home *** CD-ROM | disk | FTP | other *** search
- /* Compute register class preferences for pseudo-registers.
- Copyright (C) 1987, 1988, 1991, 1992, 1993 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* This file contains two passes of the compiler: reg_scan and reg_class.
- It also defines some tables of information about the hardware registers
- and a function init_reg_sets to initialize the tables. */
-
- #include "config.h"
- #include "rtl.h"
- #include "hard-reg-set.h"
- #include "flags.h"
- #include "basic-block.h"
- #include "regs.h"
- #include "insn-config.h"
- #include "recog.h"
- #include "reload.h"
- #include "real.h"
- #include "bytecode.h"
-
- #ifndef REGISTER_MOVE_COST
- #define REGISTER_MOVE_COST(x, y) 2
- #endif
-
- #ifndef MEMORY_MOVE_COST
- #define MEMORY_MOVE_COST(x) 4
- #endif
-
- /* If we have auto-increment or auto-decrement and we can have secondary
- reloads, we are not allowed to use classes requiring secondary
- reloads for psuedos auto-incremented since reload can't handle it. */
-
- #ifdef AUTO_INC_DEC
- #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
- #define FORBIDDEN_INC_DEC_CLASSES
- #endif
- #endif
-
- /* Register tables used by many passes. */
-
- /* Indexed by hard register number, contains 1 for registers
- that are fixed use (stack pointer, pc, frame pointer, etc.).
- These are the registers that cannot be used to allocate
- a pseudo reg whose life does not cross calls. */
-
- char fixed_regs[FIRST_PSEUDO_REGISTER];
-
- /* Same info as a HARD_REG_SET. */
-
- HARD_REG_SET fixed_reg_set;
-
- /* Data for initializing the above. */
-
- static char initial_fixed_regs[] = FIXED_REGISTERS;
-
- /* Indexed by hard register number, contains 1 for registers
- that are fixed use or are clobbered by function calls.
- These are the registers that cannot be used to allocate
- a pseudo reg whose life crosses calls. */
-
- char call_used_regs[FIRST_PSEUDO_REGISTER];
-
- /* Same info as a HARD_REG_SET. */
-
- HARD_REG_SET call_used_reg_set;
-
- /* Data for initializing the above. */
-
- static char initial_call_used_regs[] = CALL_USED_REGISTERS;
-
- /* Indexed by hard register number, contains 1 for registers that are
- fixed use -- i.e. in fixed_regs -- or a function value return register
- or STRUCT_VALUE_REGNUM or STATIC_CHAIN_REGNUM. These are the
- registers that cannot hold quantities across calls even if we are
- willing to save and restore them. */
-
- char call_fixed_regs[FIRST_PSEUDO_REGISTER];
-
- /* The same info as a HARD_REG_SET. */
-
- HARD_REG_SET call_fixed_reg_set;
-
- /* Number of non-fixed registers. */
-
- int n_non_fixed_regs;
-
- /* Indexed by hard register number, contains 1 for registers
- that are being used for global register decls.
- These must be exempt from ordinary flow analysis
- and are also considered fixed. */
-
- char global_regs[FIRST_PSEUDO_REGISTER];
-
- /* Table of register numbers in the order in which to try to use them. */
- #ifdef REG_ALLOC_ORDER
- int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
- #endif
-
- /* For each reg class, a HARD_REG_SET saying which registers are in it. */
-
- HARD_REG_SET reg_class_contents[N_REG_CLASSES];
-
- /* The same information, but as an array of unsigned ints. We copy from
- these unsigned ints to the table above. We do this so the tm.h files
- do not have to be aware of the wordsize for machines with <= 64 regs. */
-
- #define N_REG_INTS \
- ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
-
- static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
- = REG_CLASS_CONTENTS;
-
- /* For each reg class, number of regs it contains. */
-
- int reg_class_size[N_REG_CLASSES];
-
- /* For each reg class, table listing all the containing classes. */
-
- enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
-
- /* For each reg class, table listing all the classes contained in it. */
-
- enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
-
- /* For each pair of reg classes,
- a largest reg class contained in their union. */
-
- enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
-
- /* For each pair of reg classes,
- the smallest reg class containing their union. */
-
- enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
-
- /* Array containing all of the register names */
-
- char *reg_names[] = REGISTER_NAMES;
-
- /* Indexed by n, gives number of times (REG n) is set or clobbered.
- This information remains valid for the rest of the compilation
- of the current function; it is used to control register allocation.
-
- This information applies to both hard registers and pseudo registers,
- unlike much of the information above. */
-
- short *reg_n_sets;
-
- /* Maximum cost of moving from a register in one class to a register in
- another class. Based on REGISTER_MOVE_COST. */
-
- static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
-
- /* Similar, but here we don't have to move if the first index is a subset
- of the second so in that case the cost is zero. */
-
- static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
-
- #ifdef FORBIDDEN_INC_DEC_CLASSES
-
- /* These are the classes that regs which are auto-incremented or decremented
- cannot be put in. */
-
- static int forbidden_inc_dec_class[N_REG_CLASSES];
-
- /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
- context. */
-
- static char *in_inc_dec;
-
- #endif /* FORBIDDEN_INC_DEC_CLASSES */
-
- /* Function called only once to initialize the above data on reg usage.
- Once this is done, various switches may override. */
-
- void
- init_reg_sets ()
- {
- register int i, j;
-
- /* First copy the register information from the initial int form into
- the regsets. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- CLEAR_HARD_REG_SET (reg_class_contents[i]);
-
- for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
- if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
- & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
- SET_HARD_REG_BIT (reg_class_contents[i], j);
- }
-
- bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
- bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
- bzero (global_regs, sizeof global_regs);
-
- /* Compute number of hard regs in each class. */
-
- bzero (reg_class_size, sizeof reg_class_size);
- for (i = 0; i < N_REG_CLASSES; i++)
- for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
- if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
- reg_class_size[i]++;
-
- /* Initialize the table of subunions.
