home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for Sun SPARC.
- Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@cygnus.com).
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /* Note that some other tm.h files include this one and then override
- many of the definitions that relate to assembler syntax. */
-
- #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg} \
- %{a:/usr/lib/bb_link.o}"
-
- /* Provide required defaults for linker -e and -d switches. */
-
- #define LINK_SPEC \
- "%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp %{static:-Bstatic} %{assert*}"
-
- /* Special flags to the Sun-4 assembler when using pipe for input. */
-
- #define ASM_SPEC " %| %{fpic:-k} %{fPIC:-k}"
-
- /* Define macros to distinguish architectures. */
- #define CPP_SPEC "%{msparclite:-D__sparclite__} %{mf930:-D__sparclite__} \
- %{mf934:-D__sparclite__} %{mv8:-D__sparc_v8__}"
-
- /* Prevent error on `-sun4' and `-target sun4' options. */
- /* This used to translate -dalign to -malign, but that is no good
- because it can't turn off the usual meaning of making debugging dumps. */
-
- #define CC1_SPEC "%{sun4:} %{target:}"
-
- #define PTRDIFF_TYPE "int"
- /* In 2.4 it should work to delete this.
- #define SIZE_TYPE "int" */
- #define WCHAR_TYPE "short unsigned int"
- #define WCHAR_TYPE_SIZE 16
-
- /* Omit frame pointer at high optimization levels. */
-
- #define OPTIMIZATION_OPTIONS(OPTIMIZE) \
- { \
- if (OPTIMIZE >= 2) \
- { \
- flag_omit_frame_pointer = 1; \
- } \
- }
-
- /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
- code into the rtl. Also, if we are profiling, we cannot eliminate
- the frame pointer (because the return address will get smashed). */
-
- #define OVERRIDE_OPTIONS \
- { \
- if (profile_flag || profile_block_flag) \
- flag_omit_frame_pointer = 0, flag_pic = 0; \
- SUBTARGET_OVERRIDE_OPTIONS \
- }
-
- /* This is meant to be redefined in the host dependent files */
- #define SUBTARGET_OVERRIDE_OPTIONS
-
- /* These compiler options take an argument. We ignore -target for now. */
-
- #define WORD_SWITCH_TAKES_ARG(STR) \
- (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
- || !strcmp (STR, "target") || !strcmp (STR, "assert"))
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- /* The GCC_NEW_VARARGS macro is so that old versions of gcc can compile
- new versions, which have an incompatible va-sparc.h file. This matters
- because gcc does "gvarargs.h" instead of <varargs.h>, and thus gets the
- wrong varargs file when it is compiled with a different version of gcc. */
-
- #define CPP_PREDEFINES \
- "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
- -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
-
- /* Print subsidiary information on the compiler version in use. */
-
- #define TARGET_VERSION fprintf (stderr, " (sparc)");
-
- /* Generate DBX debugging information. */
-
- #define DBX_DEBUGGING_INFO
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* Nonzero if we should generate code to use the fpu. */
- #define TARGET_FPU (target_flags & 1)
-
- /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
- use fast return insns, but lose some generality. */
- #define TARGET_EPILOGUE (target_flags & 2)
-
- /* Nonzero if we should assume that double pointers might be unaligned.
- This can happen when linking gcc compiled code with other compilers,
- because the ABI only guarantees 4 byte alignment. */
- #define TARGET_UNALIGNED_DOUBLES (target_flags & 4)
-
- /* Nonzero means that we should generate code for a v8 sparc. */
- #define TARGET_V8 (target_flags & 64)
-
- /* Nonzero means that we should generate code for a sparclite.
- This enables the sparclite specific instructions, but does not affect
- whether FPU instructions are emitted. */
- #define TARGET_SPARCLITE (target_flags & 128)
-
- /* Nonzero means that we should generate code using a flat register window
- model, i.e. no save/restore instructions are generated, in the most
- efficient manner. This code is not compatible with normal sparc code. */
- /* This is not a user selectable option yet, because it requires changes
- that are not yet switchable via command line arguments. */
- #define TARGET_FRW (target_flags & 256)
-
- /* Nonzero means that we should generate code using a flat register window
- model, i.e. no save/restore instructions are generated, but which is
- compatible with normal sparc code. This is the same as above, except
- that the frame pointer is %l6 instead of %fp. This code is not as efficient
- as TARGET_FRW, because it has one less allocatable register. */
- /* This is not a user selectable option yet, because it requires changes
- that are not yet switchable via command line arguments. */
- #define TARGET_FRW_COMPAT (target_flags & 512)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- /* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
- The Fujitsu MB86934 is the recent sparclite chip, with an fup.
- We use -mf930 and -mf934 options to choose which.
