home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for the HP Spectrum.
- Copyright (C) 1992, 1993 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@mcc.com)
- and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
- Software Science at the University of Utah.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- enum cmp_type /* comparison type */
- {
- CMP_SI, /* compare integers */
- CMP_SF, /* compare single precision floats */
- CMP_DF, /* compare double precision floats */
- CMP_MAX /* max comparison type */
- };
-
- /* Print subsidiary information on the compiler version in use. */
-
- #define TARGET_VERSION fprintf (stderr, " (hppa)");
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* compile code for HP-PA 1.1 ("Snake") */
-
- #define TARGET_SNAKE (target_flags & 1)
-
- /* Disable all FP registers (they all become fixed). This may be necessary
- for compiling kernels which perform lazy context switching of FP regs.
- Note if you use this option and try to perform floating point operations
- the compiler will abort! */
-
- #define TARGET_DISABLE_FPREGS (target_flags & 2)
-
- /* Allow unconditional jumps in the delay slots of call instructions. */
- #define TARGET_JUMP_IN_DELAY (target_flags & 8)
-
- /* Force all function calls to indirect addressing via a register. This
- avoids lossage when the function is very far away from the current PC.
-
- ??? What about simple jumps, they can suffer from the same problem.
- Would require significant surgery in pa.md. */
-
- #define TARGET_LONG_CALLS (target_flags & 16)
-
- /* Disable indexed addressing modes. */
-
- #define TARGET_DISABLE_INDEXING (target_flags & 32)
-
- /* Emit directives only understood by GAS. This allows parameter
- relocations to work for static functions. There is no way
- to make them work the HP assembler at this time.
-
- Also forces a colon to be tacked onto the end of local and
- global labes. */
-
- #define TARGET_GAS (target_flags & 128)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- {{"snake", 1}, \
- {"nosnake", -1}, \
- {"pa-risc-1-0", -1}, \
- {"pa-risc-1-1", 1}, \
- {"disable-fpregs", 2}, \
- {"no-disable-fpregs", 2}, \
- {"jump-in-delay", 8}, \
- {"no-jump-in-delay", -8}, \
- {"long-calls", 16}, \
- {"no-long-calls", -16}, \
- {"disable-indexing", 32}, \
- {"no-disable-indexing", -32},\
- {"gas", 128}, \
- {"no-gas", -128}, \
- { "", TARGET_DEFAULT}}
-
- #ifndef TARGET_DEFAULT
- #define TARGET_DEFAULT 128 /* TARGET_GAS + TARGET_JUMP_IN_DELAY */
- #endif
-
- #define DBX_DEBUGGING_INFO
- #define DEFAULT_GDB_EXTENSIONS 1
-
- /* Only lables should ever begin in colunm zero. */
- #define ASM_STABS_OP "\t.stabs"
- #define ASM_STABN_OP "\t.stabn"
-
- #if (TARGET_DEFAULT & 1) == 0
- #define CPP_SPEC "%{msnake:-D__hp9000s700 -D_PA_RISC1_1}\
- %{mpa-risc-1-1:-D__hp9000s700 -D_PA_RISC1_1}"
- #else
- #define CPP_SPEC "%{!mpa-risc-1-0:%{!mnosnake:-D__hp9000s700 -D_PA_RISC1_1}}"
- #endif
-
- /* Defines for a K&R CC */
-
- #define CC1_SPEC "%{pg:} %{p:}"
-
- #define LINK_SPEC "-u main"
-
- /* Allow $ in identifiers. */
- #define DOLLARS_IN_IDENTIFIERS 2
-
- /* Make gcc agree with <machine/ansi.h> */
-
- #define SIZE_TYPE "unsigned int"
- #define PTRDIFF_TYPE "int"
- #define WCHAR_TYPE "short unsigned int"
- #define WCHAR_TYPE_SIZE 16
-
- /* Sometimes certain combinations of command options do not make sense
- on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- On the PA, it is used to explicitly warn the user that -fpic and -fPIC
- do not work. */
-
- #define OVERRIDE_OPTIONS \
- { \
- if (flag_pic != 0) \
- warning ("-fpic and -fPIC are not supported on the PA."); \
- }
-
- /* Omit frame pointer at high optimization levels. */
-
- #define OPTIMIZATION_OPTIONS(OPTIMIZE) \
- { \
- if (OPTIMIZE >= 2) \
- flag_omit_frame_pointer = 1; \
- }
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -D_HPUX_SOURCE -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem(unix) -Asystem(bsd) -Acpu(hppa) -Amachine(hppa)"
-
- /* target machine storage layout */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN 1
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the HP-PA. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is lowest
- numbered. */
- /* For the HP-PA we can decide arbitrarily
- since there are no machine instructions for them. */
- #define WORDS_BIG_ENDIAN 1
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Largest alignment required for any stack parameter, in bits.
- Don't define this if it is equal to PARM_BOUNDARY */
- #define MAX_PARM_BOUNDARY 64
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 512
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 32
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
-
- /* A bitfield declared as `int' forces `int' alignment for the struct. */
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 64
-
- /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
- #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
- ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
-
- /* Make arrays of chars word-aligned for the same reasons. */
- #define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
-
- /* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
- /* Generate calls to memcpy, memcmp and memset. */
- #define TARGET_MEM_FUNCTIONS
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- HP-PA 1.0 has 32 fullword registers and 16 floating point
- registers. The floating point registers hold either word or double
- word values.
-
- 16 additional registers are reserved.
-
- HP-PA 1.1 has 32 fullword registers and 32 floating point
- registers. However, the floating point registers behave
- differently: the left and right halves of registers are addressable
- as 32 bit registers. So, we will set things up like the 68k which
- has different fp units: define separate register sets for the 1.0
- and 1.1 fp units. */
-
- #define FIRST_PSEUDO_REGISTER 101 /* 32 + 12 1.0 regs + 56 1.1 regs + */
- /* 1 shift reg */
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
-
- On the HP-PA, these are:
- Reg 0 = 0 (hardware). However, 0 is used for condition code,
- so is not fixed.
