home *** CD-ROM | disk | FTP | other *** search
- /* Search an insn for pseudo regs that must be in hard regs and are not.
- Copyright (C) 1987, 1988, 1989, 1992, 1993 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* This file contains subroutines used only from the file reload1.c.
- It knows how to scan one insn for operands and values
- that need to be copied into registers to make valid code.
- It also finds other operands and values which are valid
- but for which equivalent values in registers exist and
- ought to be used instead.
-
- Before processing the first insn of the function, call `init_reload'.
-
- To scan an insn, call `find_reloads'. This does two things:
- 1. sets up tables describing which values must be reloaded
- for this insn, and what kind of hard regs they must be reloaded into;
- 2. optionally record the locations where those values appear in
- the data, so they can be replaced properly later.
- This is done only if the second arg to `find_reloads' is nonzero.
-
- The third arg to `find_reloads' specifies the number of levels
- of indirect addressing supported by the machine. If it is zero,
- indirect addressing is not valid. If it is one, (MEM (REG n))
- is valid even if (REG n) did not get a hard register; if it is two,
- (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
- hard register, and similarly for higher values.
-
- Then you must choose the hard regs to reload those pseudo regs into,
- and generate appropriate load insns before this insn and perhaps
- also store insns after this insn. Set up the array `reload_reg_rtx'
- to contain the REG rtx's for the registers you used. In some
- cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
- for certain reloads. Then that tells you which register to use,
- so you do not need to allocate one. But you still do need to add extra
- instructions to copy the value into and out of that register.
-
- Finally you must call `subst_reloads' to substitute the reload reg rtx's
- into the locations already recorded.
-
- NOTE SIDE EFFECTS:
-
- find_reloads can alter the operands of the instruction it is called on.
-
- 1. Two operands of any sort may be interchanged, if they are in a
- commutative instruction.
- This happens only if find_reloads thinks the instruction will compile
- better that way.
-
- 2. Pseudo-registers that are equivalent to constants are replaced
- with those constants if they are not in hard registers.
-
- 1 happens every time find_reloads is called.
- 2 happens only when REPLACE is 1, which is only when
- actually doing the reloads, not when just counting them.
-
-
- Using a reload register for several reloads in one insn:
-
- When an insn has reloads, it is considered as having three parts:
- the input reloads, the insn itself after reloading, and the output reloads.
- Reloads of values used in memory addresses are often needed for only one part.
-
- When this is so, reload_when_needed records which part needs the reload.
- Two reloads for different parts of the insn can share the same reload
- register.
-
- When a reload is used for addresses in multiple parts, or when it is
- an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
- a register with any other reload. */
-
- #define REG_OK_STRICT
-
- #include "config.h"
- #include "rtl.h"
- #include "insn-config.h"
- #include "insn-codes.h"
- #include "recog.h"
- #include "reload.h"
- #include "regs.h"
- #include "hard-reg-set.h"
- #include "flags.h"
- #include "real.h"
-
- #ifndef REGISTER_MOVE_COST
- #define REGISTER_MOVE_COST(x, y) 2
- #endif
-
- /* The variables set up by `find_reloads' are:
-
- n_reloads number of distinct reloads needed; max reload # + 1
- tables indexed by reload number
- reload_in rtx for value to reload from
- reload_out rtx for where to store reload-reg afterward if nec
- (often the same as reload_in)
- reload_reg_class enum reg_class, saying what regs to reload into
- reload_inmode enum machine_mode; mode this operand should have
- when reloaded, on input.
- reload_outmode enum machine_mode; mode this operand should have
- when reloaded, on output.
- reload_optional char, nonzero for an optional reload.
- Optional reloads are ignored unless the
- value is already sitting in a register.
- reload_inc int, positive amount to increment or decrement by if
- reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
- Ignored otherwise (don't assume it is zero).
- reload_in_reg rtx. A reg for which reload_in is the equivalent.
- If reload_in is a symbol_ref which came from
- reg_equiv_constant, then this is the pseudo
- which has that symbol_ref as equivalent.
- reload_reg_rtx rtx. This is the register to reload into.
- If it is zero when `find_reloads' returns,
- you must find a suitable register in the class
- specified by reload_reg_class, and store here
- an rtx for that register with mode from
- reload_inmode or reload_outmode.
- reload_nocombine char, nonzero if this reload shouldn't be
- combined with another reload.
- reload_opnum int, operand number being reloaded. This is
- used to group related reloads and need not always
- be equal to the actual operand number in the insn,
- though it current will be; for in-out operands, it
- is one of the two operand numbers.
- reload_when_needed enum, classifies reload as needed either for
- addressing an input reload, addressing an output,
- for addressing a non-reloaded mem ref,
- or for unspecified purposes (i.e., more than one
- of the above).
- reload_secondary_reload int, gives the reload number of a secondary
- reload, when needed; otherwise -1
- reload_secondary_p int, 1 if this is a secondary register for one
- or more reloads.
- reload_secondary_icode enum insn_code, if a secondary reload is required,
- gives the INSN_CODE that uses the secondary
- reload as a scratch register, or CODE_FOR_nothing
- if the secondary reload register is to be an
- intermediate register. */
- int n_reloads;
-
- rtx reload_in[MAX_RELOADS];
- rtx reload_out[MAX_RELOADS];
- enum reg_class reload_reg_class[MAX_RELOADS];
- enum machine_mode reload_inmode[MAX_RELOADS];
- enum machine_mode reload_outmode[MAX_RELOADS];
- rtx reload_reg_rtx[MAX_RELOADS];
- char reload_optional[MAX_RELOADS];
- int reload_inc[MAX_RELOADS];
- rtx reload_in_reg[MAX_RELOADS];
- char reload_nocombine[MAX_RELOADS];
- int reload_opnum[MAX_RELOADS];
- enum reload_type reload_when_needed[MAX_RELOADS];
- int reload_secondary_reload[MAX_RELOADS];
- int reload_secondary_p[MAX_RELOADS];
- enum insn_code reload_secondary_icode[MAX_RELOADS];
-
- /* All the "earlyclobber" operands of the current insn
- are recorded here. */
- int n_earlyclobbers;
- rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
-
- int reload_n_operands;
-
- /* Replacing reloads.
-
- If `replace_reloads' is nonzero, then as each reload is recorded
- an entry is made for it in the table `replacements'.
- Then later `subst_reloads' can look through that table and
- perform all the replacements needed. */
-
- /* Nonzero means record the places to replace. */
- static int replace_reloads;
-
- /* Each replacement is recorded with a structure like this. */
- struct replacement
- {
- rtx *where; /* Location to store in */
- rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
- a SUBREG; 0 otherwise. */
- int what; /* which reload this is for */
- enum machine_mode mode; /* mode it must have */
- };
-
- static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
-
- /* Number of replacements currently recorded. */
- static int n_replacements;
-
- /* Used to track what is modified by an operand. */
- struct decomposition
- {
- int reg_flag; /* Nonzero if referencing a register. */
- int safe; /* Nonzero if this can't conflict with anything. */
- rtx base; /* Base adddress for MEM. */
- HOST_WIDE_INT start; /* Starting offset or register number. */
- HOST_WIDE_INT end; /* Endinf offset or register number. */
- };
-
- /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
- (see reg_equiv_address). */
- static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
- static int n_memlocs;
-
- #ifdef SECONDARY_MEMORY_NEEDED
-
- /* Save MEMs needed to copy from one class of registers to another. One MEM
- is used per mode, but normally only one or two modes are ever used.
-
- We keep two versions, before and after register elimination. The one
- after register elimination is record separately for each operand. This
- is done in case the address is not valid to be sure that we separately
- reload each. */
-
- static rtx secondary_memlocs[NUM_MACHINE_MODES];
- static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
- #endif
-
- /* The instruction we are doing reloads for;
- so we can test whether a register dies in it. */
- static rtx this_insn;
-
- /* Nonzero if this instruction is a user-specified asm with operands. */
- static int this_insn_is_asm;
-
- /* If hard_regs_live_known is nonzero,
- we can tell which hard regs are currently live,
- at least enough to succeed in choosing dummy reloads. */
- static int hard_regs_live_known;
-
- /* Indexed by hard reg number,
- element is nonegative if hard reg has been spilled.