- ??? These should perhaps be -mcpu= options. */
-
- #define TARGET_SWITCHES \
- { {"fpu", 1}, \
- {"no-fpu", -1}, \
- {"hard-float", 1}, \
- {"soft-float", -1}, \
- {"epilogue", 2}, \
- {"no-epilogue", -2}, \
- {"unaligned-doubles", 4}, \
- {"no-unaligned-doubles", -4},\
- {"v8", 64}, \
- {"no-v8", -64}, \
- {"sparclite", 128}, \
- {"no-sparclite", -128}, \
- /* {"frw", 256}, */ \
- /* {"no-frw", -256}, */ \
- /* {"frw-compat", 256+512}, */ \
- /* {"no-frw-compat", -(256+512)}, */ \
- {"f930", 128}, \
- {"f930", -1}, \
- {"f934", 128}, \
- SUBTARGET_SWITCHES \
- { "", TARGET_DEFAULT}}
-
- #define TARGET_DEFAULT 3
-
- /* This is meant to be redefined in the host dependent files */
- #define SUBTARGET_SWITCHES
-
- /* target machine storage layout */
-
- #if 0
- /* ??? This does not work in SunOS 4.x, so it is not enabled here.
- Instead, it is enabled in sol2.h, because it does work under Solaris. */
- /* Define for support of TFmode long double and REAL_ARITHMETIC.
- Sparc ABI says that long double is 4 words. */
- #define LONG_DOUBLE_TYPE_SIZE 128
- #endif
-
- /* Define for cross-compilation to a sparc target with no TFmode from a host
- with a different float format (e.g. VAX). */
- #define REAL_ARITHMETIC
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN 1
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* This is true on the SPARC. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is the lowest
- numbered. */
- /* Doubles are stored in memory with the high order word first. This
- matters when cross-compiling. */
- #define WORDS_BIG_ENDIAN 1
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
- #define MAX_BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 64
-
- /* ALIGN FRAMES on double word boundaries */
-
- #define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 32
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
-
- /* A bitfield declared as `int' forces `int' alignment for the struct. */
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 64
-
- /* The best alignment to use in cases where we have a choice. */
- #define FASTEST_ALIGNMENT 64
-
- /* Make strings word-aligned so strcpy from constants will be faster. */
- #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- ((TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < FASTEST_ALIGNMENT) \
- ? FASTEST_ALIGNMENT : (ALIGN))
-
- /* Make arrays of chars word-aligned for the same reasons. */
- #define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
-
- /* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
- /* Things that must be doubleword aligned cannot go in the text section,
- because the linker fails to align the text section enough!
- Put them in the data section. */
- #define MAX_TEXT_ALIGN 32
-
- #define SELECT_SECTION(T,RELOC) \
- { \
- if (TREE_CODE (T) == VAR_DECL) \
- { \
- if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
- && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
- && ! (flag_pic && (RELOC))) \
- text_section (); \
- else \
- data_section (); \
- } \
- else if (TREE_CODE (T) == CONSTRUCTOR) \
- { \
- if (flag_pic != 0 && (RELOC) != 0) \
- data_section (); \
- } \
- else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
- { \
- if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
- || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
- data_section (); \
- else \
- text_section (); \
- } \
- }
-
- /* Use text section for a constant
- unless we need more alignment than that offers. */
- #define SELECT_RTX_SECTION(MODE, X) \
- { \
- if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
- && ! (flag_pic && symbolic_operand (X))) \
- text_section (); \
- else \
- data_section (); \
- }
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- SPARC has 32 integer registers and 32 floating point registers. */
-
- #define FIRST_PSEUDO_REGISTER 64
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- g0 is used for the condition code and not to represent %g0, which is
- hardwired to 0, so reg 0 is *not* fixed.
- g1 through g4 are free to use as temporaries.
- g5 through g7 are reserved for the operating system. */
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 1, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0}
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 1, 1, \
- \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1}
-
- /* If !TARGET_FPU, then make the fp registers fixed so that they won't
- be allocated. */
-
- #define CONDITIONAL_REGISTER_USAGE \
- do \
- { \
- if (! TARGET_FPU) \
- { \
- int regno; \
- for (regno = 32; regno < 64; regno++) \
- fixed_regs[regno] = 1; \
- } \
- } \
- while (0)
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On SPARC, ordinary registers hold 32 bits worth;
- this means both integer and floating point registers.
-
- We use vectors to keep this information about registers. */
-
- /* How many hard registers it takes to make a register of this mode. */
- extern int hard_regno_nregs[];
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Value is 1 if register/mode pair is acceptable on sparc. */
- extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On SPARC, the cpu registers can hold any mode but the float registers
- can only hold SFmode or DFmode. See sparc.c for how we
- initialize this. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* SPARC pc isn't overloaded on a register that the compiler knows about. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 14
-
- /* Actual top-of-stack address is 92 greater than the contents
- of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
- for the ins and local registers, 4 byte for structure return address, and
- 24 bytes for the 6 register parameters. */
- #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 30
-
- #if 0
- /* Register that is used for the return address. */
- #define RETURN_ADDR_REGNUM 15
- #endif
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c.
