATT assembler can't do
- forward reference the differences.
- */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word %s%d-%s%d\n",LPREFIX, VALUE,LPREFIX, REL)
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN ""
- #define ASM_CLOSE_PAREN ""
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- The CODE z takes the size of operand from the following digit, and
- outputs b,w,or l respectively.
-
- On the 80386, we use several such letters:
- f -- float insn (print a CONST_DOUBLE as a float rather than in hex).
- L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
- R -- print the prefix for register names.
- z -- print the opcode suffix for the size of the current operand.
- * -- print a star (in certain assembler syntax)
- w -- print the operand as if it's a "word" (HImode) even if it isn't.
- b -- print the operand as if it's a byte (QImode) even if it isn't.
- c -- don't print special prefixes before constant operands. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '*')
-
- /* Print the name of a register based on its machine mode and number.
- If CODE is 'w', pretend the mode is HImode.
- If CODE is 'b', pretend the mode is QImode.
- If CODE is 'k', pretend the mode is SImode.
- If CODE is 'h', pretend the reg is the `high' byte register.
- If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
-
- extern char *hi_reg_name[];
- extern char *qi_reg_name[];
- extern char *qi_high_reg_name[];
-
- #define PRINT_REG(X, CODE, FILE) \
- do { if (REGNO (X) == ARG_POINTER_REGNUM) \
- abort (); \
- fprintf (FILE, "%s", RP); \
- switch ((CODE == 'w' ? 2 \
- : CODE == 'b' ? 1 \
- : CODE == 'k' ? 4 \
- : CODE == 'y' ? 3 \
- : CODE == 'h' ? 0 \
- : GET_MODE_SIZE (GET_MODE (X)))) \
- { \
- case 3: \
- if (STACK_TOP_P (X)) \
- { \
- fputs ("st(0)", FILE); \
- break; \
- } \
- case 4: \
- case 8: \
- case 12: \
- if (! FP_REG_P (X)) fputs ("e", FILE); \
- case 2: \
- fputs (hi_reg_name[REGNO (X)], FILE); \
- break; \
- case 1: \
- fputs (qi_reg_name[REGNO (X)], FILE); \
- break; \
- case 0: \
- fputs (qi_high_reg_name[REGNO (X)], FILE); \
- break; \
- } \
- } while (0)
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- print_operand (FILE, X, CODE)
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address (FILE, ADDR)
-
- /* Print the name of a register for based on its machine mode and number.
- This macro is used to print debugging output.
- This macro is different from PRINT_REG in that it may be used in
- programs that are not linked with aux-output.o. */
-
- #define DEBUG_PRINT_REG(X, CODE, FILE) \
- do { static char *hi_name[] = HI_REGISTER_NAMES; \
- static char *qi_name[] = QI_REGISTER_NAMES; \
- fprintf (FILE, "%d %s", REGNO (X), RP); \
- if (REGNO (X) == ARG_POINTER_REGNUM) \
- { fputs ("argp", FILE); break; } \
- if (STACK_TOP_P (X)) \
- { fputs ("st(0)", FILE); break; } \
- switch (GET_MODE_SIZE (GET_MODE (X))) \
- { \
- case 12: \
- case 8: \
- case 4: \
- if (! FP_REG_P (X)) fputs ("e", FILE); \
- case 2: \
- fputs (hi_name[REGNO (X)], FILE); \
- break; \
- case 1: \
- fputs (qi_name[REGNO (X)], FILE); \
- break; \
- } \
- } while (0)
-
- /* Output the prefix for an immediate operand, or for an offset operand. */
- #define PRINT_IMMED_PREFIX(FILE) fputs (IP, (FILE))
- #define PRINT_OFFSET_PREFIX(FILE) fputs (IP, (FILE))
-
- /* Routines in libgcc that return floats must return them in an fp reg,
- just as other functions do which return such values.
- These macros make that happen. */
-
- #define FLOAT_VALUE_TYPE float
- #define INTIFY(FLOATVAL) FLOATVAL
-
- /* Nonzero if INSN magically clobbers register REGNO. */
-
- /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) \
- (FP_REGNO_P (REGNO) \
- && (GET_CODE (INSN) == JUMP_INSN || GET_CODE (INSN) == BARRIER))
- */
-
- /* a letter which is not needed by the normal asm syntax, which
- we can use for operand syntax in the extended asm */
-
- #define ASM_OPERAND_LETTER '#'
-
- #define RET return ""
- #define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
-
- /*
- Local variables:
- version-control: t
- End:
- */
-