- reg_class_subunion[I][J] gets the largest-numbered reg-class
- that is contained in the union of classes I and J. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- for (j = 0; j < N_REG_CLASSES; j++)
- {
- #ifdef HARD_REG_SET
- register /* Declare it register if it's a scalar. */
- #endif
- HARD_REG_SET c;
- register int k;
-
- COPY_HARD_REG_SET (c, reg_class_contents[i]);
- IOR_HARD_REG_SET (c, reg_class_contents[j]);
- for (k = 0; k < N_REG_CLASSES; k++)
- {
- GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
- subclass1);
- continue;
-
- subclass1:
- /* keep the largest subclass */ /* SPEE 900308 */
- GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
- reg_class_contents[(int) reg_class_subunion[i][j]],
- subclass2);
- reg_class_subunion[i][j] = (enum reg_class) k;
- subclass2:
- ;
- }
- }
- }
-
- /* Initialize the table of superunions.
- reg_class_superunion[I][J] gets the smallest-numbered reg-class
- containing the union of classes I and J. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- for (j = 0; j < N_REG_CLASSES; j++)
- {
- #ifdef HARD_REG_SET
- register /* Declare it register if it's a scalar. */
- #endif
- HARD_REG_SET c;
- register int k;
-
- COPY_HARD_REG_SET (c, reg_class_contents[i]);
- IOR_HARD_REG_SET (c, reg_class_contents[j]);
- for (k = 0; k < N_REG_CLASSES; k++)
- GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
-
- superclass:
- reg_class_superunion[i][j] = (enum reg_class) k;
- }
- }
-
- /* Initialize the tables of subclasses and superclasses of each reg class.
- First clear the whole table, then add the elements as they are found. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- for (j = 0; j < N_REG_CLASSES; j++)
- {
- reg_class_superclasses[i][j] = LIM_REG_CLASSES;
- reg_class_subclasses[i][j] = LIM_REG_CLASSES;
- }
- }
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- if (i == (int) NO_REGS)
- continue;
-
- for (j = i + 1; j < N_REG_CLASSES; j++)
- {
- enum reg_class *p;
-
- GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
- subclass);
- continue;
- subclass:
- /* Reg class I is a subclass of J.
- Add J to the table of superclasses of I. */
- p = ®_class_superclasses[i][0];
- while (*p != LIM_REG_CLASSES) p++;
- *p = (enum reg_class) j;
- /* Add I to the table of superclasses of J. */
- p = ®_class_subclasses[j][0];
- while (*p != LIM_REG_CLASSES) p++;
- *p = (enum reg_class) i;
- }
- }
-
- /* Initialize the move cost table. Find every subset of each class
- and take the maximum cost of moving any subset to any other. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- for (j = 0; j < N_REG_CLASSES; j++)
- {
- int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
- enum reg_class *p1, *p2;
-
- for (p2 = ®_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
- if (*p2 != i)
- cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
-
- for (p1 = ®_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
- {
- if (*p1 != j)
- cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
-
- for (p2 = ®_class_subclasses[j][0];
- *p2 != LIM_REG_CLASSES; p2++)
- if (*p1 != *p2)
- cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
- }
-
- move_cost[i][j] = cost;
-
- if (reg_class_subset_p (i, j))
- cost = 0;
-
- may_move_cost[i][j] = cost;
- }
- }
-
- /* After switches have been processed, which perhaps alter
- `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
-
- void
- init_reg_sets_1 ()
- {
- register int i;
-
- /* This macro allows the fixed or call-used registers
- to depend on target flags. */
-
- #ifdef CONDITIONAL_REGISTER_USAGE
- CONDITIONAL_REGISTER_USAGE;
- #endif
-
- /* Initialize "constant" tables. */
-
- CLEAR_HARD_REG_SET (fixed_reg_set);
- CLEAR_HARD_REG_SET (call_used_reg_set);
- CLEAR_HARD_REG_SET (call_fixed_reg_set);
-
- bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
- #ifdef STRUCT_VALUE_REGNUM
- call_fixed_regs[STRUCT_VALUE_REGNUM] = 1;
- #endif
- #ifdef STATIC_CHAIN_REGNUM
- call_fixed_regs[STATIC_CHAIN_REGNUM] = 1;
- #endif
-
- n_non_fixed_regs = 0;
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- {
- if (FUNCTION_VALUE_REGNO_P (i))
- call_fixed_regs[i] = 1;
- if (fixed_regs[i])
- SET_HARD_REG_BIT (fixed_reg_set, i);
- else
- n_non_fixed_regs++;
-
- if (call_used_regs[i])
- SET_HARD_REG_BIT (call_used_reg_set, i);
- if (call_fixed_regs[i])
- SET_HARD_REG_BIT (call_fixed_reg_set, i);
- }
- }
-
- /* Specify the usage characteristics of the register named NAME.
- It should be a fixed register if FIXED and a
- call-used register if CALL_USED. */
-
- void
- fix_register (name, fixed, call_used)
- char *name;
- int fixed, call_used;
- {
- int i;
-
- if (output_bytecode)
- {
- warning ("request to mark `%s' as %s ignored by bytecode compiler",
- name, call_used ? "call-used" : "fixed");
- return;
- }
-
- /* Decode the name and update the primary form of
- the register info. */
-
- if ((i = decode_reg_name (name)) >= 0)
- {
- fixed_regs[i] = fixed;
- call_used_regs[i] = call_used;
- }
- else
- {
- warning ("unknown register name: %s", name);
- }
- }
-
- /* Mark register number I as global. */
-
- void
- globalize_reg (i)
- int i;
- {
- if (global_regs[i])
- {
- warning ("register used for two global register variables");
- return;
- }
-
- if (call_used_regs[i] && ! fixed_regs[i])
- warning ("call-clobbered register used for global register variable");
-
- global_regs[i] = 1;
-
- /* If already fixed, nothing else to do. */
- if (fixed_regs[i])
- return;
-
- fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
- n_non_fixed_regs--;
-
- SET_HARD_REG_BIT (fixed_reg_set, i);
- SET_HARD_REG_BIT (call_used_reg_set, i);
- SET_HARD_REG_BIT (call_fixed_reg_set, i);
- }
-
- /* Now the data and code for the `regclass' pass, which happens
- just before local-alloc. */
-
- /* The `costs' struct records the cost of using a hard register of each class
- and of using memory for each pseudo. We use this data to set up
- register class preferences. */
-
- struct costs
- {
- int cost[N_REG_CLASSES];
- int mem_cost;
- };
-
- /* Record the cost of each class for each pseudo. */
-
- static struct costs *costs;
-
- /* Record the same data by operand number, accumulated for each alternative
- in an insn. The contribution to a pseudo is that of the minimum-cost
- alternative. */
-
- static struct costs op_costs[MAX_RECOG_OPERANDS];
-
- /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
- This is available after `regclass' is run. */
-
- static char *prefclass;
-
- /* altclass[R] is a register class that we should use for allocating
- pseudo number R if no register in the preferred class is available.