-
- Used in flow.c, global.c, and reload1.c. */
- extern int leaf_function;
-
- #define FRAME_POINTER_REQUIRED \
- (! (leaf_function_p () && only_leaf_regs_used ()))
-
- /* C statement to store the difference between the frame pointer
- and the stack pointer values immediately after the function prologue.
-
- Note, we always pretend that this is a leaf function because if
- it's not, there's no point in trying to eliminate the
- frame pointer. If it is a leaf function, we guessed right! */
- #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
- ((VAR) = (TARGET_FRW ? sparc_frw_compute_frame_size (get_frame_size ()) \
- : compute_frame_size (get_frame_size (), 1)))
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 30
-
- /* Register in which static-chain is passed to a function. This must
- not be a register used by the prologue. */
- #define STATIC_CHAIN_REGNUM 2
-
- /* Register which holds offset table for position-independent
- data references. */
-
- #define PIC_OFFSET_TABLE_REGNUM 23
-
- #define INITIALIZE_PIC initialize_pic ()
- #define FINALIZE_PIC finalize_pic ()
-
- /* Sparc ABI says that quad-precision floats and all structures are returned
- in memory. */
- #define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE (TYPE) == BLKmode || TYPE_MODE (TYPE) == TFmode)
-
- /* Functions which return large structures get the address
- to place the wanted value at offset 64 from the frame.
- Must reserve 64 bytes for the in and local registers. */
- /* Used only in other #defines in this file. */
- #define STRUCT_VALUE_OFFSET 64
-
- #define STRUCT_VALUE \
- gen_rtx (MEM, Pmode, \
- gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
- #define STRUCT_VALUE_INCOMING \
- gen_rtx (MEM, Pmode, \
- gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The SPARC has two kinds of registers, general and floating point. */
-
- enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #if 0 && defined (__GNUC__)
- #define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
- #else
- #define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
- #endif
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
-
- /* This is the order in which to allocate registers
- normally.
-
- We put %f0/%f1 last among the float registers, so as to make it more
- likely that a pseudo-register which dies in the float return register
- will get allocated to the float return register, thus saving a move
- instruction at the end of the function. */
- #define REG_ALLOC_ORDER \
- { 8, 9, 10, 11, 12, 13, 2, 3, \
- 15, 16, 17, 18, 19, 20, 21, 22, \
- 23, 24, 25, 26, 27, 28, 29, 31, \
- 34, 35, 36, 37, 38, 39, \
- 40, 41, 42, 43, 44, 45, 46, 47, \
- 48, 49, 50, 51, 52, 53, 54, 55, \
- 56, 57, 58, 59, 60, 61, 62, 63, \
- 32, 33, \
- 1, 4, 5, 6, 7, 0, 14, 30}
-
- /* This is the order in which to allocate registers for
- leaf functions. If all registers can fit in the "i" registers,
- then we have the possibility of having a leaf function. */
- #define REG_LEAF_ALLOC_ORDER \
- { 2, 3, 24, 25, 26, 27, 28, 29, \
- 15, 8, 9, 10, 11, 12, 13, \
- 16, 17, 18, 19, 20, 21, 22, 23, \
- 34, 35, 36, 37, 38, 39, \
- 40, 41, 42, 43, 44, 45, 46, 47, \
- 48, 49, 50, 51, 52, 53, 54, 55, \
- 56, 57, 58, 59, 60, 61, 62, 63, \
- 32, 33, \
- 1, 4, 5, 6, 7, 0, 14, 30, 31}
-
- #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
-
- #define LEAF_REGISTERS \
- { 1, 1, 1, 1, 1, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 1, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 0, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1}
-
- extern char leaf_reg_remap[];
- #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
- extern char leaf_reg_backmap[];
- #define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For SPARC, `I' is used for the range of constants an insn
- can actually contain.
- `J' is used for the range which is just zero (since that is R0).
- `K' is used for constants which can be loaded with a single sethi insn. */
-
- #define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
- : (C) == 'J' ? (VALUE) == 0 \
- : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
- : 0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? fp_zero_operand (VALUE) \
- : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
- /* We can't load constants into FP registers. We can't load any FP constant
- if an 'E' constraint fails to match it. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- (CONSTANT_P (X) \
- && ((CLASS) == FP_REGS \
- || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
- || HOST_BITS_PER_INT != BITS_PER_WORD))) \
- ? NO_REGS : (CLASS))
-
- /* Return the register class of a scratch register needed to load IN into
- a register of class CLASS in MODE.
-
- On the SPARC, when PIC, we need a temporary when loading some addresses
- into a register.