- This vector is passed to `find_reloads' as an argument
- and is not changed here. */
- static short *static_reload_reg_p;
-
- /* Set to 1 in subst_reg_equivs if it changes anything. */
- static int subst_reg_equivs_changed;
-
- /* On return from push_reload, holds the reload-number for the OUT
- operand, which can be different for that from the input operand. */
- static int output_reloadnum;
-
- static enum reg_class find_secondary_reload PROTO((rtx, enum reg_class,
- enum machine_mode, int,
- enum insn_code *,
- enum machine_mode *,
- enum reg_class *,
- enum insn_code *,
- enum machine_mode *));
- static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
- enum machine_mode, enum machine_mode,
- int, int, int, enum reload_type));
- static void push_replacement PROTO((rtx *, int, enum machine_mode));
- static void combine_reloads PROTO((void));
- static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
- enum machine_mode, enum machine_mode,
- enum reg_class, int));
- static int earlyclobber_operand_p PROTO((rtx));
- static int hard_reg_set_here_p PROTO((int, int, rtx));
- static struct decomposition decompose PROTO((rtx));
- static int immune_p PROTO((rtx, rtx, struct decomposition));
- static int alternative_allows_memconst PROTO((char *, int));
- static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
- static rtx make_memloc PROTO((rtx, int));
- static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
- int, enum reload_type, int));
- static rtx subst_reg_equivs PROTO((rtx));
- static rtx subst_indexed_address PROTO((rtx));
- static int find_reloads_address_1 PROTO((rtx, int, rtx *, int,
- enum reload_type,int));
- static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
- enum machine_mode, int,
- enum reload_type, int));
- static int find_inc_amount PROTO((rtx, rtx));
-
- #ifdef HAVE_SECONDARY_RELOADS
-
- /* Determine if any secondary reloads are needed for loading (if IN_P is
- non-zero) or storing (if IN_P is zero) X to or from a reload register of
- register class RELOAD_CLASS in mode RELOAD_MODE.
-
- Return the register class of a secondary reload register, or NO_REGS if
- none. *PMODE is set to the mode that the register is required in.
- If the reload register is needed as a scratch register instead of an
- intermediate register, *PICODE is set to the insn_code of the insn to be
- used to load or store the primary reload register; otherwise *PICODE
- is set to CODE_FOR_nothing.
-
- In some cases (such as storing MQ into an external memory location on
- the RT), both an intermediate register and a scratch register. In that
- case, *PICODE is set to CODE_FOR_nothing, the class for the intermediate
- register is returned, and the *PTERTIARY_... variables are set to describe
- the scratch register. */
-
- static enum reg_class
- find_secondary_reload (x, reload_class, reload_mode, in_p, picode, pmode,
- ptertiary_class, ptertiary_icode, ptertiary_mode)
- rtx x;
- enum reg_class reload_class;
- enum machine_mode reload_mode;
- int in_p;
- enum insn_code *picode;
- enum machine_mode *pmode;
- enum reg_class *ptertiary_class;
- enum insn_code *ptertiary_icode;
- enum machine_mode *ptertiary_mode;
- {
- enum reg_class class = NO_REGS;
- enum machine_mode mode = reload_mode;
- enum insn_code icode = CODE_FOR_nothing;
- enum reg_class t_class = NO_REGS;
- enum machine_mode t_mode = VOIDmode;
- enum insn_code t_icode = CODE_FOR_nothing;
-
- /* If X is a pseudo-register that has an equivalent MEM (actually, if it
- is still a pseudo-register by now, it *must* have an equivalent MEM
- but we don't want to assume that), use that equivalent when seeing if
- a secondary reload is needed since whether or not a reload is needed
- might be sensitive to the form of the MEM. */
-
- if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_mem[REGNO (x)] != 0)
- x = reg_equiv_mem[REGNO (x)];
-
- #ifdef SECONDARY_INPUT_RELOAD_CLASS
- if (in_p)
- class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
- #endif
-
- #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
- if (! in_p)
- class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
- #endif
-
- /* If we don't need any secondary registers, go away; the rest of the
- values won't be used. */
- if (class == NO_REGS)
- return NO_REGS;
-
- /* Get a possible insn to use. If the predicate doesn't accept X, don't
- use the insn. */
-
- icode = (in_p ? reload_in_optab[(int) reload_mode]
- : reload_out_optab[(int) reload_mode]);
-
- if (icode != CODE_FOR_nothing
- && insn_operand_predicate[(int) icode][in_p]
- && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
- icode = CODE_FOR_nothing;
-
- /* If we will be using an insn, see if it can directly handle the reload
- register we will be using. If it can, the secondary reload is for a
- scratch register. If it can't, we will use the secondary reload for
- an intermediate register and require a tertiary reload for the scratch
- register. */
-
- if (icode != CODE_FOR_nothing)
- {
- /* If IN_P is non-zero, the reload register will be the output in
- operand 0. If IN_P is zero, the reload register will be the input
- in operand 1. Outputs should have an initial "=", which we must
- skip. */
-
- char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
- enum reg_class insn_class
- = (insn_letter == 'r' ? GENERAL_REGS
- : REG_CLASS_FROM_LETTER (insn_letter));
-
- if (insn_class == NO_REGS
- || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
- /* The scratch register's constraint must start with "=&". */
- || insn_operand_constraint[(int) icode][2][0] != '='
- || insn_operand_constraint[(int) icode][2][1] != '&')
- abort ();
-
- if (reg_class_subset_p (reload_class, insn_class))
- mode = insn_operand_mode[(int) icode][2];
- else
- {
- char t_letter = insn_operand_constraint[(int) icode][2][2];
- class = insn_class;
- t_mode = insn_operand_mode[(int) icode][2];
- t_class = (t_letter == 'r' ? GENERAL_REGS
- : REG_CLASS_FROM_LETTER (t_letter));
- t_icode = icode;
- icode = CODE_FOR_nothing;
- }
- }
-
- *pmode = mode;
- *picode = icode;
- *ptertiary_class = t_class;
- *ptertiary_mode = t_mode;
- *ptertiary_icode = t_icode;
-
- return class;
- }
- #endif /* HAVE_SECONDARY_RELOADS */
-
- #ifdef SECONDARY_MEMORY_NEEDED
-
- /* Return a memory location that will be used to copy X in mode MODE.
- If we haven't already made a location for this mode in this insn,
- call find_reloads_address on the location being returned. */
-
- rtx
- get_secondary_mem (x, mode, opnum, type)
- rtx x;
- enum machine_mode mode;
- int opnum;
- enum reload_type type;
- {
- rtx loc;
- int mem_valid;
-
- /* If MODE is narrower than a word, widen it. This is required because
- most machines that require these memory locations do not support
- short load and stores from all registers (e.g., FP registers). We could
- possibly conditionalize this, but we lose nothing by doing the wider
- mode. */
-
- if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
- mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
-
- /* If we already have made a MEM for this operand in MODE, return it. */
- if (secondary_memlocs_elim[(int) mode][opnum] != 0)
- return secondary_memlocs_elim[(int) mode][opnum];
-
- /* If this is the first time we've tried to get a MEM for this mode,
- allocate a new one. `something_changed' in reload will get set
- by noticing that the frame size has changed. */
-
- if (secondary_memlocs[(int) mode] == 0)
- {
- #ifdef SECONDARY_MEMORY_NEEDED_RTX
- secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
- #else
- secondary_memlocs[(int) mode]
- = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
- #endif
- }
-
- /* Get a version of the address doing any eliminations needed. If that
- didn't give us a new MEM, make a new one if it isn't valid. */
-
- loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
- mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
-
- if (! mem_valid && loc == secondary_memlocs[(int) mode])
- loc = copy_rtx (loc);
-
- /* The only time the call below will do anything is if the stack
- offset is too large. In that case IND_LEVELS doesn't matter, so we
- can just pass a zero. Adjust the type to be the address of the
- corresponding object. If the address was valid, save the eliminated
- address. If it wasn't valid, we need to make a reload each time, so
- don't save it. */
-
- if (! mem_valid)
- {
- type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
- : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
- : RELOAD_OTHER);
-
- find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
- opnum, type, 0);
- }
-
- secondary_memlocs_elim[(int) mode][opnum] = loc;
- return loc;
- }
-
- /* Clear any secondary memory locations we've made. */
-
- void
- clear_secondary_mem ()
- {
- bzero (secondary_memlocs, sizeof secondary_memlocs);
- }
- #endif /* SECONDARY_MEMORY_NEEDED */
-
- /* Record one reload that needs to be performed.