- If no register in this class is available, memory is preferred.
-
- It might appear to be more general to have a bitmask of classes here,
- but since it is recommended that there be a class corresponding to the
- union of most major pair of classes, that generality is not required.
-
- This is available after `regclass' is run. */
-
- static char *altclass;
-
- /* Record the depth of loops that we are in. */
-
- static int loop_depth;
-
- /* Account for the fact that insns within a loop are executed very commonly,
- but don't keep doing this as loops go too deep. */
-
- static int loop_cost;
-
- static int copy_cost ();
- static void record_reg_classes ();
- static void record_address_regs ();
-
-
- /* Return the reg_class in which pseudo reg number REGNO is best allocated.
- This function is sometimes called before the info has been computed.
- When that happens, just return GENERAL_REGS, which is innocuous. */
-
- enum reg_class
- reg_preferred_class (regno)
- int regno;
- {
- if (prefclass == 0)
- return GENERAL_REGS;
- return (enum reg_class) prefclass[regno];
- }
-
- enum reg_class
- reg_alternate_class (regno)
- {
- if (prefclass == 0)
- return ALL_REGS;
-
- return (enum reg_class) altclass[regno];
- }
-
- /* This prevents dump_flow_info from losing if called
- before regclass is run. */
-
- void
- regclass_init ()
- {
- prefclass = 0;
- }
-
- /* This is a pass of the compiler that scans all instructions
- and calculates the preferred class for each pseudo-register.
- This information can be accessed later by calling `reg_preferred_class'.
- This pass comes just before local register allocation. */
-
- void
- regclass (f, nregs)
- rtx f;
- int nregs;
- {
- #ifdef REGISTER_CONSTRAINTS
- register rtx insn;
- register int i, j;
- struct costs init_cost;
- rtx set;
- int pass;
-
- init_recog ();
-
- costs = (struct costs *) alloca (nregs * sizeof (struct costs));
-
- #ifdef FORBIDDEN_INC_DEC_CLASSES
-
- in_inc_dec = (char *) alloca (nregs);
-
- /* Initialize information about which register classes can be used for
- pseudos that are auto-incremented or auto-decremented. It would
- seem better to put this in init_reg_sets, but we need to be able
- to allocate rtx, which we can't do that early. */
-
- for (i = 0; i < N_REG_CLASSES; i++)
- {
- rtx r = gen_rtx (REG, VOIDmode, 0);
- enum machine_mode m;
-
- for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
- if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
- {
- REGNO (r) = j;
-
- for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
- m = (enum machine_mode) ((int) m + 1))
- if (HARD_REGNO_MODE_OK (j, m))
- {
- PUT_MODE (r, m);
- if (0
- #ifdef SECONDARY_INPUT_RELOAD_CLASS
- || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
- != NO_REGS)
- #endif
- #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
- || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
- != NO_REGS)
- #endif
- )
- forbidden_inc_dec_class[i] = 1;
- }
- }
- }
- #endif /* FORBIDDEN_INC_DEC_CLASSES */
-
- init_cost.mem_cost = 10000;
- for (i = 0; i < N_REG_CLASSES; i++)
- init_cost.cost[i] = 10000;
-
- /* Normally we scan the insns once and determine the best class to use for
- each register. However, if -fexpensive_optimizations are on, we do so
- twice, the second time using the tentative best classes to guide the
- selection. */
-
- for (pass = 0; pass <= flag_expensive_optimizations; pass++)
- {
- /* Zero out our accumulation of the cost of each class for each reg. */
-
- bzero (costs, nregs * sizeof (struct costs));
-
- #ifdef FORBIDDEN_INC_DEC_CLASSES
- bzero (in_inc_dec, nregs);
- #endif
-
- loop_depth = 0, loop_cost = 1;
-
- /* Scan the instructions and record each time it would
- save code to put a certain register in a certain class. */
-
- for (insn = f; insn; insn = NEXT_INSN (insn))
- {
- char *constraints[MAX_RECOG_OPERANDS];
- enum machine_mode modes[MAX_RECOG_OPERANDS];
- int nalternatives;
- int noperands;
-
- /* Show that an insn inside a loop is likely to be executed three
- times more than insns outside a loop. This is much more aggressive
- than the assumptions made elsewhere and is being tried as an
- experiment. */
-
- if (GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
- loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
- else if (GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
- loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
-
- else if ((GET_CODE (insn) == INSN
- && GET_CODE (PATTERN (insn)) != USE
- && GET_CODE (PATTERN (insn)) != CLOBBER
- && GET_CODE (PATTERN (insn)) != ASM_INPUT)
- || (GET_CODE (insn) == JUMP_INSN
- && GET_CODE (PATTERN (insn)) != ADDR_VEC
- && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
- || GET_CODE (insn) == CALL_INSN)
- {
- if (GET_CODE (insn) == INSN
- && (noperands = asm_noperands (PATTERN (insn))) >= 0)
- {
- decode_asm_operands (PATTERN (insn), recog_operand, NULL_PTR,
- constraints, modes);
- nalternatives = (noperands == 0 ? 0
- : n_occurrences (',', constraints[0]) + 1);
- }
- else
- {
- int insn_code_number = recog_memoized (insn);
- rtx note;
-
- set = single_set (insn);
- insn_extract (insn);
-
- nalternatives = insn_n_alternatives[insn_code_number];
- noperands = insn_n_operands[insn_code_number];
-
- /* If this insn loads a parameter from its stack slot, then
- it represents a savings, rather than a cost, if the
- parameter is stored in memory. Record this fact. */
-
- if (set != 0 && GET_CODE (SET_DEST (set)) == REG
- && GET_CODE (SET_SRC (set)) == MEM
- && (note = find_reg_note (insn, REG_EQUIV,
- NULL_RTX)) != 0
- && GET_CODE (XEXP (note, 0)) == MEM)
- {
- costs[REGNO (SET_DEST (set))].mem_cost
- -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)))
- * loop_cost);
- record_address_regs (XEXP (SET_SRC (set), 0),
- BASE_REG_CLASS, loop_cost * 2);
- continue;
- }
-
- /* Improve handling of two-address insns such as
- (set X (ashift CONST Y)) where CONST must be made to
- match X. Change it into two insns: (set X CONST)
- (set X (ashift X Y)). If we left this for reloading, it
- would probably get three insns because X and Y might go
- in the same place. This prevents X and Y from receiving
- the same hard reg.