-
- Also, we need a temporary when loading/storing a HImode/QImode value
- between memory and the FPU registers. This can happen when combine puts
- a paradoxical subreg in a float/fix conversion insn. */
-
- #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
- (((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode)\
- && (GET_CODE (IN) == MEM \
- || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
- && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
-
- #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
- ((CLASS) == FP_REGS && ((MODE) == HImode || (MODE) == QImode) \
- && (GET_CODE (IN) == MEM \
- || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
- && true_regnum (IN) == -1)) ? GENERAL_REGS : NO_REGS)
-
- /* On SPARC it is not possible to directly move data between
- GENERAL_REGS and FP_REGS. */
- #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
- (((CLASS1) == FP_REGS && (CLASS2) == GENERAL_REGS) \
- || ((CLASS1) == GENERAL_REGS && (CLASS2) == FP_REGS))
-
- /* Return the stack location to use for secondary memory needed reloads. */
- #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
- gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
- GEN_INT (STARTING_FRAME_OFFSET)))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On SPARC, this is the size of MODE in words. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define the number of register that can hold parameters.
- These two macros are used only in other macro definitions below. */
- #define NPARM_REGS 6
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- /* This is 16 to allow space for one TFmode floating point value. */
- #define STARTING_FRAME_OFFSET (-16)
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On SPARC, don't define this because there are no push insns. */
- /* #define PUSH_ROUNDING(BYTES) */
-
- /* Offset of first parameter from the argument pointer register value.
- This is 64 for the ins and locals, plus 4 for the struct-return reg
- even if this function isn't going to use it. */
- #define FIRST_PARM_OFFSET(FNDECL) (STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
-
- /* When a parameter is passed in a register, stack space is still
- allocated for it. */
- #define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
-
- /* Keep the stack pointer constant throughout the function.
- This is both an optimization and a necessity: longjmp
- doesn't behave itself when the stack pointer moves within
- the function! */
- #define ACCUMULATE_OUTGOING_ARGS
-
- /* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
-
- /* Some subroutine macros specific to this machine.
- When !TARGET_FPU, put float return values in the general registers,
- since we don't have any fp registers. */
- #define BASE_RETURN_VALUE_REG(MODE) \
- (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8)
- #define BASE_OUTGOING_VALUE_REG(MODE) \
- (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
- : (TARGET_FRW ? 8 : 24))
- #define BASE_PASSING_ARG_REG(MODE) (8)
- #define BASE_INCOMING_ARG_REG(MODE) (TARGET_FRW ? 8 : 24)
-
- /* Define this macro if the target machine has "register windows". This
- C expression returns the register number as seen by the called function
- corresponding to register number OUT as seen by the calling function.
- Return OUT if register number OUT is not an outbound register. */
-
- #define INCOMING_REGNO(OUT) \
- ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
-
- /* Define this macro if the target machine has "register windows". This
- C expression returns the register number as seen by the calling function
- corresponding to register number IN as seen by the called function.
- Return IN if register number IN is not an inbound register. */
-
- #define OUTGOING_REGNO(IN) \
- ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- /* On SPARC the value is found in the first "output" register. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
-
- /* But the called function leaves it in the first "input" register. */
-
- #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
-
- /* 1 if N is a possible register number for a function value
- as seen by the caller.
- On SPARC, the first "output" reg is used for integer values,
- and the first floating point register is used for floating point values. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
-
- /* Define the size of space to allocate for the return value of an
- untyped_call. */
-
- #define APPLY_RESULT_SIZE 16
-
- /* 1 if N is a possible register number for function argument passing.
- On SPARC, these are the "output" registers. */
-
- #define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On SPARC, this is a single integer, which is a number of words
- of arguments scanned so far (including the invisible argument,
- if any, which holds the structure-value-address).
- Thus 7 or more means all following args should go on the stack. */
-
- #define CUMULATIVE_ARGS int
-
- #define ROUND_ADVANCE(SIZE) \
- ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On SPARC, the offset always starts at 0: the first parm reg is always
- the same reg. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
- : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
-
- /* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- /* On SPARC the first six args are normally in registers
- and the rest are pushed. Any arg that starts within the first 6 words
- is at least partially passed in a register unless its data type forbids. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((CUM) < NPARM_REGS \
- && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
- && ((TYPE)==0 || (MODE) != BLKmode \
- || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
- ? gen_rtx (REG, (MODE), (BASE_PASSING_ARG_REG (MODE) + (CUM))) \
- : 0)
-
- /* Define where a function finds its arguments.
- This is different from FUNCTION_ARG because of register windows. */
-
- #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
- ((CUM) < NPARM_REGS \
- && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
- && ((TYPE)==0 || (MODE) != BLKmode \
- || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
- ? gen_rtx (REG, (MODE), (BASE_INCOMING_ARG_REG (MODE) + (CUM))) \
- : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero.
- Any arg that starts in the first 6 regs but won't entirely fit in them
- needs partial registers on the Sparc. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((CUM) < NPARM_REGS \
- && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
- && ((TYPE)==0 || (MODE) != BLKmode \
- || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
- && ((CUM) + ((MODE) == BLKmode \
- ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
- : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS > 0)\
- ? (NPARM_REGS - (CUM)) \
- : 0)
-
- /* The SPARC ABI stipulates passing struct arguments (of any size) and
- quad-precision floats by invisible reference. */
- #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
- ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
- || TREE_CODE (TYPE) == UNION_TYPE)) \
- || (MODE == TFmode))
-
- /* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
- extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
-
- /* Define the function that build the compare insn for scc and bcc. */
-
- extern struct rtx_def *gen_compare_reg ();
-
- /* Generate the special assembly code needed to tell the assembler whatever
- it might need to know about the return value of a function.