- Reg 1 = ADDIL target/Temporary (hardware).
- Reg 2 = Return Pointer
- Reg 3 = Preserved Register (Gnu). Frame Pointer (> 8k frames HP.)
- Reg 4 = Frame Pointer (Gnu)
- Reg 5-18 = Preserved Registers
- Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
- Reg 20-22 = Temporary Registers
- Reg 23-26 = Temporary/Parameter Registers
- Reg 27 = Global Data Pointer (hp)
- Reg 28 = Temporary/???/Return Value register
- Reg 29 = Temporary/Static Chain/Return Value register
- Reg 30 = stack pointer
- Reg 31 = Temporary/Millicode Return Pointer (hp)
-
- Freg 0-3 = Status Registers -- Not known to the compiler.
- Freg 4-7 = Arguments/Return Value
- Freg 8-11 = Temporary Registers
- Freg 12-15 = Preserved Registers
-
- Freg 16-31 = Reserved
-
- On the Snake, fp regs are
-
- Freg 0-3 = Status Registers -- Not known to the compiler.
- Freg 4L-7R = Arguments/Return Value
- Freg 8L-11R = Temporary Registers
- Freg 12L-21R = Preserved Registers
- Freg 22L-31R = Temporary Registers
-
-
- */
-
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 1, 0, 0, 1, 0, \
- /* 1.0 fp registers */ \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- /* 1.1 fp registers */ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0}
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- /* 1.0 fp registers */ \
- 1, 1, 1, 1, \
- 1, 1, 1, 1, 0, 0, 0, 0, \
- /* 1.1 fp registers */ \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1}
-
- /* Make sure everything's fine if we *don't* have a given processor.
- This assumes that putting a register in fixed_regs will keep the
- compiler's mitts completely off it. We don't bother to zero it out
- of register classes. */
-
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- int i; \
- HARD_REG_SET x; \
- if (!TARGET_SNAKE) \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- else if (TARGET_DISABLE_FPREGS) \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);\
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- else \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (flag_pic) \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- }
-
- /* Allocated the call used registers first. This should minimize
- the number of registers that need to be saved (as call used
- registers will generally not be allocated across a call).
-
- Experimentation has shown slightly better results by allocating
- FP registers first. */
-
- #define REG_ALLOC_ORDER \
- /* 1.0 caller-saved fp regs. */ \
- {36, 37, 38, 39, 32, 33, 34, 35, \
- /* 1.1 caller-saved fp regs. */ \
- 52, 53, 54, 55, 56, 57, 58, 59, \
- 80, 81, 82, 83, 84, 85, 86, 87, \
- 88, 89, 90, 91, 92, 93, 94, 95, \
- 96, 97, 98, 99, \
- 44, 45, 46, 47, 48, 49, 50, 51, \
- /* caller-saved general regs. */ \
- 19, 20, 21, 22, 23, 24, 25, 26, \
- 27, 28, 29, 31, 2, \
- /* 1.0 callee-saved fp regs. */ \
- 40, 41, 42, 43, \
- /* 1.1 callee-saved fp regs. */ \
- 60, 61, 62, 63, 64, 65, 66, 67, \
- 68, 69, 70, 71, 72, 73, 74, 75, \
- 76, 77, 78, 79, \
- /* callee-saved general regs. */ \
- 3, 4, 5, 6, 7, 8, 9, 10, \
- 11, 12, 13, 14, 15, 16, 17, 18, \
- /* special registers. */ \
- 1, 30, 0, 100}
-
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the HP-PA, ordinary registers hold 32 bits worth;
- The floating point registers are 64 bits wide. Snake fp regs are 32
- bits wide */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- (((REGNO) < 32 || (REGNO) >= 44) \
- ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the HP-PA, the cpu registers can hold any mode. We
- force this to be an even register is it cannot hold the full mode. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
- : (REGNO) < 32 ? ((GET_MODE_SIZE (MODE) <= 4) ? 1 : ((REGNO) & 1) == 0)\
- : (REGNO) < 44 ? (GET_MODE_SIZE (MODE) <= 4 \
- || (GET_MODE_SIZE (MODE) > 4 \
- && GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
- : (GET_MODE_SIZE (MODE) > 4 ? ((REGNO) & 1) == 0 \
- : 1))
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 30
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 4
-
- /* Value should be nonzero if functions must have frame pointers. */
- #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
-
-
- /* C statement to store the difference between the frame pointer
- and the stack pointer values immediately after the function prologue.
-
- Note, we always pretend that this is a leaf function because if
- it's not, there's no point in trying to eliminate the
- frame pointer. If it is a leaf function, we guessed right! */
- #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
- do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 4
-
- /* Register in which static-chain is passed to a function. */
- /* ??? */
- #define STATIC_CHAIN_REGNUM 29
-
- /* Register which holds offset table for position-independent
- data references. */
-
- #define PIC_OFFSET_TABLE_REGNUM 19
-
- #define INITIALIZE_PIC initialize_pic ()
- #define FINALIZE_PIC finalize_pic ()
-
- /* SOM ABI says that objects larger than 64 bits are returned in memory. */
- #define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 8)
-
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 28
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
- 1.1 fp regs, and the high 1.1 fp regs, to which the operands of
- fmpyadd and fmpysub are restricted.