-
- We can only do this if the modes of operands 0 and 1
- (which might not be the same) are tieable and we only need
- do this during our first pass. */
-
- if (pass == 0 && optimize
- && noperands >= 3
- && insn_operand_constraint[insn_code_number][1][0] == '0'
- && insn_operand_constraint[insn_code_number][1][1] == 0
- && CONSTANT_P (recog_operand[1])
- && ! rtx_equal_p (recog_operand[0], recog_operand[1])
- && ! rtx_equal_p (recog_operand[0], recog_operand[2])
- && GET_CODE (recog_operand[0]) == REG
- && MODES_TIEABLE_P (GET_MODE (recog_operand[0]),
- insn_operand_mode[insn_code_number][1]))
- {
- rtx previnsn = prev_real_insn (insn);
- rtx dest
- = gen_lowpart (insn_operand_mode[insn_code_number][1],
- recog_operand[0]);
- rtx newinsn
- = emit_insn_before (gen_move_insn (dest,
- recog_operand[1]),
- insn);
-
- /* If this insn was the start of a basic block,
- include the new insn in that block.
- We need not check for code_label here;
- while a basic block can start with a code_label,
- INSN could not be at the beginning of that block. */
- if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
- {
- int b;
- for (b = 0; b < n_basic_blocks; b++)
- if (insn == basic_block_head[b])
- basic_block_head[b] = newinsn;
- }
-
- /* This makes one more setting of new insns's dest. */
- reg_n_sets[REGNO (recog_operand[0])]++;
-
- *recog_operand_loc[1] = recog_operand[0];
- for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
- if (recog_dup_num[i] == 1)
- *recog_dup_loc[i] = recog_operand[0];
-
- insn = PREV_INSN (newinsn);
- continue;
- }
-
- for (i = 0; i < noperands; i++)
- {
- constraints[i]
- = insn_operand_constraint[insn_code_number][i];
- modes[i] = insn_operand_mode[insn_code_number][i];
- }
- }
-
- /* If we get here, we are set up to record the costs of all the
- operands for this insn. Start by initializing the costs.
- Then handle any address registers. Finally record the desired
- classes for any pseudos, doing it twice if some pair of
- operands are commutative. */
-
- for (i = 0; i < noperands; i++)
- {
- op_costs[i] = init_cost;
-
- if (GET_CODE (recog_operand[i]) == SUBREG)
- recog_operand[i] = SUBREG_REG (recog_operand[i]);
-
- if (GET_CODE (recog_operand[i]) == MEM)
- record_address_regs (XEXP (recog_operand[i], 0),
- BASE_REG_CLASS, loop_cost * 2);
- else if (constraints[i][0] == 'p')
- record_address_regs (recog_operand[i],
- BASE_REG_CLASS, loop_cost * 2);
- }
-
- /* Check for commutative in a separate loop so everything will
- have been initialized. We must do this even if one operand
- is a constant--see addsi3 in m68k.md. */
-
- for (i = 0; i < noperands - 1; i++)
- if (constraints[i][0] == '%')
- {
- char *xconstraints[MAX_RECOG_OPERANDS];
- int j;
-
- /* Handle commutative operands by swapping the constraints.
- We assume the modes are the same. */
-
- for (j = 0; j < noperands; j++)
- xconstraints[j] = constraints[j];
-
- xconstraints[i] = constraints[i+1];
- xconstraints[i+1] = constraints[i];
- record_reg_classes (nalternatives, noperands,
- recog_operand, modes, xconstraints,
- insn);
- }
-
- record_reg_classes (nalternatives, noperands, recog_operand,
- modes, constraints, insn);
-
- /* Now add the cost for each operand to the total costs for
- its register. */
-
- for (i = 0; i < noperands; i++)
- if (GET_CODE (recog_operand[i]) == REG
- && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
- {
- int regno = REGNO (recog_operand[i]);
- struct costs *p = &costs[regno], *q = &op_costs[i];
-
- p->mem_cost += q->mem_cost * loop_cost;
- for (j = 0; j < N_REG_CLASSES; j++)
- p->cost[j] += q->cost[j] * loop_cost;
- }
- }
- }
-
- /* Now for each register look at how desirable each class is
- and find which class is preferred. Store that in
- `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
- class any of whose registers is better than memory. */
-
- if (pass == 0)
- {
- prefclass = (char *) oballoc (nregs);
- altclass = (char *) oballoc (nregs);
- }
-
- for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
- {
- register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
- enum reg_class best = ALL_REGS, alt = NO_REGS;
- /* This is an enum reg_class, but we call it an int
- to save lots of casts. */
- register int class;
- register struct costs *p = &costs[i];
-
- for (class = (int) ALL_REGS - 1; class > 0; class--)
- {
- /* Ignore classes that are too small for this operand or
- invalid for a operand that was auto-incremented. */
- if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
- > reg_class_size[class]
- #ifdef FORBIDDEN_INC_DEC_CLASSES
- || (in_inc_dec[i] && forbidden_inc_dec_class[class])
- #endif
- )
- ;
- else if (p->cost[class] < best_cost)
- {
- best_cost = p->cost[class];
- best = (enum reg_class) class;
- }
- else if (p->cost[class] == best_cost)
- best = reg_class_subunion[(int)best][class];
- }
-
- /* Record the alternate register class; i.e., a class for which
- every register in it is better than using memory. If adding a
- class would make a smaller class (i.e., no union of just those
- classes exists), skip that class. The major unions of classes
- should be provided as a register class. Don't do this if we
- will be doing it again later. */
-
- if (pass == 1 || ! flag_expensive_optimizations)
- for (class = 0; class < N_REG_CLASSES; class++)
- if (p->cost[class] < p->mem_cost
- && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
- > reg_class_size[(int) alt])
- #ifdef FORBIDDEN_INC_DEC_CLASSES
- && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
- #endif
- )
- alt = reg_class_subunion[(int) alt][class];
-
- /* If we don't add any classes, nothing to try. */
- if (alt == best)
- alt = (int) NO_REGS;
-
- /* We cast to (int) because (char) hits bugs in some compilers. */
- prefclass[i] = (int) best;
- altclass[i] = (int) alt;
- }
- }
- #endif /* REGISTER_CONSTRAINTS */
- }
-
- #ifdef REGISTER_CONSTRAINTS
-
- /* Record the cost of using memory or registers of various classes for
- the operands in INSN.