-
- For Sparc assemblers, we need to output a .proc pseudo-op which conveys
- information to the assembler relating to peephole optimization (done in
- the assembler). */
-
- #define ASM_DECLARE_RESULT(FILE, RESULT) \
- fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
-
- /* Output the label for a function definition. */
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
- do { \
- ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
- ASM_OUTPUT_LABEL (FILE, NAME); \
- } while (0)
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
- of memory. If any fpu reg is used in the function, we allocate
- such a block here, at the bottom of the frame, just in case it's needed.
-
- If this function is a leaf procedure, then we may choose not
- to do a "save" insn. The decision about whether or not
- to do this is made in regclass.c. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- (TARGET_FRW ? sparc_frw_output_function_prologue (FILE, SIZE, leaf_function)\
- : output_function_prologue (FILE, SIZE, leaf_function))
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- do { \
- fputs ("\tsethi %hi(", (FILE)); \
- ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
- fputs ("),%o0\n\tcall mcount\n\tor %lo(", (FILE)); \
- ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
- fputs ("),%o0,%o0\n", (FILE)); \
- } while (0)
-
- /* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done. */
- /* FIXME -- this does not parameterize how it generates labels (like the
- above FUNCTION_PROFILER). Broken on Solaris-2. --gnu@cygnus.com */
-
- #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
- (LABELNO), (LABELNO))
-
- /* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
- #define BLOCK_PROFILER(FILE, BLOCKNO) \
- { \
- int blockn = (BLOCKNO); \
- fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
- \tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
- 4 * blockn, 4 * blockn, 4 * blockn); \
- }
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- extern int current_function_calls_alloca;
- extern int current_function_outgoing_args_size;
-
- #define EXIT_IGNORE_STACK \
- (get_frame_size () != 0 \
- || current_function_calls_alloca || current_function_outgoing_args_size)
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- /* This declaration is needed due to traditional/ANSI
- incompatibilities which cannot be #ifdefed away
- because they occur inside of macros. Sigh. */
- extern union tree_node *current_function_decl;
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- (TARGET_FRW ? sparc_frw_output_function_epilogue (FILE, SIZE, leaf_function)\
- : output_function_epilogue (FILE, SIZE, leaf_function))
-
- #define DELAY_SLOTS_FOR_EPILOGUE \
- (TARGET_FRW ? sparc_frw_epilogue_delay_slots () : 1)
- #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
- (TARGET_FRW ? sparc_frw_eligible_for_epilogue_delay (trial, slots_filled) \
- : eligible_for_epilogue_delay (trial, slots_filled))
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
- /* On the sparc, the trampoline contains five instructions:
- sethi #TOP_OF_FUNCTION,%g1
- or #BOTTOM_OF_FUNCTION,%g1,%g1
- sethi #TOP_OF_STATIC,%g2
- jmp g1
- or #BOTTOM_OF_STATIC,%g2,%g2 */
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
- }
-
- /* Length in units of the trampoline for entering a nested function. */
-
- #define TRAMPOLINE_SIZE 20
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function.
-
- This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
- (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
- (to store insns). This is a bit excessive. Perhaps a different
- mechanism would be better here.
-
- Emit 3 FLUSH instructions (UNSPEC_VOLATILE 2) to synchonize the data
- and instruction caches. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
- size_int (10), 0, 1); \
- rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
- size_int (10), 0, 1); \
- rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
- rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
- rtx g1_sethi = gen_rtx (HIGH, SImode, \
- gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
- rtx g2_sethi = gen_rtx (HIGH, SImode, \
- gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
- rtx g1_ori = gen_rtx (HIGH, SImode, \
- gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
- rtx g2_ori = gen_rtx (HIGH, SImode, \
- gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
- rtx tem = gen_reg_rtx (SImode); \
- emit_move_insn (tem, g1_sethi); \
- emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
- emit_move_insn (tem, g1_ori); \
- emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
- emit_move_insn (tem, g2_sethi); \
- emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
- emit_move_insn (tem, g2_ori); \
- emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
- emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
- gen_rtvec (1, plus_constant (TRAMP, 0)), \
- 2)); \
- emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
- gen_rtvec (1, plus_constant (TRAMP, 8)), \
- 2)); \
- emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
- gen_rtvec (1, plus_constant (TRAMP, 16)), \
- 2)); \
- }
-
- /* Generate necessary RTL for __builtin_saveregs().