- IN is an rtx saying where the data are to be found before this instruction.
- OUT says where they must be stored after the instruction.
- (IN is zero for data not read, and OUT is zero for data not written.)
- INLOC and OUTLOC point to the places in the instructions where
- IN and OUT were found.
- If IN and OUT are both non-zero, it means the same register must be used
- to reload both IN and OUT.
-
- CLASS is a register class required for the reloaded data.
- INMODE is the machine mode that the instruction requires
- for the reg that replaces IN and OUTMODE is likewise for OUT.
-
- If IN is zero, then OUT's location and mode should be passed as
- INLOC and INMODE.
-
- STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
-
- OPTIONAL nonzero means this reload does not need to be performed:
- it can be discarded if that is more convenient.
-
- OPNUM and TYPE say what the purpose of this reload is.
-
- The return value is the reload-number for this reload.
-
- If both IN and OUT are nonzero, in some rare cases we might
- want to make two separate reloads. (Actually we never do this now.)
- Therefore, the reload-number for OUT is stored in
- output_reloadnum when we return; the return value applies to IN.
- Usually (presently always), when IN and OUT are nonzero,
- the two reload-numbers are equal, but the caller should be careful to
- distinguish them. */
-
- static int
- push_reload (in, out, inloc, outloc, class,
- inmode, outmode, strict_low, optional, opnum, type)
- register rtx in, out;
- rtx *inloc, *outloc;
- enum reg_class class;
- enum machine_mode inmode, outmode;
- int strict_low;
- int optional;
- int opnum;
- enum reload_type type;
- {
- register int i;
- int dont_share = 0;
- rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
- int secondary_reload = -1;
- enum insn_code secondary_icode = CODE_FOR_nothing;
-
- /* Compare two RTX's. */
- #define MATCHES(x, y) \
- (x == y || (x != 0 && (GET_CODE (x) == REG \
- ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
- : rtx_equal_p (x, y) && ! side_effects_p (x))))
-
- /* Indicates if two reloads purposes are for similar enough things that we
- can merge their reloads. */
- #define MERGABLE_RELOADS(when1, when2, op1, op2) \
- ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
- || ((when1) == (when2) && (op1) == (op2)) \
- || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
- || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
- && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
- || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
- && (when2) == RELOAD_FOR_OTHER_ADDRESS))
-
- /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
- #define MERGE_TO_OTHER(when1, when2, op1, op2) \
- ((when1) != (when2) \
- || ! ((op1) == (op2) \
- || (when1) == RELOAD_FOR_INPUT \
- || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
- || (when1) == RELOAD_FOR_OTHER_ADDRESS))
-
- /* INMODE and/or OUTMODE could be VOIDmode if no mode
- has been specified for the operand. In that case,
- use the operand's mode as the mode to reload. */
- if (inmode == VOIDmode && in != 0)
- inmode = GET_MODE (in);
- if (outmode == VOIDmode && out != 0)
- outmode = GET_MODE (out);
-
- /* If IN is a pseudo register everywhere-equivalent to a constant, and
- it is not in a hard register, reload straight from the constant,
- since we want to get rid of such pseudo registers.
- Often this is done earlier, but not always in find_reloads_address. */
- if (in != 0 && GET_CODE (in) == REG)
- {
- register int regno = REGNO (in);
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- in = reg_equiv_constant[regno];
- }
-
- /* Likewise for OUT. Of course, OUT will never be equivalent to
- an actual constant, but it might be equivalent to a memory location
- (in the case of a parameter). */
- if (out != 0 && GET_CODE (out) == REG)
- {
- register int regno = REGNO (out);
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- out = reg_equiv_constant[regno];
- }
-
- /* If we have a read-write operand with an address side-effect,
- change either IN or OUT so the side-effect happens only once. */
- if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
- {
- if (GET_CODE (XEXP (in, 0)) == POST_INC
- || GET_CODE (XEXP (in, 0)) == POST_DEC)
- in = gen_rtx (MEM, GET_MODE (in), XEXP (XEXP (in, 0), 0));
- if (GET_CODE (XEXP (in, 0)) == PRE_INC
- || GET_CODE (XEXP (in, 0)) == PRE_DEC)
- out = gen_rtx (MEM, GET_MODE (out), XEXP (XEXP (out, 0), 0));
- }
-
- /* If we are reloading a (SUBREG constant ...), really reload just the
- inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
- If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
- a pseudo and hence will become a MEM) with M1 wider than M2 and the
- register is a pseudo, also reload the inside expression.
- For machines that extend byte loads, do this for any SUBREG of a pseudo
- where both M1 and M2 are a word or smaller unless they are the same
- size.
- Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
- either M1 is not valid for R or M2 is wider than a word but we only
- need one word to store an M2-sized quantity in R.
- (However, if OUT is nonzero, we need to reload the reg *and*
- the subreg, so do nothing here, and let following statement handle it.)
-
- Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
- we can't handle it here because CONST_INT does not indicate a mode.
-
- Similarly, we must reload the inside expression if we have a
- STRICT_LOW_PART (presumably, in == out in the cas).
-
- Also reload the inner expression if it does not require a secondary
- reload but the SUBREG does. */
-
- if (in != 0 && GET_CODE (in) == SUBREG
- && (CONSTANT_P (SUBREG_REG (in))
- || GET_CODE (SUBREG_REG (in)) == PLUS
- || strict_low
- || (((GET_CODE (SUBREG_REG (in)) == REG
- && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
- || GET_CODE (SUBREG_REG (in)) == MEM)
- && ((GET_MODE_SIZE (inmode)
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
- #ifdef LOAD_EXTEND_OP
- || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- <= UNITS_PER_WORD)
- && (GET_MODE_SIZE (inmode)
- != GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))))
- #endif
- ))
- || (GET_CODE (SUBREG_REG (in)) == REG
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
- /* The case where out is nonzero
- is handled differently in the following statement. */
- && (out == 0 || SUBREG_WORD (in) == 0)
- && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- > UNITS_PER_WORD)
- && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- / UNITS_PER_WORD)
- != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
- GET_MODE (SUBREG_REG (in)))))
- || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
- + SUBREG_WORD (in)),
- inmode)))
- #ifdef SECONDARY_INPUT_RELOAD_CLASS
- || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
- && (SECONDARY_INPUT_RELOAD_CLASS (class,
- GET_MODE (SUBREG_REG (in)),
- SUBREG_REG (in))
- == NO_REGS))
- #endif
- ))
- {
- in_subreg_loc = inloc;
- inloc = &SUBREG_REG (in);
- in = *inloc;
- #ifndef LOAD_EXTEND_OP
- if (GET_CODE (in) == MEM)
- /* This is supposed to happen only for paradoxical subregs made by
- combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
- if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
- abort ();
- #endif
- inmode = GET_MODE (in);
- }
-
- /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
- either M1 is not valid for R or M2 is wider than a word but we only
- need one word to store an M2-sized quantity in R.