-
- N_ALTS is the number of alternatives.
-
- N_OPS is the number of operands.
-
- OPS is an array of the operands.
-
- MODES are the modes of the operands, in case any are VOIDmode.
-
- CONSTRAINTS are the constraints to use for the operands. This array
- is modified by this procedure.
-
- This procedure works alternative by alternative. For each alternative
- we assume that we will be able to allocate all pseudos to their ideal
- register class and calculate the cost of using that alternative. Then
- we compute for each operand that is a pseudo-register, the cost of
- having the pseudo allocated to each register class and using it in that
- alternative. To this cost is added the cost of the alternative.
-
- The cost of each class for this insn is its lowest cost among all the
- alternatives. */
-
- static void
- record_reg_classes (n_alts, n_ops, ops, modes, constraints, insn)
- int n_alts;
- int n_ops;
- rtx *ops;
- enum machine_mode *modes;
- char **constraints;
- rtx insn;
- {
- int alt;
- enum op_type {OP_READ, OP_WRITE, OP_READ_WRITE} op_types[MAX_RECOG_OPERANDS];
- int i, j;
-
- /* By default, each operand is an input operand. */
-
- for (i = 0; i < n_ops; i++)
- op_types[i] = OP_READ;
-
- /* Process each alternative, each time minimizing an operand's cost with
- the cost for each operand in that alternative. */
-
- for (alt = 0; alt < n_alts; alt++)
- {
- struct costs this_op_costs[MAX_RECOG_OPERANDS];
- int alt_fail = 0;
- int alt_cost = 0;
- enum reg_class classes[MAX_RECOG_OPERANDS];
- int class;
-
- for (i = 0; i < n_ops; i++)
- {
- char *p = constraints[i];
- rtx op = ops[i];
- enum machine_mode mode = modes[i];
- int allows_mem = 0;
- int win = 0;
- char c;
-
- /* If this operand has no constraints at all, we can conclude
- nothing about it since anything is valid. */
-
- if (*p == 0)
- {
- if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
- bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
-
- continue;
- }
-
- if (*p == '%')
- p++;
-
- /* If this alternative is only relevant when this operand
- matches a previous operand, we do different things depending
- on whether this operand is a pseudo-reg or not. */
-
- if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
- {
- j = p[0] - '0';
- classes[i] = classes[j];
-
- if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
- {
- /* If this matches the other operand, we have no added
- cost. */
- if (rtx_equal_p (ops[j], op))
- ;
-
- /* If we can put the other operand into a register, add to
- the cost of this alternative the cost to copy this
- operand to the register used for the other operand. */
-
- if (classes[j] != NO_REGS)
- alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
- }
- else if (GET_CODE (ops[j]) != REG
- || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
- {
- /* This op is a pseudo but the one it matches is not. */
-
- /* If we can't put the other operand into a register, this
- alternative can't be used. */
-
- if (classes[j] == NO_REGS)
- alt_fail = 1;
-
- /* Otherwise, add to the cost of this alternative the cost
- to copy the other operand to the register used for this
- operand. */
-
- else
- alt_cost += copy_cost (ops[j], mode, classes[j], 1);
- }
- else
- {
- /* The costs of this operand are the same as that of the
- other operand. However, if we cannot tie them, this
- alternative needs to do a copy, which is one
- instruction. */
-
- this_op_costs[i] = this_op_costs[j];
- if (REGNO (ops[i]) != REGNO (ops[j])
- && ! find_reg_note (insn, REG_DEAD, op))
- alt_cost += 2;
-
- /* This is in place of ordinary cost computation
- for this operand, so skip to the end of the
- alternative (should be just one character). */
- while (*p && *p++ != ',')
- ;
-
- constraints[i] = p;
- continue;
- }
- }
-
- /* Scan all the constraint letters. See if the operand matches
- any of the constraints. Collect the valid register classes
- and see if this operand accepts memory. */
-
- classes[i] = NO_REGS;
- while (*p && (c = *p++) != ',')
- switch (c)
- {
- case '=':
- op_types[i] = OP_WRITE;
- break;
-
- case '+':
- op_types[i] = OP_READ_WRITE;
- break;
-
- case '*':
- /* Ignore the next letter for this pass. */
- p++;
- break;
-
- case '%':
- case '?': case '!': case '#':
- case '&':
- case '0': case '1': case '2': case '3': case '4':
- case 'p':
- break;
-
- case 'm': case 'o': case 'V':
- /* It doesn't seem worth distinguishing between offsettable
- and non-offsettable addresses here. */
- allows_mem = 1;
- if (GET_CODE (op) == MEM)
- win = 1;
- break;
-
- case '<':
- if (GET_CODE (op) == MEM
- && (GET_CODE (XEXP (op, 0)) == PRE_DEC
- || GET_CODE (XEXP (op, 0)) == POST_DEC))
- win = 1;
- break;
-
- case '>':
- if (GET_CODE (op) == MEM
- && (GET_CODE (XEXP (op, 0)) == PRE_INC
- || GET_CODE (XEXP (op, 0)) == POST_INC))
- win = 1;
- break;
-
- case 'E':
- /* Match any floating double constant, but only if
- we can examine the bits of it reliably. */
- if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
- || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
- && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
- break;
- if (GET_CODE (op) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'F':
- if (GET_CODE (op) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'G':
- case 'H':
- if (GET_CODE (op) == CONST_DOUBLE
- && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
- win = 1;
- break;
-
- case 's':
- if (GET_CODE (op) == CONST_INT
- || (GET_CODE (op) == CONST_DOUBLE
- && GET_MODE (op) == VOIDmode))
- break;