- ARGLIST is the argument list; see expr.c. */
- extern struct rtx_def *sparc_builtin_saveregs ();
- #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
-
- /* Generate RTL to flush the register windows so as to make arbitrary frames
- available. */
- #define SETUP_FRAME_ADDRESSES() \
- emit_insn (gen_flush_register_windows ())
-
- /* Given an rtx for the address of a frame,
- return an rtx for the address of the word in the frame
- that holds the dynamic chain--the previous frame's address. */
- #define DYNAMIC_CHAIN_ADDRESS(frame) \
- gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 56))
-
- /* The return address isn't on the stack, it is in a register, so we can't
- access it from the current frame pointer. We can access it from the
- previous frame pointer though by reading a value from the register window
- save area. */
- #define RETURN_ADDR_IN_PREVIOUS_FRAME
-
- /* The current return address is in %i7. The return address of anything
- farther back is in the register window save area at [%fp+60]. */
- /* ??? This ignores the fact that the actual return address is +8 for normal
- returns, and +12 for structure returns. */
- #define RETURN_ADDR_RTX(count, frame) \
- ((count == -1) \
- ? gen_rtx (REG, Pmode, 31) \
- : copy_to_reg (gen_rtx (MEM, Pmode, \
- memory_address (Pmode, plus_constant (frame, 60)))))
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) ^ 0x20) < 32 \
- || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the SPARC, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
- /* 1 if X is an fp register. */
-
- #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address.
- When PIC, we do not accept an address that would require a scratch reg
- to load into a register. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
- || (GET_CODE (X) == CONST \
- && ! (flag_pic && pic_address_needs_scratch (X))))
-
- /* Define this, so that when PIC, reload won't try to reload invalid
- addresses which require two reload registers. */
-
- #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
-
- /* Nonzero if the constant value X is a legitimate general operand.
- Anything can be made to work except floating point constants. */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- /* Optional extra constraints for this machine. Borrowed from romp.h.
-
- For the SPARC, `Q' means that this is a memory operand but not a
- symbolic memory operand. Note that an unassigned pseudo register
- is such a memory operand. Needed because reload will generate
- these things in insns and then not re-recognize the insns, causing
- constrain_operands to fail.
-
- `S' handles constraints for calls. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' \
- ? ((GET_CODE (OP) == MEM \
- && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
- && ! symbolic_memory_operand (OP, VOIDmode)) \
- || (reload_in_progress && GET_CODE (OP) == REG \
- && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
- : (C) == 'T' \
- ? (mem_aligned_8 (OP)) \
- : (C) == 'U' \
- ? (register_ok_for_ldd (OP)) \
- : 0)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' \
- ? (GET_CODE (OP) == REG \
- ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
- && reg_renumber[REGNO (OP)] < 0) \
- : GET_CODE (OP) == MEM) \
- : (C) == 'T' \
- ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
- : (C) == 'U' \
- ? (GET_CODE (OP) == REG \
- && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
- || reg_renumber[REGNO (OP)] > 0) \
- && register_ok_for_ldd (OP)) : 0)
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
- ordinarily. This changes a bit when generating PIC.
-
- If you change this, execute "rm explow.o recog.o reload.o". */
-
- #define RTX_OK_FOR_BASE_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == SUBREG \
- && GET_CODE (SUBREG_REG (X)) == REG \
- && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
-
- #define RTX_OK_FOR_INDEX_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
- || (GET_CODE (X) == SUBREG \
- && GET_CODE (SUBREG_REG (X)) == REG \
- && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
-
- #define RTX_OK_FOR_OFFSET_P(X) \
- (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (RTX_OK_FOR_BASE_P (X)) \
- goto ADDR; \
- else if (GET_CODE (X) == PLUS) \
- { \
- register rtx op0 = XEXP (X, 0); \
- register rtx op1 = XEXP (X, 1); \
- if (flag_pic && op0 == pic_offset_table_rtx) \
- { \
- if (RTX_OK_FOR_BASE_P (op1)) \
- goto ADDR; \
- else if (flag_pic == 1 \
- && GET_CODE (op1) != REG \
- && GET_CODE (op1) != LO_SUM \
- && GET_CODE (op1) != MEM \
- && (GET_CODE (op1) != CONST_INT \
- || SMALL_INT (op1))) \
- goto ADDR; \
- } \
- else if (RTX_OK_FOR_BASE_P (op0)) \
- { \
- if (RTX_OK_FOR_INDEX_P (op1) \
- || RTX_OK_FOR_OFFSET_P (op1)) \
- goto ADDR; \
- } \
- else if (RTX_OK_FOR_BASE_P (op1)) \
- { \
- if (RTX_OK_FOR_INDEX_P (op0) \
- || RTX_OK_FOR_OFFSET_P (op0)) \
- goto ADDR; \
- } \
- } \
- else if (GET_CODE (X) == LO_SUM) \
- { \
- register rtx op0 = XEXP (X, 0); \
- register rtx op1 = XEXP (X, 1); \
- if (RTX_OK_FOR_BASE_P (op0) \
- && CONSTANT_P (op1)) \
- goto ADDR; \
- } \
- else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
- goto ADDR; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output. */
-
- /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
- extern struct rtx_def *legitimize_pic_address ();
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { rtx sparc_x = (X); \
- if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
- (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
- force_operand (XEXP (X, 0), NULL_RTX)); \
- if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
- (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
- force_operand (XEXP (X, 1), NULL_RTX)); \
- if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
- (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
- XEXP (X, 1)); \
- if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
- (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
- force_operand (XEXP (X, 1), NULL_RTX)); \
- if (sparc_x != (X) && memory_address_p (MODE, X)) \
- goto WIN; \
- if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
- else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
- copy_to_mode_reg (Pmode, XEXP (X, 1))); \
- else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
- (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
- copy_to_mode_reg (Pmode, XEXP (X, 0))); \
- else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
- || GET_CODE (X) == LABEL_REF) \
- (X) = gen_rtx (LO_SUM, Pmode, \
- copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
- if (memory_address_p (MODE, X)) \
- goto WIN; }
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the SPARC this is never true. */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE SImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 8
-
- #if 0 /* Sun 4 has matherr, so this is no good. */
- /* This is the value of the error code EDOM for this machine,
- used by the sqrt instruction. */
- #define TARGET_EDOM 33
-
- /* This is how to refer to the variable errno. */
- #define GEN_ERRNO_RTX \
- gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
- #endif /* 0 */
-
- /* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
- #define WORD_REGISTER_OPERATIONS
-
- /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
- #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
-
- /* Nonzero if access to memory by bytes is slow and undesirable.