-
- However, we must reload the inner reg *as well as* the subreg in
- that case. */
-
- if (in != 0 && GET_CODE (in) == SUBREG
- && GET_CODE (SUBREG_REG (in)) == REG
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
- && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in)), inmode)
- || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- > UNITS_PER_WORD)
- && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- / UNITS_PER_WORD)
- != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
- GET_MODE (SUBREG_REG (in)))))))
- {
- push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
- GENERAL_REGS, VOIDmode, VOIDmode, 0, 0, opnum, type);
- }
-
-
- /* Similarly for paradoxical and problematical SUBREGs on the output.
- Note that there is no reason we need worry about the previous value
- of SUBREG_REG (out); even if wider than out,
- storing in a subreg is entitled to clobber it all
- (except in the case of STRICT_LOW_PART,
- and in that case the constraint should label it input-output.) */
- if (out != 0 && GET_CODE (out) == SUBREG
- && (CONSTANT_P (SUBREG_REG (out))
- || strict_low
- || (((GET_CODE (SUBREG_REG (out)) == REG
- && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
- || GET_CODE (SUBREG_REG (out)) == MEM)
- && ((GET_MODE_SIZE (outmode)
- > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
- #ifdef LOAD_EXTEND_OP
- || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
- <= UNITS_PER_WORD)
- && (GET_MODE_SIZE (outmode)
- != GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))))
- #endif
- ))
- || (GET_CODE (SUBREG_REG (out)) == REG
- && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
- && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
- > UNITS_PER_WORD)
- && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
- / UNITS_PER_WORD)
- != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
- GET_MODE (SUBREG_REG (out)))))
- || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
- + SUBREG_WORD (out)),
- outmode)))
- #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
- || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
- && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
- GET_MODE (SUBREG_REG (out)),
- SUBREG_REG (out))
- == NO_REGS))
- #endif
- ))
- {
- out_subreg_loc = outloc;
- outloc = &SUBREG_REG (out);
- out = *outloc;
- #ifndef LOAD_EXTEND_OP
- if (GET_CODE (out) == MEM
- && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
- abort ();
- #endif
- outmode = GET_MODE (out);
- }
-
- /* If IN appears in OUT, we can't share any input-only reload for IN. */
- if (in != 0 && out != 0 && GET_CODE (out) == MEM
- && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
- && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
- dont_share = 1;
-
- /* If IN is a SUBREG of a hard register, make a new REG. This
- simplifies some of the cases below. */
-
- if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
- && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
- in = gen_rtx (REG, GET_MODE (in),
- REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
-
- /* Similarly for OUT. */
- if (out != 0 && GET_CODE (out) == SUBREG
- && GET_CODE (SUBREG_REG (out)) == REG
- && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
- out = gen_rtx (REG, GET_MODE (out),
- REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
-
- /* Narrow down the class of register wanted if that is
- desirable on this machine for efficiency. */
- if (in != 0)
- class = PREFERRED_RELOAD_CLASS (in, class);
-
- /* Output reloads may need analogous treatment, different in detail. */
- #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
- if (out != 0)
- class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
- #endif
-
- /* Make sure we use a class that can handle the actual pseudo
- inside any subreg. For example, on the 386, QImode regs
- can appear within SImode subregs. Although GENERAL_REGS
- can handle SImode, QImode needs a smaller class. */
- #ifdef LIMIT_RELOAD_CLASS
- if (in_subreg_loc)
- class = LIMIT_RELOAD_CLASS (inmode, class);
- else if (in != 0 && GET_CODE (in) == SUBREG)
- class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
-
- if (out_subreg_loc)
- class = LIMIT_RELOAD_CLASS (outmode, class);
- if (out != 0 && GET_CODE (out) == SUBREG)
- class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
- #endif
-
- /* Verify that this class is at least possible for the mode that
- is specified. */
- if (this_insn_is_asm)
- {
- enum machine_mode mode;
- if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
- mode = inmode;
- else
- mode = outmode;
- if (mode == VOIDmode)
- {
- error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
- mode = word_mode;
- if (in != 0)
- inmode = word_mode;
- if (out != 0)
- outmode = word_mode;
- }
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (HARD_REGNO_MODE_OK (i, mode)
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
- {
- int nregs = HARD_REGNO_NREGS (i, mode);
-
- int j;
- for (j = 1; j < nregs; j++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
- break;
- if (j == nregs)
- break;
- }
- if (i == FIRST_PSEUDO_REGISTER)
- {
- error_for_asm (this_insn, "impossible register constraint in `asm'");
- class = ALL_REGS;
- }
- }
-
- if (class == NO_REGS)
- abort ();
-
- /* We can use an existing reload if the class is right
- and at least one of IN and OUT is a match
- and the other is at worst neutral.
- (A zero compared against anything is neutral.)
-
- If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
- for the same thing since that can cause us to need more reload registers
- than we otherwise would. */
-
- for (i = 0; i < n_reloads; i++)
- if ((reg_class_subset_p (class, reload_reg_class[i])
- || reg_class_subset_p (reload_reg_class[i], class))
- /* If the existing reload has a register, it must fit our class. */
- && (reload_reg_rtx[i] == 0
- || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- true_regnum (reload_reg_rtx[i])))
- && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
- && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
- ||
- (out != 0 && MATCHES (reload_out[i], out)
- && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
- && (reg_class_size[(int) class] == 1
- #ifdef SMALL_REGISTER_CLASSES
- || 1
- #endif
- )
- && MERGABLE_RELOADS (type, reload_when_needed[i],
- opnum, reload_opnum[i]))
- break;
-
- /* Reloading a plain reg for input can match a reload to postincrement
- that reg, since the postincrement's value is the right value.
- Likewise, it can match a preincrement reload, since we regard
- the preincrementation as happening before any ref in this insn
- to that register. */
- if (i == n_reloads)
- for (i = 0; i < n_reloads; i++)
- if ((reg_class_subset_p (class, reload_reg_class[i])
- || reg_class_subset_p (reload_reg_class[i], class))
- /* If the existing reload has a register, it must fit our class. */
- && (reload_reg_rtx[i] == 0
- || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- true_regnum (reload_reg_rtx[i])))
- && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
- && ((GET_CODE (in) == REG
- && (GET_CODE (reload_in[i]) == POST_INC
- || GET_CODE (reload_in[i]) == POST_DEC
- || GET_CODE (reload_in[i]) == PRE_INC
- || GET_CODE (reload_in[i]) == PRE_DEC)
- && MATCHES (XEXP (reload_in[i], 0), in))
- ||
- (GET_CODE (reload_in[i]) == REG
- && (GET_CODE (in) == POST_INC
- || GET_CODE (in) == POST_DEC
- || GET_CODE (in) == PRE_INC
- || GET_CODE (in) == PRE_DEC)
- && MATCHES (XEXP (in, 0), reload_in[i])))
- && (reg_class_size[(int) class] == 1
- #ifdef SMALL_REGISTER_CLASSES
- || 1
- #endif
- )
- && MERGABLE_RELOADS (type, reload_when_needed[i],
- opnum, reload_opnum[i]))
- {
- /* Make sure reload_in ultimately has the increment,
- not the plain register. */
- if (GET_CODE (in) == REG)
- in = reload_in[i];
- break;
- }
-
- if (i == n_reloads)
- {
- #ifdef HAVE_SECONDARY_RELOADS
- enum reg_class secondary_class = NO_REGS;
- enum reg_class secondary_out_class = NO_REGS;
- enum machine_mode secondary_mode = inmode;
- enum machine_mode secondary_out_mode = outmode;
- enum insn_code secondary_icode;
- enum insn_code secondary_out_icode = CODE_FOR_nothing;
- enum reg_class tertiary_class = NO_REGS;
- enum reg_class tertiary_out_class = NO_REGS;
- enum machine_mode tertiary_mode;
- enum machine_mode tertiary_out_mode;
- enum insn_code tertiary_icode;
- enum insn_code tertiary_out_icode = CODE_FOR_nothing;
- int tertiary_reload = -1;
-
- /* See if we need a secondary reload register to move between
- CLASS and IN or CLASS and OUT. Get the modes and icodes to
- use for each of them if so. */
-
- #ifdef SECONDARY_INPUT_RELOAD_CLASS
- if (in != 0)
- secondary_class
- = find_secondary_reload (in, class, inmode, 1, &secondary_icode,
- &secondary_mode, &tertiary_class,
- &tertiary_icode, &tertiary_mode);
- #endif
-
- #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
- if (out != 0 && GET_CODE (out) != SCRATCH)
- secondary_out_class
- = find_secondary_reload (out, class, outmode, 0,
- &secondary_out_icode, &secondary_out_mode,
- &tertiary_out_class, &tertiary_out_icode,
- &tertiary_out_mode);
- #endif
-
- /* We can only record one secondary and one tertiary reload. If both
- IN and OUT need secondary reloads, we can only make an in-out
- reload if neither need an insn and if the classes are compatible.