-
- FP_OR_SNAKE_FP_REGS is for reload_{in,out}di only and isn't used
- anywhere else. */
-
- enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FP_REGS, GENERAL_OR_FP_REGS,
- HI_SNAKE_FP_REGS, SNAKE_FP_REGS, GENERAL_OR_SNAKE_FP_REGS,
- FP_OR_SNAKE_FP_REGS, NON_SHIFT_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "R1_REGS", "GENERAL_REGS", "FP_REGS", "GENERAL_OR_FP_REGS",\
- "HI_SNAKE_FP_REGS", "SNAKE_FP_REGS", "GENERAL_OR_SNAKE_FP_REGS",\
- "FP_OR_SNAKE_FP_REGS", "NON_SHIFT_REGS", "SHIFT_REGS", "ALL_REGS"}
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. Register 0, the "condition code" register,
- is in no class. */
-
- #define REG_CLASS_CONTENTS \
- { {0, 0, 0, 0}, /* NO_REGS */ \
- {0x2, 0, 0, 0}, /* R1_REGS */ \
- {-2, 0, 0, 0}, /* GENERAL_REGS */ \
- {0, 0xfff, 0, 0}, /* FP_REGS */ \
- {-2, 0xfff, 0, 0}, /* GENERAL_OR_FP_REGS */\
- {0, 0, 0xfffffff0, 0xf}, /* HI_SNAKE_FP_REGS */ \
- {0, 0xfffff000, ~0, 0xf}, /* SNAKE_FP_REGS */ \
- {-2, 0xfffff000, ~0, 0xf}, /* GENERAL_OR_SNAKE_FP_REGS */\
- {0, ~0, ~0, 0xf}, /* FP_OR_SNAKE_FP_REGS */\
- {-2, ~0, ~0, ~0x10}, /* NON_SHIFT_REGS */ \
- {0, 0, 0, 0x10}, /* SHIFT_REGS */ \
- {-2, ~0, ~0, 0x1f}} /* ALL_REGS */
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) == 0 ? NO_REGS \
- : (REGNO) == 1 ? R1_REGS \
- : (REGNO) < 32 ? GENERAL_REGS \
- : (REGNO) < 44 ? FP_REGS \
- : (REGNO) < 68 ? SNAKE_FP_REGS \
- : (REGNO) < 100 ? HI_SNAKE_FP_REGS \
- : SHIFT_REGS)
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- #define FP_REG_CLASS_P(CLASS) \
- (CLASS == FP_REGS || CLASS == SNAKE_FP_REGS || CLASS == HI_SNAKE_FP_REGS)
-
- /* Get reg_class from a letter such as appears in the machine description.
- Note 'Z' is not the same as 'r' since SHIFT_REGS is not part of
- GENERAL_REGS. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? (!TARGET_SNAKE ? FP_REGS : NO_REGS) : \
- ((C) == 'x' ? (TARGET_SNAKE ? SNAKE_FP_REGS : NO_REGS) : \
- ((C) == 'y' ? (TARGET_SNAKE ? HI_SNAKE_FP_REGS : NO_REGS) : \
- ((C) == 'q' ? SHIFT_REGS : \
- ((C) == 'a' ? R1_REGS : \
- ((C) == 'z' ? FP_OR_SNAKE_FP_REGS : \
- ((C) == 'Z' ? ALL_REGS : NO_REGS)))))))
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- `I' is used for the 11 bit constants.
- `J' is used for the 14 bit constants.
- `K' is used for values that can be moved with a zdepi insn.
- `L' is used for the 5 bit constants.
- `M' is used for 0.
- `N' is used for values with the least significant 11 bits equal to zero.
- `O' is used for numbers n such that n+1 is a power of 2.
- */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
- : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
- : (C) == 'K' ? zdepi_cint_p (VALUE) \
- : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
- : (C) == 'M' ? (VALUE) == 0 \
- : (C) == 'N' ? ((VALUE) & 0x7ff) == 0 \
- : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
- : (C) == 'P' ? and_mask_p (VALUE) \
- : 0)
-
- /* Similar, but for floating or large integer constants, and defining letters
- G and H. Here VALUE is the CONST_DOUBLE rtx itself.
-
- For PA, `G' is the floating-point constant zero. `H' is undefined. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
- && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
-
- /* Return the register class of a scratch register needed to copy IN into
- or out of a register in CLASS in MODE. If it can be done directly,
- NO_REGS is returned. */
-
- #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
- secondary_reload_class (CLASS, MODE, IN)
-
- /* On the PA it is not possible to directly move data between
- GENERAL_REGS and FP_REGS. */
- #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
- ((FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2)) \
- || (! FP_REG_CLASS_P (CLASS1) && FP_REG_CLASS_P (CLASS2)))
-
- /* Return the stack location to use for secondary memory needed reloads. */
- #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
- gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (-16)))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FP_REGS ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- /* #define STACK_GROWS_DOWNWARD */
-
- /* Believe it or not. */
- #define ARGS_GROW_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- /* #define FRAME_GROWS_DOWNWARD */
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 8
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the HP-PA, don't define this because there are no push insns. */
- /* #define PUSH_ROUNDING(BYTES) */
-
- /* Offset of first parameter from the argument pointer register value.
- This value will be negated because the arguments grow down.
- Also note that on STACK_GROWS_UPWARD machines (such as this one)
- this is the distance from the frame pointer to the end of the first
- argument, not it's beginning. To get the real offset of the first
- argument, the size of the argument must be added.
-
- ??? Have to check on this.*/
-
- #define FIRST_PARM_OFFSET(FNDECL) -32
-
- /* Absolute value of offset from top-of-stack address to location to store the
- function parameter if it can't go in a register.
- Addresses for following parameters are computed relative to this one. */
- #define FIRST_PARM_CALLER_OFFSET(FNDECL) -32
-
-
- /* When a parameter is passed in a register, stack space is still
- allocated for it. */
- #define REG_PARM_STACK_SPACE(DECL) 16
-
- /* Define this if the above stack space is to be considered part of the
- space allocated by the caller. */
- #define OUTGOING_REG_PARM_STACK_SPACE
-
- /* Keep the stack pointer constant throughout the function.
- This is both an optimization and a necessity: longjmp
- doesn't behave itself when the stack pointer moves within
- the function! */
- #define ACCUMULATE_OUTGOING_ARGS
-
- /* The weird HPPA calling conventions require a minimum of 48 bytes on
- the stack: 16 bytes for register saves, and 32 bytes for magic.