- case 'i':
- if (CONSTANT_P (op)
- #ifdef LEGITIMATE_PIC_OPERAND_P
- && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
- #endif
- )
- win = 1;
- break;
-
- case 'n':
- if (GET_CODE (op) == CONST_INT
- || (GET_CODE (op) == CONST_DOUBLE
- && GET_MODE (op) == VOIDmode))
- win = 1;
- break;
-
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- if (GET_CODE (op) == CONST_INT
- && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
- win = 1;
- break;
-
- case 'X':
- win = 1;
- break;
-
- #ifdef EXTRA_CONSTRAINT
- case 'Q':
- case 'R':
- case 'S':
- case 'T':
- case 'U':
- if (EXTRA_CONSTRAINT (op, c))
- win = 1;
- break;
- #endif
-
- case 'g':
- if (GET_CODE (op) == MEM
- || (CONSTANT_P (op)
- #ifdef LEGITIMATE_PIC_OPERAND_P
- && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
- #endif
- ))
- win = 1;
- allows_mem = 1;
- case 'r':
- classes[i]
- = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
- break;
-
- default:
- classes[i]
- = reg_class_subunion[(int) classes[i]]
- [(int) REG_CLASS_FROM_LETTER (c)];
- }
-
- constraints[i] = p;
-
- /* How we account for this operand now depends on whether it is a
- pseudo register or not. If it is, we first check if any
- register classes are valid. If not, we ignore this alternative,
- since we want to assume that all pseudos get allocated for
- register preferencing. If some register class is valid, compute
- the costs of moving the pseudo into that class. */
-
- if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
- {
- if (classes[i] == NO_REGS)
- alt_fail = 1;
- else
- {
- struct costs *pp = &this_op_costs[i];
-
- for (class = 0; class < N_REG_CLASSES; class++)
- pp->cost[class] = may_move_cost[class][(int) classes[i]];
-
- /* If the alternative actually allows memory, make things
- a bit cheaper since we won't need an extra insn to
- load it. */
-
- pp->mem_cost = MEMORY_MOVE_COST (mode) - allows_mem;
-
- /* If we have assigned a class to this register in our
- first pass, add a cost to this alternative corresponding
- to what we would add if this register were not in the
- appropriate class. */
-
- if (prefclass)
- alt_cost
- += may_move_cost[prefclass[REGNO (op)]][(int) classes[i]];
- }
- }
-
- /* Otherwise, if this alternative wins, either because we
- have already determined that or if we have a hard register of
- the proper class, there is no cost for this alternative. */
-
- else if (win
- || (GET_CODE (op) == REG
- && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
- ;
-
- /* If registers are valid, the cost of this alternative includes
- copying the object to and/or from a register. */
-
- else if (classes[i] != NO_REGS)
- {
- if (op_types[i] != OP_WRITE)
- alt_cost += copy_cost (op, mode, classes[i], 1);
-
- if (op_types[i] != OP_READ)
- alt_cost += copy_cost (op, mode, classes[i], 0);
- }
-
- /* The only other way this alternative can be used is if this is a
- constant that could be placed into memory. */
-
- else if (CONSTANT_P (op) && allows_mem)
- alt_cost += MEMORY_MOVE_COST (mode);
- else
- alt_fail = 1;
- }
-
- if (alt_fail)
- continue;
-
- /* Finally, update the costs with the information we've calculated
- about this alternative. */
-
- for (i = 0; i < n_ops; i++)
- if (GET_CODE (ops[i]) == REG
- && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
- {
- struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
- int scale = 1 + (op_types[i] == OP_READ_WRITE);
-
- pp->mem_cost = MIN (pp->mem_cost,
- (qq->mem_cost + alt_cost) * scale);
-
- for (class = 0; class < N_REG_CLASSES; class++)
- pp->cost[class] = MIN (pp->cost[class],
- (qq->cost[class] + alt_cost) * scale);
- }
- }
- }
-
- /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
- TO_P is zero) a register of class CLASS in mode MODE.
-
- X must not be a pseudo. */
-
- static int
- copy_cost (x, mode, class, to_p)
- rtx x;
- enum machine_mode mode;
- enum reg_class class;
- int to_p;
- {
- enum reg_class secondary_class = NO_REGS;
-
- /* If X is a SCRATCH, there is actually nothing to move since we are
- assuming optimal allocation. */
-
- if (GET_CODE (x) == SCRATCH)
- return 0;
-
- /* Get the class we will actually use for a reload. */
- class = PREFERRED_RELOAD_CLASS (x, class);
-
- #ifdef HAVE_SECONDARY_RELOADS
- /* If we need a secondary reload (we assume here that we are using
- the secondary reload as an intermediate, not a scratch register), the
- cost is that to load the input into the intermediate register, then
- to copy them. We use a special value of TO_P to avoid recursion. */
-
- #ifdef SECONDARY_INPUT_RELOAD_CLASS
- if (to_p == 1)
- secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
- #endif
-
- #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
- if (! to_p)
- secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
- #endif
-
- if (secondary_class != NO_REGS)
- return (move_cost[(int) secondary_class][(int) class]
- + copy_cost (x, mode, secondary_class, 2));
- #endif /* HAVE_SECONDARY_RELOADS */
-
- /* For memory, use the memory move cost, for (hard) registers, use the
- cost to move between the register classes, and use 2 for everything
- else (constants). */
-
- if (GET_CODE (x) == MEM || class == NO_REGS)
- return MEMORY_MOVE_COST (mode);
-
- else if (GET_CODE (x) == REG)
- return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
-
- else
- /* If this is a constant, we may eventually want to call rtx_cost here. */
- return 2;
- }
-
- /* Record the pseudo registers we must reload into hard registers
- in a subexpression of a memory address, X.