- If they aren't, all we can do is abort since making two separate
- reloads is invalid. */
-
- if (secondary_class != NO_REGS && secondary_out_class != NO_REGS
- && reg_class_subset_p (secondary_out_class, secondary_class))
- secondary_class = secondary_out_class;
-
- if (secondary_class != NO_REGS && secondary_out_class != NO_REGS
- && (! reg_class_subset_p (secondary_class, secondary_out_class)
- || secondary_icode != CODE_FOR_nothing
- || secondary_out_icode != CODE_FOR_nothing))
- abort ();
-
- /* If we need a secondary reload for OUT but not IN, copy the
- information. */
- if (secondary_class == NO_REGS && secondary_out_class != NO_REGS)
- {
- secondary_class = secondary_out_class;
- secondary_icode = secondary_out_icode;
- tertiary_class = tertiary_out_class;
- tertiary_icode = tertiary_out_icode;
- tertiary_mode = tertiary_out_mode;
- }
-
- if (secondary_class != NO_REGS)
- {
- /* Secondary reloads don't conflict as badly as the primary object
- being reload. Specifically, we can always treat them as
- being for an input or output address and hence allowed to be
- reused in the same manner such address components could be
- reused. This is used as the reload_type for our secondary
- reloads. */
-
- enum reload_type secondary_type
- = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
- : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
- : type);
-
- /* This case isn't valid, so fail. Reload is allowed to use the
- same register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT
- reloads, but in the case of a secondary register, we actually
- need two different registers for correct code. We fail here
- to prevent the possibility of silently generating incorrect code
- later.
-
- The convention is that secondary input reloads are valid only if
- the secondary_class is different from class. If you have such
- a case, you can not use secondary reloads, you must work around
- the problem some other way.
-
- Allow this when secondary_mode is not inmode and assume that
- the generated code handles this case (it does on the Alpha, which
- is the only place this currently happens). */
-
- if (type == RELOAD_FOR_INPUT && secondary_class == class
- && secondary_mode == inmode)
- abort ();
-
- /* If we need a tertiary reload, see if we have one we can reuse
- or else make one. */
-
- if (tertiary_class != NO_REGS)
- {
- for (tertiary_reload = 0; tertiary_reload < n_reloads;
- tertiary_reload++)
- if (reload_secondary_p[tertiary_reload]
- && (reg_class_subset_p (tertiary_class,
- reload_reg_class[tertiary_reload])
- || reg_class_subset_p (reload_reg_class[tertiary_reload],
- tertiary_class))
- && ((reload_inmode[tertiary_reload] == tertiary_mode)
- || reload_inmode[tertiary_reload] == VOIDmode)
- && ((reload_outmode[tertiary_reload] == tertiary_mode)
- || reload_outmode[tertiary_reload] == VOIDmode)
- && (reload_secondary_icode[tertiary_reload]
- == CODE_FOR_nothing)
- && (reg_class_size[(int) tertiary_class] == 1
- #ifdef SMALL_REGISTER_CLASSES
- || 1
- #endif
- )
- && MERGABLE_RELOADS (secondary_type,
- reload_when_needed[tertiary_reload],
- opnum, reload_opnum[tertiary_reload]))
- {
- if (tertiary_mode != VOIDmode)
- reload_inmode[tertiary_reload] = tertiary_mode;
- if (tertiary_out_mode != VOIDmode)
- reload_outmode[tertiary_reload] = tertiary_mode;
- if (reg_class_subset_p (tertiary_class,
- reload_reg_class[tertiary_reload]))
- reload_reg_class[tertiary_reload] = tertiary_class;
- if (MERGE_TO_OTHER (secondary_type,
- reload_when_needed[tertiary_reload],
- opnum,
- reload_opnum[tertiary_reload]))
- reload_when_needed[tertiary_reload] = RELOAD_OTHER;
- reload_opnum[tertiary_reload]
- = MIN (reload_opnum[tertiary_reload], opnum);
- reload_optional[tertiary_reload] &= optional;
- reload_secondary_p[tertiary_reload] = 1;
- }
-
- if (tertiary_reload == n_reloads)
- {
- /* We need to make a new tertiary reload for this register
- class. */
- reload_in[tertiary_reload] = reload_out[tertiary_reload] = 0;
- reload_reg_class[tertiary_reload] = tertiary_class;
- reload_inmode[tertiary_reload] = tertiary_mode;
- reload_outmode[tertiary_reload] = tertiary_mode;
- reload_reg_rtx[tertiary_reload] = 0;
- reload_optional[tertiary_reload] = optional;
- reload_inc[tertiary_reload] = 0;
- /* Maybe we could combine these, but it seems too tricky. */
- reload_nocombine[tertiary_reload] = 1;
- reload_in_reg[tertiary_reload] = 0;
- reload_opnum[tertiary_reload] = opnum;
- reload_when_needed[tertiary_reload] = secondary_type;
- reload_secondary_reload[tertiary_reload] = -1;
- reload_secondary_icode[tertiary_reload] = CODE_FOR_nothing;
- reload_secondary_p[tertiary_reload] = 1;
-
- n_reloads++;
- i = n_reloads;
- }
- }
-
- /* See if we can reuse an existing secondary reload. */
- for (secondary_reload = 0; secondary_reload < n_reloads;
- secondary_reload++)
- if (reload_secondary_p[secondary_reload]
- && (reg_class_subset_p (secondary_class,
- reload_reg_class[secondary_reload])
- || reg_class_subset_p (reload_reg_class[secondary_reload],
- secondary_class))
- && ((reload_inmode[secondary_reload] == secondary_mode)
- || reload_inmode[secondary_reload] == VOIDmode)
- && ((reload_outmode[secondary_reload] == secondary_out_mode)
- || reload_outmode[secondary_reload] == VOIDmode)
- && reload_secondary_reload[secondary_reload] == tertiary_reload
- && reload_secondary_icode[secondary_reload] == tertiary_icode
- && (reg_class_size[(int) secondary_class] == 1
- #ifdef SMALL_REGISTER_CLASSES
- || 1
- #endif
- )
- && MERGABLE_RELOADS (secondary_type,
- reload_when_needed[secondary_reload],
- opnum, reload_opnum[secondary_reload]))
- {
- if (secondary_mode != VOIDmode)
- reload_inmode[secondary_reload] = secondary_mode;
- if (secondary_out_mode != VOIDmode)
- reload_outmode[secondary_reload] = secondary_out_mode;
- if (reg_class_subset_p (secondary_class,
- reload_reg_class[secondary_reload]))
- reload_reg_class[secondary_reload] = secondary_class;
- if (MERGE_TO_OTHER (secondary_type,
- reload_when_needed[secondary_reload],
- opnum, reload_opnum[secondary_reload]))
- reload_when_needed[secondary_reload] = RELOAD_OTHER;
- reload_opnum[secondary_reload]
- = MIN (reload_opnum[secondary_reload], opnum);
- reload_optional[secondary_reload] &= optional;
- reload_secondary_p[secondary_reload] = 1;
- }
-
- if (secondary_reload == n_reloads)
- {
- /* We need to make a new secondary reload for this register
- class. */
- reload_in[secondary_reload] = reload_out[secondary_reload] = 0;
- reload_reg_class[secondary_reload] = secondary_class;
- reload_inmode[secondary_reload] = secondary_mode;
- reload_outmode[secondary_reload] = secondary_out_mode;
- reload_reg_rtx[secondary_reload] = 0;
- reload_optional[secondary_reload] = optional;
- reload_inc[secondary_reload] = 0;
- /* Maybe we could combine these, but it seems too tricky. */
- reload_nocombine[secondary_reload] = 1;
- reload_in_reg[secondary_reload] = 0;
- reload_opnum[secondary_reload] = opnum;
- reload_when_needed[secondary_reload] = secondary_type;
- reload_secondary_reload[secondary_reload] = tertiary_reload;
- reload_secondary_icode[secondary_reload] = tertiary_icode;
- reload_secondary_p[secondary_reload] = 1;
-
- n_reloads++;
- i = n_reloads;
-
- #ifdef SECONDARY_MEMORY_NEEDED
- /* If we need a memory location to copy between the two
- reload regs, set it up now. */
-
- if (in != 0 && secondary_icode == CODE_FOR_nothing
- && SECONDARY_MEMORY_NEEDED (secondary_class, class, inmode))
- get_secondary_mem (in, inmode, opnum, type);
-
- if (out != 0 && secondary_icode == CODE_FOR_nothing
- && SECONDARY_MEMORY_NEEDED (class, secondary_class, outmode))
- get_secondary_mem (out, outmode, opnum, type);
- #endif
- }
- }
- #endif
-
- /* We found no existing reload suitable for re-use.