- This is the difference between the logical top of stack and the
- actual sp. */
- #define STACK_POINTER_OFFSET -32
-
- #define STACK_DYNAMIC_OFFSET(FNDECL) \
- ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)
-
- /* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- /* On the HP-PA the value is found in register(s) 28(-29), unless
- the mode is SF or DF. Then the value is returned in fr4 (32, ) */
-
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), ((TYPE_MODE (VALTYPE) == SFmode ||\
- TYPE_MODE (VALTYPE) == DFmode) ? \
- (TARGET_SNAKE ? 44 : 32) : 28))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, (MODE == SFmode || MODE == DFmode ?\
- (TARGET_SNAKE ? 44 : 32) : 28))
-
- /* 1 if N is a possible register number for a function value
- as seen by the caller. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 28 || (N) == (TARGET_SNAKE ? 44 : 32))
-
- /* 1 if N is a possible register number for function argument passing. */
-
- #define FUNCTION_ARG_REGNO_P(N) \
- (((N) >= 23 && (N) <= 26) \
- || ((N) >= 32 && (N) <= 35 && ! TARGET_SNAKE) \
- || ((N) >= 44 && (N) <= 51 && TARGET_SNAKE))
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the HP-PA, this is a single integer, which is a number of words
- of arguments scanned so far (including the invisible argument,
- if any, which holds the structure-value-address).
- Thus 4 or more means all following args should go on the stack. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
- */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
-
- /* Figure out the size in words of the function argument. */
-
- #define FUNCTION_ARG_SIZE(MODE, TYPE) \
- ((((MODE) != BLKmode ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))+3)/4)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- (((((CUM) & 01) && (TYPE) != 0 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1)\
- && (CUM)++), (CUM) += FUNCTION_ARG_SIZE(MODE, TYPE))
-
- /* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- /* On the HP-PA the first four words of args are normally in registers
- and the rest are pushed. But any arg that won't entirely fit in regs
- is pushed.
-
- Arguments passed in registers are either 1 or 2 words long.
-
- The caller must make a distinction between calls to explicitly named
- functions and calls through pointers to functions -- the conventions
- are different! Calls through pointers to functions only use general
- registers for the first four argument words. */
-
- #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- (4 >= ((CUM) + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \
- ? gen_rtx (REG, (MODE), \
- (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
- ? ((! current_call_is_indirect \
- && (MODE) == DFmode) \
- ? ((CUM) ? (TARGET_SNAKE ? 50 : 35) \
- : (TARGET_SNAKE ? 46 : 33)) \
- : ((CUM) ? 23 : 25)) \
- : ((! current_call_is_indirect \
- && (MODE) == SFmode) \
- ? (TARGET_SNAKE ? 44 + 2 * (CUM) : 32 + (CUM)) \
- : (27 - (CUM) - FUNCTION_ARG_SIZE ((MODE), (TYPE))))))\
- : 0)
-
- /* Define where a function finds its arguments.
- This would be different from FUNCTION_ARG if we had register windows. */
-
- #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
- FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
- /* If defined, a C expression that gives the alignment boundary, in
- bits, of an argument with the specified mode and type. If it is
- not defined, `PARM_BOUNDARY' is used for all arguments. */
-
- #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
- (((TYPE) != 0) \
- ? (((int_size_in_bytes (TYPE)) + 3) / 4) * BITS_PER_WORD \
- : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
- ? PARM_BOUNDARY \
- : GET_MODE_ALIGNMENT(MODE)))
-
- /* Arguments larger than eight bytes are passed by invisible reference */
-
- #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
- ((TYPE) && int_size_in_bytes (TYPE) > 8)
-
- extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1;
- extern enum cmp_type hppa_branch_type;
-
- /* Output the label for a function definition. */
- #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
- #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
- do { fprintf (FILE, ",ARGW%d=FR", (ARG0)); \
- fprintf (FILE, ",ARGW%d=FU", (ARG1));} while (0)
- #else
- #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
- do { fprintf (FILE, ",ARGW%d=FU", (ARG0)); \
- fprintf (FILE, ",ARGW%d=FR", (ARG1));} while (0)
- #endif
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
- do { tree fntype = TREE_TYPE (TREE_TYPE (DECL)); \
- tree tree_type = TREE_TYPE (DECL); \
- tree parm; \
- int i; \
- if (TREE_PUBLIC (DECL) || TARGET_GAS) \
- { extern int current_function_varargs; \
- if (TREE_PUBLIC (DECL)) \
- { \
- fputs ("\t.EXPORT ", FILE); \
- assemble_name (FILE, NAME); \
- fputs (",ENTRY,PRIV_LEV=3", FILE); \
- } \
- else \
- { \
- fputs ("\t.PARAM ", FILE); \
- assemble_name (FILE, NAME); \
- } \
- for (parm = DECL_ARGUMENTS (DECL), i = 0; parm && i < 4; \
- parm = TREE_CHAIN (parm)) \
- { \
- if (TYPE_MODE (DECL_ARG_TYPE (parm)) == SFmode) \
- fprintf (FILE, ",ARGW%d=FR", i++); \
- else if (TYPE_MODE (DECL_ARG_TYPE (parm)) == DFmode) \
- { \
- if (i <= 2) \
- { \
- if (i == 1) i++; \
- ASM_DOUBLE_ARG_DESCRIPTORS (FILE, i++, i++); \
- } \
- else \
- break; \
- } \
- else \
- { \
- int arg_size = \
- FUNCTION_ARG_SIZE (TYPE_MODE (DECL_ARG_TYPE (parm)),\
- DECL_ARG_TYPE (parm)); \
- if (arg_size == 2 && i <= 2) \
- { \
- if (i == 1) i++; \
- fprintf (FILE, ",ARGW%d=GR", i++); \
- fprintf (FILE, ",ARGW%d=GR", i++); \
- } \
- else if (arg_size == 1) \
- fprintf (FILE, ",ARGW%d=GR", i++); \
- else \
- i += arg_size; \
- } \
- } \
- /* anonymous args */ \
- if ((TYPE_ARG_TYPES (tree_type) != 0 \
- && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (tree_type)))\
- != void_type_node)) \
- || current_function_varargs) \
- { \
- for (; i < 4; i++) \
- fprintf (FILE, ",ARGW%d=GR", i); \
- } \
- if (TYPE_MODE (fntype) == DFmode) \
- fprintf (FILE, ",RTNVAL=FR"); \
- else if (TYPE_MODE (fntype) == SFmode) \
- fprintf (FILE, ",RTNVAL=FU"); \
- else if (fntype != void_type_node) \
- fprintf (FILE, ",RTNVAL=GR"); \
- fputs ("\n", FILE); \
- } \
- ASM_OUTPUT_LABEL (FILE, NAME);} while (0)
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- /* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
- of memory. If any fpu reg is used in the function, we allocate
- such a block here, at the bottom of the frame, just in case it's needed.