-
- CLASS is the class that the register needs to be in and is either
- BASE_REG_CLASS or INDEX_REG_CLASS.
-
- SCALE is twice the amount to multiply the cost by (it is twice so we
- can represent half-cost adjustments). */
-
- static void
- record_address_regs (x, class, scale)
- rtx x;
- enum reg_class class;
- int scale;
- {
- register enum rtx_code code = GET_CODE (x);
-
- switch (code)
- {
- case CONST_INT:
- case CONST:
- case CC0:
- case PC:
- case SYMBOL_REF:
- case LABEL_REF:
- return;
-
- case PLUS:
- /* When we have an address that is a sum,
- we must determine whether registers are "base" or "index" regs.
- If there is a sum of two registers, we must choose one to be
- the "base". Luckily, we can use the REGNO_POINTER_FLAG
- to make a good choice most of the time. We only need to do this
- on machines that can have two registers in an address and where
- the base and index register classes are different.
-
- ??? This code used to set REGNO_POINTER_FLAG in some cases, but
- that seems bogus since it should only be set when we are sure
- the register is being used as a pointer. */
-
- {
- rtx arg0 = XEXP (x, 0);
- rtx arg1 = XEXP (x, 1);
- register enum rtx_code code0 = GET_CODE (arg0);
- register enum rtx_code code1 = GET_CODE (arg1);
-
- /* Look inside subregs. */
- if (code0 == SUBREG)
- arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
- if (code1 == SUBREG)
- arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
-
- /* If this machine only allows one register per address, it must
- be in the first operand. */
-
- if (MAX_REGS_PER_ADDRESS == 1)
- record_address_regs (arg0, class, scale);
-
- /* If index and base registers are the same on this machine, just
- record registers in any non-constant operands. We assume here,
- as well as in the tests below, that all addresses are in
- canonical form. */
-
- else if (INDEX_REG_CLASS == BASE_REG_CLASS)
- {
- record_address_regs (arg0, class, scale);
- if (! CONSTANT_P (arg1))
- record_address_regs (arg1, class, scale);
- }
-
- /* If the second operand is a constant integer, it doesn't change
- what class the first operand must be. */
-
- else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
- record_address_regs (arg0, class, scale);
-
- /* If the second operand is a symbolic constant, the first operand
- must be an index register. */
-
- else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
- record_address_regs (arg0, INDEX_REG_CLASS, scale);
-
- /* If this the sum of two registers where the first is known to be a
- pointer, it must be a base register with the second an index. */
-
- else if (code0 == REG && code1 == REG
- && REGNO_POINTER_FLAG (REGNO (arg0)))
- {
- record_address_regs (arg0, BASE_REG_CLASS, scale);
- record_address_regs (arg1, INDEX_REG_CLASS, scale);
- }
-
- /* If this is the sum of two registers and neither is known to
- be a pointer, count equal chances that each might be a base
- or index register. This case should be rare. */
-
- else if (code0 == REG && code1 == REG
- && ! REGNO_POINTER_FLAG (REGNO (arg0))
- && ! REGNO_POINTER_FLAG (REGNO (arg1)))
- {
- record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
- record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
- record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
- record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
- }
-
- /* In all other cases, the first operand is an index and the
- second is the base. */
-
- else
- {
- record_address_regs (arg0, INDEX_REG_CLASS, scale);
- record_address_regs (arg1, BASE_REG_CLASS, scale);
- }
- }
- break;
-
- case POST_INC:
- case PRE_INC:
- case POST_DEC:
- case PRE_DEC:
- /* Double the importance of a pseudo register that is incremented
- or decremented, since it would take two extra insns
- if it ends up in the wrong place. If the operand is a pseudo,
- show it is being used in an INC_DEC context. */
-
- #ifdef FORBIDDEN_INC_DEC_CLASSES
- if (GET_CODE (XEXP (x, 0)) == REG
- && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
- in_inc_dec[REGNO (XEXP (x, 0))] = 1;
- #endif
-
- record_address_regs (XEXP (x, 0), class, 2 * scale);
- break;
-
- case REG:
- {
- register struct costs *pp = &costs[REGNO (x)];
- register int i;
-
- pp->mem_cost += (MEMORY_MOVE_COST (Pmode) * scale) / 2;
-
- for (i = 0; i < N_REG_CLASSES; i++)
- pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
- }
- break;
-
- default:
- {
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- record_address_regs (XEXP (x, i), class, scale);
- }
- }
- }
- #endif /* REGISTER_CONSTRAINTS */
-
- /* This is the `regscan' pass of the compiler, run just before cse
- and again just before loop.
-
- It finds the first and last use of each pseudo-register
- and records them in the vectors regno_first_uid, regno_last_uid
- and counts the number of sets in the vector reg_n_sets.
-
- REPEAT is nonzero the second time this is called. */
-
- /* Indexed by pseudo register number, gives uid of first insn using the reg
- (as of the time reg_scan is called). */
-
- int *regno_first_uid;
-
- /* Indexed by pseudo register number, gives uid of last insn using the reg
- (as of the time reg_scan is called). */
-
- int *regno_last_uid;
-
- /* Indexed by pseudo register number, gives uid of last insn using the reg
- or mentioning it in a note (as of the time reg_scan is called). */
-
- int *regno_last_note_uid;
-
- /* Record the number of registers we used when we allocated the above two
- tables. If we are called again with more than this, we must re-allocate
- the tables. */
-
- static int highest_regno_in_uid_map;
-
- /* Maximum number of parallel sets and clobbers in any insn in this fn.