- So add an additional reload. */
-
- reload_in[i] = in;
- reload_out[i] = out;
- reload_reg_class[i] = class;
- reload_inmode[i] = inmode;
- reload_outmode[i] = outmode;
- reload_reg_rtx[i] = 0;
- reload_optional[i] = optional;
- reload_inc[i] = 0;
- reload_nocombine[i] = 0;
- reload_in_reg[i] = inloc ? *inloc : 0;
- reload_opnum[i] = opnum;
- reload_when_needed[i] = type;
- reload_secondary_reload[i] = secondary_reload;
- reload_secondary_icode[i] = secondary_icode;
- reload_secondary_p[i] = 0;
-
- n_reloads++;
-
- #ifdef SECONDARY_MEMORY_NEEDED
- /* If a memory location is needed for the copy, make one. */
- if (in != 0 && GET_CODE (in) == REG
- && REGNO (in) < FIRST_PSEUDO_REGISTER
- && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
- class, inmode))
- get_secondary_mem (in, inmode, opnum, type);
-
- if (out != 0 && GET_CODE (out) == REG
- && REGNO (out) < FIRST_PSEUDO_REGISTER
- && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
- outmode))
- get_secondary_mem (out, outmode, opnum, type);
- #endif
- }
- else
- {
- /* We are reusing an existing reload,
- but we may have additional information for it.
- For example, we may now have both IN and OUT
- while the old one may have just one of them. */
-
- if (inmode != VOIDmode)
- reload_inmode[i] = inmode;
- if (outmode != VOIDmode)
- reload_outmode[i] = outmode;
- if (in != 0)
- reload_in[i] = in;
- if (out != 0)
- reload_out[i] = out;
- if (reg_class_subset_p (class, reload_reg_class[i]))
- reload_reg_class[i] = class;
- reload_optional[i] &= optional;
- if (MERGE_TO_OTHER (type, reload_when_needed[i],
- opnum, reload_opnum[i]))
- reload_when_needed[i] = RELOAD_OTHER;
- reload_opnum[i] = MIN (reload_opnum[i], opnum);
- }
-
- /* If the ostensible rtx being reload differs from the rtx found
- in the location to substitute, this reload is not safe to combine
- because we cannot reliably tell whether it appears in the insn. */
-
- if (in != 0 && in != *inloc)
- reload_nocombine[i] = 1;
-
- #if 0
- /* This was replaced by changes in find_reloads_address_1 and the new
- function inc_for_reload, which go with a new meaning of reload_inc. */
-
- /* If this is an IN/OUT reload in an insn that sets the CC,
- it must be for an autoincrement. It doesn't work to store
- the incremented value after the insn because that would clobber the CC.
- So we must do the increment of the value reloaded from,
- increment it, store it back, then decrement again. */
- if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
- {
- out = 0;
- reload_out[i] = 0;
- reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
- /* If we did not find a nonzero amount-to-increment-by,
- that contradicts the belief that IN is being incremented
- in an address in this insn. */
- if (reload_inc[i] == 0)
- abort ();
- }
- #endif
-
- /* If we will replace IN and OUT with the reload-reg,
- record where they are located so that substitution need
- not do a tree walk. */
-
- if (replace_reloads)
- {
- if (inloc != 0)
- {
- register struct replacement *r = &replacements[n_replacements++];
- r->what = i;
- r->subreg_loc = in_subreg_loc;
- r->where = inloc;
- r->mode = inmode;
- }
- if (outloc != 0 && outloc != inloc)
- {
- register struct replacement *r = &replacements[n_replacements++];
- r->what = i;
- r->where = outloc;
- r->subreg_loc = out_subreg_loc;
- r->mode = outmode;
- }
- }
-
- /* If this reload is just being introduced and it has both
- an incoming quantity and an outgoing quantity that are
- supposed to be made to match, see if either one of the two
- can serve as the place to reload into.
-
- If one of them is acceptable, set reload_reg_rtx[i]
- to that one. */
-
- if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
- {
- reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
- inmode, outmode,
- reload_reg_class[i], i);
-
- /* If the outgoing register already contains the same value
- as the incoming one, we can dispense with loading it.
- The easiest way to tell the caller that is to give a phony
- value for the incoming operand (same as outgoing one). */
- if (reload_reg_rtx[i] == out
- && (GET_CODE (in) == REG || CONSTANT_P (in))
- && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
- static_reload_reg_p, i, inmode))
- reload_in[i] = out;
- }
-
- /* If this is an input reload and the operand contains a register that
- dies in this insn and is used nowhere else, see if it is the right class
- to be used for this reload. Use it if so. (This occurs most commonly
- in the case of paradoxical SUBREGs and in-out reloads). We cannot do
- this if it is also an output reload that mentions the register unless
- the output is a SUBREG that clobbers an entire register.
-
- Note that the operand might be one of the spill regs, if it is a
- pseudo reg and we are in a block where spilling has not taken place.
- But if there is no spilling in this block, that is OK.
- An explicitly used hard reg cannot be a spill reg. */
-
- if (reload_reg_rtx[i] == 0 && in != 0)
- {
- rtx note;
- int regno;
-
- for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD
- && GET_CODE (XEXP (note, 0)) == REG
- && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
- && reg_mentioned_p (XEXP (note, 0), in)
- && ! refers_to_regno_for_reload_p (regno,
- (regno
- + HARD_REGNO_NREGS (regno,
- inmode)),
- PATTERN (this_insn), inloc)
- /* If this is also an output reload, IN cannot be used as
- the reload register if it is set in this insn unless IN
- is also OUT. */
- && (out == 0 || in == out
- || ! hard_reg_set_here_p (regno,
- (regno
- + HARD_REGNO_NREGS (regno,
- inmode)),
- PATTERN (this_insn)))
- /* ??? Why is this code so different from the previous?
- Is there any simple coherent way to describe the two together?
- What's going on here. */
- && (in != out
- || (GET_CODE (in) == SUBREG
- && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
- / UNITS_PER_WORD)
- == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
- + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
- /* Make sure the operand fits in the reg that dies. */
- && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
- && HARD_REGNO_MODE_OK (regno, inmode)
- && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
- && HARD_REGNO_MODE_OK (regno, outmode)
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
- && !fixed_regs[regno])
- {
- reload_reg_rtx[i] = gen_rtx (REG, inmode, regno);
- break;
- }
- }
-
- if (out)
- output_reloadnum = i;
-
- return i;
- }
-
- /* Record an additional place we must replace a value
- for which we have already recorded a reload.
- RELOADNUM is the value returned by push_reload
- when the reload was recorded.