-
- If this function is a leaf procedure, then we may choose not
- to do a "save" insn. The decision about whether or not
- to do this is made in regclass.c. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- output_function_prologue (FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry.
-
- Because HPUX _mcount is so different, we actually emit the
- profiling code in function_prologue. This just stores LABELNO for
- that. */
-
- #define PROFILE_BEFORE_PROLOGUE
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- { extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);}
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- extern int may_call_alloca;
- extern int current_function_pretend_args_size;
-
- #define EXIT_IGNORE_STACK \
- (get_frame_size () != 0 \
- || current_function_calls_alloca || current_function_outgoing_args_size)
-
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- /* This declaration is needed due to traditional/ANSI
- incompatibilities which cannot be #ifdefed away
- because they occur inside of macros. Sigh. */
- extern union tree_node *current_function_decl;
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- output_function_epilogue (FILE, SIZE)
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.\
-
- The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
- and then branches to the specified routine.
-
- This code template is copied from text segment to stack location
- and then patched with INITIALIZE_TRAMPOLINE to contain
- valid values, and then entered as a subroutine.
-
- It is best to keep this as small as possible to avoid having to
- flush multiple lines in the cache. */
-
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- fprintf (FILE, "\tldw 36(0,%%r22),%%r21\n"); \
- fprintf (FILE, "\tbb,>=,n %%r21,30,.+16\n"); \
- fprintf (FILE, "\tdepi 0,31,2,%%r21\n"); \
- fprintf (FILE, "\tldw 4(0,%%r21),%%r19\n"); \
- fprintf (FILE, "\tldw 0(0,%%r21),%%r21\n"); \
- fprintf (FILE, "\tldsid (0,%%r21),%%r1\n"); \
- fprintf (FILE, "\tmtsp %%r1,%%sr0\n"); \
- fprintf (FILE, "\tbe 0(%%sr0,%%r21)\n"); \
- fprintf (FILE, "\tldw 40(0,%%r22),%%r29\n"); \
- fprintf (FILE, "\t.word 0\n"); \
- fprintf (FILE, "\t.word 0\n"); \
- }
-
- /* Length in units of the trampoline for entering a nested function.
-
- Flush the cache entries corresponding to the first and last addresses
- of the trampoline. This is necessary as the trampoline may cross two
- cache lines.
-
- If the code part of the trampoline ever grows to > 32 bytes, then it
- will become necessary to hack on the cacheflush pattern in pa.md. */
-
- #define TRAMPOLINE_SIZE (11 * 4)
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function.
-
- Move the function address to the trampoline template at offset 12.
- Move the static chain value to trampoline template at offset 16. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- rtx start_addr, end_addr, masked_start_addr; \
- \
- start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
- emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (FNADDR)); \
- start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
- emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (CXT)); \
- /* fdc and fic only use registers for the address to flush, \
- they do not accept integer displacements. */ \
- start_addr = force_reg (SImode, (TRAMP)); \
- end_addr = force_reg (SImode, plus_constant ((TRAMP), 32)); \
- emit_insn (gen_dcacheflush (start_addr, end_addr)); \
- masked_start_addr = gen_reg_rtx (SImode); \
- emit_insn (gen_andsi3 (masked_start_addr, start_addr, \
- GEN_INT (0x3fffffff))); \
- end_addr = force_reg (SImode, plus_constant (masked_start_addr, 32)); \
- emit_insn (gen_icacheflush (masked_start_addr, end_addr, start_addr, \
- gen_reg_rtx (SImode), gen_reg_rtx (SImode)));\
- }
-
- /* Emit code for a call to builtin_saveregs. We must emit USE insns which
- reference the 4 integer arg registers and 4 fp arg registers.
- Ordinarily they are not call used registers, but they are for
- _builtin_saveregs, so we must make this explicit. */
-
- #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) (rtx)hppa_builtin_saveregs (ARGLIST)
-
-
- /* Addressing modes, and classification of registers for them. */
-
- #define HAVE_POST_INCREMENT
- #define HAVE_POST_DECREMENT
-
- #define HAVE_PRE_DECREMENT
- #define HAVE_PRE_INCREMENT
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) >= 32 && (REGNO) <= 99)\
- || (reg_renumber[REGNO] >= 32 && reg_renumber[REGNO] <= 99))
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the the HP-PA, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
- /* 1 if X is an fp register. */
-
- #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address except
- for symbolic addresses. We get better CSE by rejecting them
- here and allowing hppa_legitimize_address to break them up. We
- use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
-
- #define CONSTANT_ADDRESS_P(X) \
- ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH) \
- && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
-
- /* Include all constant integers and constant doubles, but not
- floating-point, except for floating-point zero.
-
- Also reject function labels as reload can not handle them correctly
- right now. (Fix this for 2.5). */
- #define LEGITIMATE_CONSTANT_P(X) \
- ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
- || (X) == CONST0_RTX (GET_MODE (X))) \
- && ! function_label_operand (X, VOIDmode))
-
- /* Subroutine for EXTRA_CONSTRAINT.
-
- Return 1 iff OP is a pseudo which did not get a hard register and
- we are running the reload pass. */
-
- #define IS_RELOADING_PSEUDO_P(OP) \
- ((reload_in_progress \
- && GET_CODE (OP) == REG \
- && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
- && reg_renumber [REGNO (OP)] < 0))
-
- /* Optional extra constraints for this machine. Borrowed from sparc.h.