- Always at least 3, since the combiner could put that many togetherm
- and we want this to remain correct for all the remaining passes. */
-
- int max_parallel;
-
- void reg_scan_mark_refs ();
-
- void
- reg_scan (f, nregs, repeat)
- rtx f;
- int nregs;
- int repeat;
- {
- register rtx insn;
-
- if (!repeat || nregs > highest_regno_in_uid_map)
- {
- /* Leave some spare space in case more regs are allocated. */
- highest_regno_in_uid_map = nregs + nregs / 20;
- regno_first_uid
- = (int *) oballoc (highest_regno_in_uid_map * sizeof (int));
- regno_last_uid
- = (int *) oballoc (highest_regno_in_uid_map * sizeof (int));
- regno_last_note_uid
- = (int *) oballoc (highest_regno_in_uid_map * sizeof (int));
- reg_n_sets
- = (short *) oballoc (highest_regno_in_uid_map * sizeof (short));
- }
-
- bzero (regno_first_uid, highest_regno_in_uid_map * sizeof (int));
- bzero (regno_last_uid, highest_regno_in_uid_map * sizeof (int));
- bzero (regno_last_note_uid, highest_regno_in_uid_map * sizeof (int));
- bzero (reg_n_sets, highest_regno_in_uid_map * sizeof (short));
-
- max_parallel = 3;
-
- for (insn = f; insn; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == INSN
- || GET_CODE (insn) == CALL_INSN
- || GET_CODE (insn) == JUMP_INSN)
- {
- if (GET_CODE (PATTERN (insn)) == PARALLEL
- && XVECLEN (PATTERN (insn), 0) > max_parallel)
- max_parallel = XVECLEN (PATTERN (insn), 0);
- reg_scan_mark_refs (PATTERN (insn), insn, 0);
-
- if (REG_NOTES (insn))
- reg_scan_mark_refs (REG_NOTES (insn), insn, 1);
- }
- }
-
- /* X is the expression to scan. INSN is the insn it appears in.
- NOTE_FLAG is nonzero if X is from INSN's notes rather than its body. */
-
- void
- reg_scan_mark_refs (x, insn, note_flag)
- rtx x;
- rtx insn;
- int note_flag;
- {
- register enum rtx_code code = GET_CODE (x);
- register rtx dest;
- register rtx note;
-
- switch (code)
- {
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case CC0:
- case PC:
- case SYMBOL_REF:
- case LABEL_REF:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
- case REG:
- {
- register int regno = REGNO (x);
-
- regno_last_note_uid[regno] = INSN_UID (insn);
- if (!note_flag)
- regno_last_uid[regno] = INSN_UID (insn);
- if (regno_first_uid[regno] == 0)
- regno_first_uid[regno] = INSN_UID (insn);
- }
- break;
-
- case EXPR_LIST:
- if (XEXP (x, 0))
- reg_scan_mark_refs (XEXP (x, 0), insn, note_flag);
- if (XEXP (x, 1))
- reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
- break;
-
- case INSN_LIST:
- if (XEXP (x, 1))
- reg_scan_mark_refs (XEXP (x, 1), insn, note_flag);
- break;
-
- case SET:
- /* Count a set of the destination if it is a register. */
- for (dest = SET_DEST (x);
- GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == ZERO_EXTEND;
- dest = XEXP (dest, 0))
- ;
-
- if (GET_CODE (dest) == REG)
- reg_n_sets[REGNO (dest)]++;
-
- /* If this is setting a pseudo from another pseudo or the sum of a
- pseudo and a constant integer and the other pseudo is known to be
- a pointer, set the destination to be a pointer as well.
-
- Likewise if it is setting the destination from an address or from a
- value equivalent to an address or to the sum of an address and
- something else.
-
- But don't do any of this if the pseudo corresponds to a user
- variable since it should have already been set as a pointer based
- on the type. */
-
- if (GET_CODE (SET_DEST (x)) == REG
- && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
- && ! REG_USERVAR_P (SET_DEST (x))
- && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
- && ((GET_CODE (SET_SRC (x)) == REG
- && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
- || ((GET_CODE (SET_SRC (x)) == PLUS
- || GET_CODE (SET_SRC (x)) == LO_SUM)
- && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
- && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
- && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
- || GET_CODE (SET_SRC (x)) == CONST
- || GET_CODE (SET_SRC (x)) == SYMBOL_REF
- || GET_CODE (SET_SRC (x)) == LABEL_REF
- || (GET_CODE (SET_SRC (x)) == HIGH
- && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
- || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
- || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
- || ((GET_CODE (SET_SRC (x)) == PLUS
- || GET_CODE (SET_SRC (x)) == LO_SUM)
- && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
- || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
- || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
- || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
- && (GET_CODE (XEXP (note, 0)) == CONST
- || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
- || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
- REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
-
- /* ... fall through ... */
-
- default:
- {
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- reg_scan_mark_refs (XEXP (x, i), insn, note_flag);
- else if (fmt[i] == 'E' && XVEC (x, i) != 0)
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag);
- }
- }
- }
- }
- }
-
- /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
- is also in C2. */
-
- int
- reg_class_subset_p (c1, c2)
- register enum reg_class c1;
- register enum reg_class c2;
- {
- if (c1 == c2) return 1;
-
- if (c2 == ALL_REGS)
- win:
- return 1;
- GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
- reg_class_contents[(int)c2],
- win);
- return 0;
- }
-
- /* Return nonzero if there is a register that is in both C1 and C2. */
-
- int
- reg_classes_intersect_p (c1, c2)
- register enum reg_class c1;
- register enum reg_class c2;
- {
- #ifdef HARD_REG_SET
- register
- #endif
- HARD_REG_SET c;
-
- if (c1 == c2) return 1;
-
- if (c1 == ALL_REGS || c2 == ALL_REGS)
- return 1;
-
- COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
- AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
-
- GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
- return 1;
-
- lose:
- return 0;
- }
-
-