- This is used in insn patterns that use match_dup. */
-
- static void
- push_replacement (loc, reloadnum, mode)
- rtx *loc;
- int reloadnum;
- enum machine_mode mode;
- {
- if (replace_reloads)
- {
- register struct replacement *r = &replacements[n_replacements++];
- r->what = reloadnum;
- r->where = loc;
- r->subreg_loc = 0;
- r->mode = mode;
- }
- }
-
- /* Transfer all replacements that used to be in reload FROM to be in
- reload TO. */
-
- void
- transfer_replacements (to, from)
- int to, from;
- {
- int i;
-
- for (i = 0; i < n_replacements; i++)
- if (replacements[i].what == from)
- replacements[i].what = to;
- }
-
- /* If there is only one output reload, and it is not for an earlyclobber
- operand, try to combine it with a (logically unrelated) input reload
- to reduce the number of reload registers needed.
-
- This is safe if the input reload does not appear in
- the value being output-reloaded, because this implies
- it is not needed any more once the original insn completes.
-
- If that doesn't work, see we can use any of the registers that
- die in this insn as a reload register. We can if it is of the right
- class and does not appear in the value being output-reloaded. */
-
- static void
- combine_reloads ()
- {
- int i;
- int output_reload = -1;
- rtx note;
-
- /* Find the output reload; return unless there is exactly one
- and that one is mandatory. */
-
- for (i = 0; i < n_reloads; i++)
- if (reload_out[i] != 0)
- {
- if (output_reload >= 0)
- return;
- output_reload = i;
- }
-
- if (output_reload < 0 || reload_optional[output_reload])
- return;
-
- /* An input-output reload isn't combinable. */
-
- if (reload_in[output_reload] != 0)
- return;
-
- /* If this reload is for an earlyclobber operand, we can't do anything. */
- if (earlyclobber_operand_p (reload_out[output_reload]))
- return;
-
- /* Check each input reload; can we combine it? */
-
- for (i = 0; i < n_reloads; i++)
- if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
- /* Life span of this reload must not extend past main insn. */
- && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
- && reload_when_needed[i] != RELOAD_OTHER
- && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
- == CLASS_MAX_NREGS (reload_reg_class[output_reload],
- reload_outmode[output_reload]))
- && reload_inc[i] == 0
- && reload_reg_rtx[i] == 0
- /* Don't combine two reloads with different secondary reloads. */
- && (reload_secondary_reload[i] == reload_secondary_reload[output_reload]
- || reload_secondary_reload[i] == -1
- || reload_secondary_reload[output_reload] == -1)
- #ifdef SECONDARY_MEMORY_NEEDED
- /* Likewise for different secondary memory locations. */
- && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
- || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
- || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
- secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
- #endif
- #ifdef SMALL_REGISTER_CLASSES
- && reload_reg_class[i] == reload_reg_class[output_reload]
- #else
- && (reg_class_subset_p (reload_reg_class[i],
- reload_reg_class[output_reload])
- || reg_class_subset_p (reload_reg_class[output_reload],
- reload_reg_class[i]))
- #endif
- && (MATCHES (reload_in[i], reload_out[output_reload])
- /* Args reversed because the first arg seems to be
- the one that we imagine being modified
- while the second is the one that might be affected. */
- || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
- reload_in[i])
- /* However, if the input is a register that appears inside
- the output, then we also can't share.
- Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
- If the same reload reg is used for both reg 69 and the
- result to be stored in memory, then that result
- will clobber the address of the memory ref. */
- && ! (GET_CODE (reload_in[i]) == REG
- && reg_overlap_mentioned_for_reload_p (reload_in[i],
- reload_out[output_reload]))))
- && (reg_class_size[(int) reload_reg_class[i]]
- #ifdef SMALL_REGISTER_CLASSES
- || 1
- #endif
- )
- /* We will allow making things slightly worse by combining an
- input and an output, but no worse than that. */
- && (reload_when_needed[i] == RELOAD_FOR_INPUT
- || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
- {
- int j;
-
- /* We have found a reload to combine with! */
- reload_out[i] = reload_out[output_reload];
- reload_outmode[i] = reload_outmode[output_reload];
- /* Mark the old output reload as inoperative. */
- reload_out[output_reload] = 0;
- /* The combined reload is needed for the entire insn. */
- reload_when_needed[i] = RELOAD_OTHER;
- /* If the output reload had a secondary reload, copy it. */
- if (reload_secondary_reload[output_reload] != -1)
- reload_secondary_reload[i] = reload_secondary_reload[output_reload];
- #ifdef SECONDARY_MEMORY_NEEDED
- /* Copy any secondary MEM. */
- if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
- secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
- = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
- #endif
- /* If required, minimize the register class. */
- if (reg_class_subset_p (reload_reg_class[output_reload],
- reload_reg_class[i]))
- reload_reg_class[i] = reload_reg_class[output_reload];
-
- /* Transfer all replacements from the old reload to the combined. */
- for (j = 0; j < n_replacements; j++)
- if (replacements[j].what == output_reload)
- replacements[j].what = i;
-
- return;
- }
-
- /* If this insn has only one operand that is modified or written (assumed
- to be the first), it must be the one corresponding to this reload. It
- is safe to use anything that dies in this insn for that output provided
- that it does not occur in the output (we already know it isn't an
- earlyclobber. If this is an asm insn, give up. */
-
- if (INSN_CODE (this_insn) == -1)
- return;
-
- for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
- if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
- || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
- return;
-
- /* See if some hard register that dies in this insn and is not used in
- the output is the right class. Only works if the register we pick
- up can fully hold our output reload. */
- for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD
- && GET_CODE (XEXP (note, 0)) == REG
- && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
- reload_out[output_reload])
- && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
- && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
- && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
- REGNO (XEXP (note, 0)))
- && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
- <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
- && ! fixed_regs[REGNO (XEXP (note, 0))])
- {
- reload_reg_rtx[output_reload] = gen_rtx (REG,
- reload_outmode[output_reload],
- REGNO (XEXP (note, 0)));
- return;
- }
- }
-
- /* Try to find a reload register for an in-out reload (expressions IN and OUT).
- See if one of IN and OUT is a register that may be used;
- this is desirable since a spill-register won't be needed.
- If so, return the register rtx that proves acceptable.
-
- INLOC and OUTLOC are locations where IN and OUT appear in the insn.
- CLASS is the register class required for the reload.
-
- If FOR_REAL is >= 0, it is the number of the reload,
- and in some cases when it can be discovered that OUT doesn't need
- to be computed, clear out reload_out[FOR_REAL].
-
- If FOR_REAL is -1, this should not be done, because this call
- is just to see if a register can be found, not to find and install it. */
-
- static rtx
- find_dummy_reload (real_in, real_out, inloc, outloc,
- inmode, outmode, class, for_real)
- rtx real_in, real_out;
- rtx *inloc, *outloc;
- enum machine_mode inmode, outmode;
- enum reg_class class;
- int for_real;
- {
- rtx in = real_in;
- rtx out = real_out;
- int in_offset = 0;
- int out_offset = 0;
- rtx value = 0;
-
- /* If operands exceed a word, we can't use either of them
- unless they have the same size. */
- if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
- && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
- || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
- return 0;
-
- /* Find the inside of any subregs. */
- while (GET_CODE (out) == SUBREG)
- {
- out_offset = SUBREG_WORD (out);
- out = SUBREG_REG (out);
- }
- while (GET_CODE (in) == SUBREG)
- {
- in_offset = SUBREG_WORD (in);
- in = SUBREG_REG (in);
- }
-
- /* Narrow down the reg class, the same way push_reload will;
- otherwise we might find a dummy now, but push_reload won't. */
- class = PREFERRED_RELOAD_CLASS (in, class);
-
- /* See if OUT will do. */
- if (GET_CODE (out) == REG
- && REGNO (out) < FIRST_PSEUDO_REGISTER)
- {
- register int regno = REGNO (out) + out_offset;
- int nwords = HARD_REGNO_NREGS (regno, outmode);
- rtx saved_rtx;
-
- /* When we consider whether the insn uses OUT,
- ignore references within IN. They don't prevent us
- from copying IN into OUT, because those refs would
- move into the insn that reloads IN.