-
- For the HPPA, `Q' means that this is a memory operand but not a
- symbolic memory operand. Note that an unassigned pseudo register
- is such a memory operand. Needed because reload will generate
- these things in insns and then not re-recognize the insns, causing
- constrain_operands to fail.
-
- Also note `Q' accepts any memory operand during the reload pass.
- This includes out-of-range displacements in reg+d addressing.
- This makes for better code. (??? For 2.5 address this issue).
-
- `R' is unused.
-
- `S' is unused.
-
- `T' is for fp loads and stores. */
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? \
- (IS_RELOADING_PSEUDO_P (OP) \
- || (GET_CODE (OP) == MEM \
- && reload_in_progress) \
- || (GET_CODE (OP) == MEM \
- && memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
- && ! symbolic_memory_operand (OP, VOIDmode))) \
- : ((C) == 'T' ? \
- (GET_CODE (OP) == MEM \
- /* Using DFmode forces only short displacements \
- to be recognized as valid in reg+d addresses. */\
- && memory_address_p (DFmode, XEXP (OP, 0))) : 0))
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- On the HP-PA, the actual legitimate addresses must be
- REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
- But we can treat a SYMBOL_REF as legitimate if it is part of this
- function's constant-pool, because such addresses can actually
- be output as REG+SMALLINT. */
-
- #define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20)
- #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
-
- #define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20)
- #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
-
- #define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800)
- #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
-
- #define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000)
- #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { \
- if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
- || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
- || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
- goto ADDR; \
- else if (GET_CODE (X) == PLUS) \
- { \
- rtx base = 0, index; \
- if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
- { \
- if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- goto ADDR; \
- else if (flag_pic == 1 \
- && GET_CODE (XEXP (X, 1)) != REG \
- && GET_CODE (XEXP (X, 1)) != LO_SUM \
- && GET_CODE (XEXP (X, 1)) != MEM) \
- goto ADDR; \
- } \
- else if (REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- base = XEXP (X, 0), index = XEXP (X, 1); \
- else if (REG_P (XEXP (X, 1)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- base = XEXP (X, 1), index = XEXP (X, 0); \
- if (base != 0) \
- if (GET_CODE (index) == CONST_INT \
- && ((INT_14_BITS (index) && (MODE) != SFmode && (MODE) != DFmode) \
- || INT_5_BITS (index))) \
- goto ADDR; \
- } \
- else if (GET_CODE (X) == LO_SUM \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && CONSTANT_P (XEXP (X, 1)) \
- && (MODE) != SFmode \
- && (MODE) != DFmode) \
- goto ADDR; \
- else if (GET_CODE (X) == LO_SUM \
- && GET_CODE (XEXP (X, 0)) == SUBREG \
- && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
- && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
- && CONSTANT_P (XEXP (X, 1)) \
- && (MODE) != SFmode \
- && (MODE) != DFmode) \
- goto ADDR; \
- else if (GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST_INT \
- && INT_14_BITS (X))) \
- goto ADDR; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output. */
-
- extern struct rtx_def *hppa_legitimize_address ();
- #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
- { rtx orig_x = (X); \
- (X) = hppa_legitimize_address (X, OLDX, MODE); \
- if ((X) != orig_x && memory_address_p (MODE, X)) \
- goto WIN; }
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == PRE_DEC \
- || GET_CODE (ADDR) == POST_DEC \
- || GET_CODE (ADDR) == PRE_INC \
- || GET_CODE (ADDR) == POST_INC) \
- goto LABEL
-
- /* Define this macro if references to a symbol must be treated
- differently depending on something about the variable or
- function named by the symbol (such as what section it is in).
-
- The macro definition, if any, is executed immediately after the
- rtl for DECL or other node is created.
- The value of the rtl will be a `mem' whose address is a
- `symbol_ref'.
-
- The usual thing for this macro to do is to a flag in the
- `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
- name string in the `symbol_ref' (if one bit is not enough
- information).
-
- On the HP-PA we use this to indicate if a symbol is in text or
- data space. Also, function labels need special treatment. */
-
- #define TEXT_SPACE_P(DECL)\
- (TREE_CODE (DECL) == FUNCTION_DECL \
- || (TREE_CODE (DECL) == VAR_DECL \
- && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
- && !flag_pic) \
- || (*tree_code_type[(int) TREE_CODE (DECL)] == 'c' \
- && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
-
- #define FUNCTION_NAME_P(NAME) \
- (*(NAME) == '@' || (*(NAME) == '*' && *((NAME) + 1) == '@'))
-
- #define ENCODE_SECTION_INFO(DECL)\
- do \
- { if (TEXT_SPACE_P (DECL)) \
- { rtx _rtl; \
- if (TREE_CODE (DECL) == FUNCTION_DECL \
- || TREE_CODE (DECL) == VAR_DECL) \
- _rtl = DECL_RTL (DECL); \
- else \
- _rtl = TREE_CST_RTL (DECL); \
- SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \
- if (TREE_CODE (DECL) == FUNCTION_DECL) \
- hppa_encode_label (XEXP (DECL_RTL (DECL), 0));\
- } \
- } \
- while (0)
-
- /* Store the user-specified part of SYMBOL_NAME in VAR.
- This is sort of inverse to ENCODE_SECTION_INFO. */
-
- #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
- (VAR) = ((SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' ? \
- 1 + (SYMBOL_NAME)[1] == '@'\
- : (SYMBOL_NAME)[0] == '@'))
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE DImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- #define CASE_DROPS_THROUGH
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 8
-
- /* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
- #define WORD_REGISTER_OPERATIONS
-
- /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
- #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 1
-
- /* Do not break .stabs pseudos into continuations. */
- #define DBX_CONTIN_LENGTH 0
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* Add any extra modes needed to represent the condition code.