- For RISC chips, it means that access to memory by bytes is no
- better than access by words when possible, so grab a whole word
- and maybe make use of that. */
- #define SLOW_BYTE_ACCESS 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- #define PROMOTE_PROTOTYPES
-
- /* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits. */
- #define SHIFT_COUNT_TRUNCATED 1
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* Generate calls to memcpy, memcmp and memset. */
- #define TARGET_MEM_FUNCTIONS
-
- /* Add any extra modes needed to represent the condition code.
-
- On the Sparc, we have a "no-overflow" mode which is used when an add or
- subtract insn is used to set the condition code. Different branches are
- used in this case for some operations.
-
- We also have two modes to indicate that the relevant condition code is
- in the floating-point condition code register. One for comparisons which
- will generate an exception if the result is unordered (CCFPEmode) and
- one for comparisons which will never trap (CCFPmode). This really should
- be a separate register, but we don't want to go to 65 registers. */
- #define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
-
- /* Define the names for the modes specified above. */
- #define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
-
- /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison. For floating-point,
- CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
- PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
- processing is needed. */
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
- : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
- || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
- ? CC_NOOVmode : CCmode))
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE SImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
- #define NO_FUNCTION_CSE
-
- /* alloca should avoid clobbering the old register save area. */
- #define SETJMP_VIA_SAVE_AREA
-
- /* Define subroutines to call to handle multiply and divide.
- Use the subroutines that Sun's library provides.
- The `*' prevents an underscore from being prepended by the compiler. */
-
- #define DIVSI3_LIBCALL "*.div"
- #define UDIVSI3_LIBCALL "*.udiv"
- #define MODSI3_LIBCALL "*.rem"
- #define UMODSI3_LIBCALL "*.urem"
- /* .umul is a little faster than .mul. */
- #define MULSI3_LIBCALL "*.umul"
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
- return 0; \
- case HIGH: \
- return 2; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 4; \
- case CONST_DOUBLE: \
- if (GET_MODE (RTX) == DImode) \
- if ((XINT (RTX, 3) == 0 \
- && (unsigned) XINT (RTX, 2) < 0x1000) \
- || (XINT (RTX, 3) == -1 \
- && XINT (RTX, 2) < 0 \
- && XINT (RTX, 2) >= -0x1000)) \
- return 0; \
- return 8;
-
- /* SPARC offers addressing modes which are "as cheap as a register".
- See sparc.c (or gcc.texinfo) for details. */
-
- #define ADDRESS_COST(RTX) \
- (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
-
- /* Compute extra cost of moving data between one register class
- and another. */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
- || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. The purpose for the cost of MULT is to encourage
- `synth_mult' to find a synthetic multiply when reasonable.
-
- If we need more than 12 insns to do a multiply, then go out-of-line,
- since the call overhead will be < 10% of the cost of the multiply. */
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case MULT: \
- return TARGET_V8 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- return COSTS_N_INSNS (25); \
- /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
- so that cse will favor the latter. */ \
- case FLOAT: \
- case FIX: \
- return 19;
-
- /* Conditional branches with empty delay slots have a length of two. */
- #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
- if (GET_CODE (INSN) == CALL_INSN \
- || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
- LENGTH += 1;
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #define ASM_FILE_START(file)
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ""
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ""
-
- #define ASM_LONG ".word"
- #define ASM_SHORT ".half"
- #define ASM_BYTE_OP ".byte"
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP ".text"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".data"
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
- "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
- "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
- "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
- "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
- "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
- "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
- "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
-
- /* Define additional names for use in asm clobbers and asm declarations.