-
- HPPA floating comparisons produce condition codes. */
- #define EXTRA_CC_MODES CCFPmode
-
- /* Define the names for the modes specified above. */
- #define EXTRA_CC_NAMES "CCFP"
-
- /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison. For floating-point, CCFPmode
- should be used. CC_NOOVmode should be used when the first operand is a
- PLUS, MINUS, or NEG. CCmode should be used when no special processing is
- needed. */
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE SImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
- #define NO_FUNCTION_CSE
-
- /* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits. */
- #define SHIFT_COUNT_TRUNCATED 1
-
- /* Use atexit for static constructors/destructors, instead of defining
- our own exit function. */
- #define HAVE_ATEXIT
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) == 0) return 0; \
- if (INT_14_BITS (RTX)) return 1; \
- case HIGH: \
- return 2; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 4; \
- case CONST_DOUBLE: \
- if (RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)\
- && OUTER_CODE != SET) \
- return 0; \
- else \
- return 8;
-
- #define ADDRESS_COST(RTX) \
- (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
-
- /* Compute extra cost of moving data between one register class
- and another.
-
- Make moves from SAR so expensive they should never happen. We used to
- have 0xffff here, but that generates overflow in rare cases.
-
- Copies involving a FP register and a non-FP register are relatively
- expensive because they must go through memory.
-
- Other copies are reasonably cheap. */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (CLASS1 == SHIFT_REGS ? 0x100 \
- : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
- : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
- : 2)
-
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. The purpose for the cost of MULT is to encourage
- `synth_mult' to find a synthetic multiply when reasonable. */
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case MULT: \
- return TARGET_SNAKE && ! TARGET_DISABLE_FPREGS \
- ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- return COSTS_N_INSNS (60); \
- case PLUS: /* this includes shNadd insns */ \
- return COSTS_N_INSNS (1) + 2;
-
- /* Adjust the cost of dependencies. */
-
- #define ADJUST_COST(INSN,LINK,DEP,COST) \
- (COST) = pa_adjust_cost (INSN, LINK, DEP, COST)
-
- /* Handling the special cases is going to get too complicated for a macro,
- just call `pa_adjust_insn_length' to do the real work. */
- #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
- LENGTH += pa_adjust_insn_length (INSN, LENGTH);
-
- /* Enable a bug fix. (This is for extra caution.) */
- #define SHORTEN_WITH_ADJUST_INSN_LENGTH
-
- /* Millicode insns are actually function calls with some special
- constraints on arguments and register usage.
-
- Millicode calls always expect their arguments in the integer argument
- registers, and always return their result in %r29 (ret1). They
- are expected to clobber their arguments, %r1, %r29, and %r31 and
- nothing else.
-
- These macros tell reorg that the references to arguments and
- register clobbers for millicode calls do not appear to happen
- until after the millicode call. This allows reorg to put insns
- which set the argument registers into the delay slot of the millicode
- call -- thus they act more like traditional CALL_INSNs.
-
- get_attr_type will try to recognize the given insn, so make sure to
- filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
- in particular. */
- #define INSN_SETS_ARE_DELAYED(X) \
- ((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER \
- && get_attr_type (X) == TYPE_MILLI))
-
- #define INSN_REFERENCES_ARE_DELAYED(X) \
- ((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER \
- && get_attr_type (X) == TYPE_MILLI))
-
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #define ASM_FILE_START(FILE) \
- do { fprintf (FILE, "\t.SPACE $PRIVATE$\n\
- \t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31\n\
- \t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82\n\
- \t.SPACE $TEXT$\n\
- \t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44\n\
- \t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n\
- \t.IMPORT $global$,DATA\n\
- \t.IMPORT $$dyncall,MILLICODE\n");\
- if (profile_flag)\
- fprintf (FILE, "\t.IMPORT _mcount, CODE\n");\
- if (write_symbols != NO_DEBUG) \
- output_file_directive ((FILE), main_input_filename); \
- } while (0)
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ""
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ""
-
- /* We don't yet know how to identify GCC to HP-PA machines. */
- #define ASM_IDENTIFY_GCC(FILE) fprintf (FILE, "; gcc_compiled.:\n")
-
- /* Output before code. */
-
- /* Supposedly the assembler rejects the command if there is no tab! */
- #define TEXT_SECTION_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $CODE$\n"
-
- /* Output before read-only data. */
-
- /* Supposedly the assembler rejects the command if there is no tab! */
- #define READONLY_DATA_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n"
-
- #if 0
- /* This has apparently triggered a latent GAS bug which manifests itself
- as numerous warnings from the debugger of the form:
-
- During symbol reading, inner block not inside outer block in ...
- inner block not inside outer block in ...
-
- Or as local variables not being accessable from the debugger.
-
- Disable $LIT$ for now. Try it with GAS-2 when it is functional (I
- am not even going to try to fix this in GAS-1). */
- #define READONLY_DATA_SECTION readonly_data
- #endif
-
- /* Output before writable data. */
-
- /* Supposedly the assembler rejects the command if there is no tab! */
- #define DATA_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $DATA$\n"
-
- /* Output before uninitialized data. */
-
- #define BSS_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $BSS$\n"
-
- /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
-
- #define EXTRA_SECTIONS in_bss, in_readonly_data
-
- #define EXTRA_SECTION_FUNCTIONS \
- void \
- bss_section () \
- { \
- if (in_section != in_bss) \
- { \
- fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
- in_section = in_bss; \
- } \
- } \
- void \
- readonly_data () \
- { \
- if (in_section != in_readonly_data) \
- { \
- fprintf (asm_out_file, "%s\n", READONLY_DATA_ASM_OP); \
- in_section = in_readonly_data; \
- } \
- }
-
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
- "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
- "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
- "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
- "%fr4", "%fr5", "%fr6", "%fr7", \
- "%fr8", "%fr9", "%fr10", "%fr11", "%fr12", "%fr13", "%fr14", "%fr15", \
- "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
- "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R",\
- "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R",\
- "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R",\
- "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R",\
- "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R",\
- "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R",\
- "SAR"}
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE, NAME) \
- do { assemble_name (FILE, NAME); \
- if (TARGET_GAS) \
- fputc (':', FILE); \
- fputc ('\n', FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
- do { fputs ("\t.IMPORT ", FILE); \
- assemble_name (FILE, NAME); \
- if (FUNCTION_NAME_P (NAME)) \
- fputs (",CODE\n", FILE); \
- else \
- fputs (",DATA\n", FILE); \
- } while (0)
-
- /* hpux ld doesn't output the object file name, or anything useful at
- all, to indicate the start of an object file's symbols. This screws
- up gdb, so we'll output this magic cookie at the end of an object
- file with debugging symbols */
-
- #define ASM_FILE_END(FILE) \
- do { if (write_symbols == DBX_DEBUG)\
- { fputs (TEXT_SECTION_ASM_OP, FILE);\
- fputs ("\t.stabs \"end_file.\",4,0,0,Ltext_end\nLtext_end:\n",\
- (FILE));\
- }\
- } while (0)
-
- /* The bogus HP assembler requires ALL external references to be
- "imported", even library calls. They look a bit different, so
- here's this macro. */
-
- #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, RTL) \
- do { fputs ("\t.IMPORT ", FILE); \
- assemble_name (FILE, XSTR ((RTL), 0)); \
- fputs (",CODE\n", FILE); \
- } while (0)
-
- #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
- do { fputs ("\t.EXPORT ", FILE); assemble_name (FILE, NAME); \
- if (FUNCTION_NAME_P (NAME)) \
- fputs (",CODE\n", FILE); \
- else \
- fputs (",DATA\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- {fprintf (FILE, "%s$%04d", PREFIX, NUM); \
- if (TARGET_GAS) \
- fputs (":\n", FILE); \
- else \
- fputs ("\n", FILE);}
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s$%04d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- do { union { double d; int i[2];} __u; \
- __u.d = (VALUE); \
- fprintf (FILE, "\t; .double %.20e\n\t.word %d ; = 0x%x\n\t.word %d ; = 0x%x\n", \
- __u.d, __u.i[0], __u.i[0], __u.i[1], __u.i[1]); \
- } while (0)
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { union { float f; int i;} __u; \
- __u.f = (VALUE); \
- fprintf (FILE, "\t; .float %.12e\n\t.word %d ; = 0x%x\n", __u.f, __u.i, __u.i); \
- } while (0)
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- { fprintf (FILE, "\t.word "); \
- if (function_label_operand (VALUE, VOIDmode)) \
- fprintf (FILE, "P%%"); \
- output_addr_const (FILE, (VALUE)); \
- fprintf (FILE, "\n");}
-
- /* Likewise for `short' and `char' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.half "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
- output_ascii ((FILE), (P), (SIZE))
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
- #define ASM_OUTPUT_REG_POP(FILE,REGNO)
- /* This is how to output an element of a case-vector that is absolute.
- Note that this method makes filling these branch delay slots
- impossible. */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
-
- /* Jump tables are executable code and live in the TEXT section on the PA. */
- #define JUMP_TABLES_IN_TEXT_SECTION
-
- /* This is how to output an element of a case-vector that is relative.
- (The HP-PA does not use such vectors,
- but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\tword L%d-L%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.blockz %d\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- /* Supposedly the assembler rejects the command if there is no tab! */
-
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- { bss_section (); \
- assemble_name ((FILE), (NAME)); \
- if (TARGET_GAS) \
- fputc (':', (FILE)); \
- fputs ("\t.comm ", (FILE)); \
- fprintf ((FILE), "%d\n", (ROUNDED));}
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- { bss_section (); \
- fprintf ((FILE), "\t.align %d\n", (SIZE) <= 4 ? 4 : 8); \
- assemble_name ((FILE), (NAME)); \
- if (TARGET_GAS) \
- fputc (':', (FILE)); \
- fprintf ((FILE), "\n\t.block %d\n", (ROUNDED));}
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
- sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
- ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- On the HP-PA, the CODE can be `r', meaning this is a register-only operand
- and an immediate zero should be represented as `r0'.
-
- Several % codes are defined:
- O an operation
- C compare conditions
- N extract conditions
- M modifier to handle preincrement addressing for memory refs.
- F modifier to handle preincrement addressing for fp memory refs */
-
- #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx addr = ADDR; \
- register rtx base; \
- int offset; \
- switch (GET_CODE (addr)) \
- { \
- case REG: \
- fprintf (FILE, "0(0,%s)", reg_names [REGNO (addr)]); \
- break; \
- case PLUS: \
- if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
- offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
- else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
- else \
- abort (); \
- fprintf (FILE, "%d(0,%s)", offset, reg_names [REGNO (base)]); \
- break; \
- case LO_SUM: \
- fputs ("R'", FILE); \
- output_global_address (FILE, XEXP (addr, 1)); \
- fputs ("(", FILE); \
- output_operand (XEXP (addr, 0), 0); \
- fputs (")", FILE); \
- break; \
- case CONST_INT: \
- fprintf (FILE, "%d(0,0)", INTVAL (addr)); \
- break; \
- default: \
- output_addr_const (FILE, addr); \
- }}
-
-
- /* Define functions in pa.c and used in insn-output.c. */
-
- extern char *output_and ();
- extern char *output_ior ();
- extern char *output_move_double ();
- extern char *output_fp_move_double ();
- extern char *output_block_move ();
- extern char *output_scc_insn ();
- extern char *output_cbranch ();
- extern char *output_bb ();
- extern char *output_dbra ();
- extern char *output_movb ();
- extern char *output_return ();
- extern char *output_call ();
- extern char *output_floatsisf2 ();
- extern char *output_floatsidf2 ();
- extern char *output_mul_insn ();
- extern char *output_div_insn ();
- extern char *output_mod_insn ();
- extern char *singlemove_string ();
- extern void output_arg_descriptor ();
- extern void output_global_address ();
- extern struct rtx_def *legitimize_pic_address ();
- extern struct rtx_def *gen_cmp_fp ();
- extern void hppa_encode_label ();
-
- extern struct rtx_def *hppa_save_pic_table_rtx;
-