-
- We define the fake Condition Code register as an alias for reg 0 (which
- is our `condition code' register), so that condition codes can easily
- be clobbered by an asm. No such register actually exists. Condition
- codes are partly stored in the PSR and partly in the FSR. */
-
- #define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* On Sun 4, this limit is 2048. We use 1500 to be safe,
- since the length can run past this up to a continuation point. */
- #define DBX_CONTIN_LENGTH 1500
-
- /* This is how to output a note to DBX telling it the line number
- to which the following sequence of instructions corresponds.
-
- This is needed for SunOS 4.0, and should not hurt for 3.2
- versions either. */
- #define ASM_OUTPUT_SOURCE_LINE(file, line) \
- { static int sym_lineno = 1; \
- fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
- line, sym_lineno, sym_lineno); \
- sym_lineno += 1; }
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
-
- /* This is how to output a definition of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
- /* This is how to output a reference to an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
- /* FIXME: This should be used throughout gcc, and documented in the texinfo
- files. There is no reason you should have to allocate a buffer and
- `sprintf' to reference an internal label (as opposed to defining it). */
-
- #define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d", PREFIX, NUM)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- { \
- long t[2]; \
- REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
- fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
- ASM_LONG, t[0], ASM_LONG, t[1]); \
- }
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- { \
- long t; \
- REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
- fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
- } \
-
- /* This is how to output an assembler line defining a `long double'
- constant. */
-
- #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
- { \
- long t[4]; \
- REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
- fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
- ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
- }
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t%s\t", ASM_LONG), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line defining a DImode constant. */
- #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
- output_double_int (FILE, VALUE)
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
-
- /* This is how to output an element of a case-vector that is absolute. */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- do { \
- char label[30]; \
- ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
- fprintf (FILE, "\t.word\t"); \
- assemble_name (FILE, label); \
- fprintf (FILE, "\n"); \
- } while (0)
-
- /* This is how to output an element of a case-vector that is relative.
- (SPARC uses such vectors only when generating PIC.) */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- do { \
- char label[30]; \
- ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
- fprintf (FILE, "\t.word\t"); \
- assemble_name (FILE, label); \
- fprintf (FILE, "-1b\n"); \
- } while (0)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.skip %u\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\t.global ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fputs ("\n\t.common ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\n\t.reserve ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- #define IDENT_ASM_OP ".ident"
-
- /* Output #ident as a .ident. */
-
- #define ASM_OUTPUT_IDENT(FILE, NAME) \
- fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
- ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
- #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx base, index = 0; \
- int offset = 0; \
- register rtx addr = ADDR; \
- if (GET_CODE (addr) == REG) \
- fputs (reg_names[REGNO (addr)], FILE); \
- else if (GET_CODE (addr) == PLUS) \
- { \
- if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
- offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
- else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
- else \
- base = XEXP (addr, 0), index = XEXP (addr, 1); \
- fputs (reg_names[REGNO (base)], FILE); \
- if (index == 0) \
- fprintf (FILE, "%+d", offset); \
- else if (GET_CODE (index) == REG) \
- fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
- else if (GET_CODE (index) == SYMBOL_REF) \
- fputc ('+', FILE), output_addr_const (FILE, index); \
- else abort (); \
- } \
- else if (GET_CODE (addr) == MINUS \
- && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
- { \
- output_addr_const (FILE, XEXP (addr, 0)); \
- fputs ("-(", FILE); \
- output_addr_const (FILE, XEXP (addr, 1)); \
- fputs ("-.)", FILE); \
- } \
- else if (GET_CODE (addr) == LO_SUM) \
- { \
- output_operand (XEXP (addr, 0), 0); \
- fputs ("+%lo(", FILE); \
- output_address (XEXP (addr, 1)); \
- fputc (')', FILE); \
- } \
- else if (flag_pic && GET_CODE (addr) == CONST \
- && GET_CODE (XEXP (addr, 0)) == MINUS \
- && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
- && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
- && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
- { \
- addr = XEXP (addr, 0); \
- output_addr_const (FILE, XEXP (addr, 0)); \
- /* Group the args of the second CONST in parenthesis. */ \
- fputs ("-(", FILE); \
- /* Skip past the second CONST--it does nothing for us. */\
- output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
- /* Close the parenthesis. */ \
- fputc (')', FILE); \
- } \
- else \
- { \
- output_addr_const (FILE, addr); \
- } \
- }
-
- /* Declare functions defined in sparc.c and used in templates. */
-
- extern char *singlemove_string ();
- extern char *output_move_double ();
- extern char *output_move_quad ();
- extern char *output_fp_move_double ();
- extern char *output_fp_move_quad ();
- extern char *output_block_move ();
- extern char *output_scc_insn ();
- extern char *output_cbranch ();
- extern char *output_return ();
-
- /* Defined in flags.h, but insn-emit.c does not include flags.h. */
-
- extern int flag_pic;
-