-
- However, we only ignore IN in its role as this reload.
- If the insn uses IN elsewhere and it contains OUT,
- that counts. We can't be sure it's the "same" operand
- so it might not go through this reload. */
- saved_rtx = *inloc;
- *inloc = const0_rtx;
-
- if (regno < FIRST_PSEUDO_REGISTER
- /* A fixed reg that can overlap other regs better not be used
- for reloading in any way. */
- #ifdef OVERLAPPING_REGNO_P
- && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
- #endif
- && ! refers_to_regno_for_reload_p (regno, regno + nwords,
- PATTERN (this_insn), outloc))
- {
- int i;
- for (i = 0; i < nwords; i++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- regno + i))
- break;
-
- if (i == nwords)
- {
- if (GET_CODE (real_out) == REG)
- value = real_out;
- else
- value = gen_rtx (REG, outmode, regno);
- }
- }
-
- *inloc = saved_rtx;
- }
-
- /* Consider using IN if OUT was not acceptable
- or if OUT dies in this insn (like the quotient in a divmod insn).
- We can't use IN unless it is dies in this insn,
- which means we must know accurately which hard regs are live.
- Also, the result can't go in IN if IN is used within OUT. */
- if (hard_regs_live_known
- && GET_CODE (in) == REG
- && REGNO (in) < FIRST_PSEUDO_REGISTER
- && (value == 0
- || find_reg_note (this_insn, REG_UNUSED, real_out))
- && find_reg_note (this_insn, REG_DEAD, real_in)
- && !fixed_regs[REGNO (in)]
- && HARD_REGNO_MODE_OK (REGNO (in),
- /* The only case where out and real_out might
- have different modes is where real_out
- is a subreg, and in that case, out
- has a real mode. */
- (GET_MODE (out) != VOIDmode
- ? GET_MODE (out) : outmode)))
- {
- register int regno = REGNO (in) + in_offset;
- int nwords = HARD_REGNO_NREGS (regno, inmode);
-
- if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
- && ! hard_reg_set_here_p (regno, regno + nwords,
- PATTERN (this_insn)))
- {
- int i;
- for (i = 0; i < nwords; i++)
- if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- regno + i))
- break;
-
- if (i == nwords)
- {
- /* If we were going to use OUT as the reload reg
- and changed our mind, it means OUT is a dummy that
- dies here. So don't bother copying value to it. */
- if (for_real >= 0 && value == real_out)
- reload_out[for_real] = 0;
- if (GET_CODE (real_in) == REG)
- value = real_in;
- else
- value = gen_rtx (REG, inmode, regno);
- }
- }
- }
-
- return value;
- }
-
- /* This page contains subroutines used mainly for determining
- whether the IN or an OUT of a reload can serve as the
- reload register. */
-
- /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
-
- static int
- earlyclobber_operand_p (x)
- rtx x;
- {
- int i;
-
- for (i = 0; i < n_earlyclobbers; i++)
- if (reload_earlyclobbers[i] == x)
- return 1;
-
- return 0;
- }
-
- /* Return 1 if expression X alters a hard reg in the range
- from BEG_REGNO (inclusive) to END_REGNO (exclusive),
- either explicitly or in the guise of a pseudo-reg allocated to REGNO.
- X should be the body of an instruction. */
-
- static int
- hard_reg_set_here_p (beg_regno, end_regno, x)
- register int beg_regno, end_regno;
- rtx x;
- {
- if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
- {
- register rtx op0 = SET_DEST (x);
- while (GET_CODE (op0) == SUBREG)
- op0 = SUBREG_REG (op0);
- if (GET_CODE (op0) == REG)
- {
- register int r = REGNO (op0);
- /* See if this reg overlaps range under consideration. */
- if (r < end_regno
- && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
- return 1;
- }
- }
- else if (GET_CODE (x) == PARALLEL)
- {
- register int i = XVECLEN (x, 0) - 1;
- for (; i >= 0; i--)
- if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
- return 1;
- }
-
- return 0;
- }
-
- /* Return 1 if ADDR is a valid memory address for mode MODE,
- and check that each pseudo reg has the proper kind of
- hard reg. */
-
- int
- strict_memory_address_p (mode, addr)
- enum machine_mode mode;
- register rtx addr;
- {
- GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
- return 0;
-
- win:
- return 1;
- }
-
- /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
- if they are the same hard reg, and has special hacks for
- autoincrement and autodecrement.
- This is specifically intended for find_reloads to use
- in determining whether two operands match.
- X is the operand whose number is the lower of the two.
-
- The value is 2 if Y contains a pre-increment that matches
- a non-incrementing address in X. */
-
- /* ??? To be completely correct, we should arrange to pass
- for X the output operand and for Y the input operand.
- For now, we assume that the output operand has the lower number
- because that is natural in (SET output (... input ...)). */
-
- int
- operands_match_p (x, y)
- register rtx x, y;
- {
- register int i;
- register RTX_CODE code = GET_CODE (x);
- register char *fmt;
- int success_2;
-
- if (x == y)
- return 1;
- if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
- && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
- && GET_CODE (SUBREG_REG (y)) == REG)))
- {
- register int j;
-
- if (code == SUBREG)
- {
- i = REGNO (SUBREG_REG (x));
- if (i >= FIRST_PSEUDO_REGISTER)
- goto slow;
- i += SUBREG_WORD (x);
- }
- else
- i = REGNO (x);
-
- if (GET_CODE (y) == SUBREG)
- {
- j = REGNO (SUBREG_REG (y));
- if (j >= FIRST_PSEUDO_REGISTER)
- goto slow;
- j += SUBREG_WORD (y);
- }
- else
- j = REGNO (y);
-
- /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
- multiple hard register group, so that for example (reg:DI 0) and
- (reg:SI 1) will be considered the same register. */
- if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
- && i < FIRST_PSEUDO_REGISTER)
- i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
- if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
- && j < FIRST_PSEUDO_REGISTER)
- j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
-
- return i == j;
- }
- /* If two operands must match, because they are really a single
- operand of an assembler insn, then two postincrements are invalid
- because the assembler insn would increment only once.
- On the other hand, an postincrement matches ordinary indexing
- if the postincrement is the output operand. */
- if (code == POST_DEC || code == POST_INC)
- return operands_match_p (XEXP (x, 0), y);
- /* Two preincrements are invalid
- because the assembler insn would increment only once.
- On the other hand, an preincrement matches ordinary indexing
- if the preincrement is the input operand.
- In this case, return 2, since some callers need to do special
- things when this happens. */
- if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
- return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
-
- slow:
-
- /* Now we have disposed of all the cases
- in which different rtx codes can match. */
- if (code != GET_CODE (y))
- return 0;
- if (code == LABEL_REF)
- return XEXP (x, 0) == XEXP (y, 0);
- if (code == SYMBOL_REF)
- return XSTR (x, 0) == XSTR (y, 0);
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things. */
-
- success_2 = 0;
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- int val;
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'e':
- val = operands_match_p (XEXP (x, i), XEXP (y, i));
- if (val == 0)
- return 0;
- /* If any subexpression returns 2,
- we should return 2 if we are successful. */
- if (val == 2)
- success_2 = 1;
- break;
-
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- abort ();
- }
- }
- return 1 + success_2;
- }
-
- /* Return the number of times character C occurs in string S. */
-
- int
- n_occurrences (c, s)
- char c;
- char *s;
- {
- int n = 0;
- while (*s)
- n += (*s++ == c);
- return n;
- }
-
- /* Describe the range of registers or memory referenced by X.
- If X is a register, set REG_FLAG and put the first register
- number into START and the last plus one into END.
- If X is a memory reference, put a base address into BASE
- and a range of integer offsets into START and END.
- If X is pushing on the stack, we can assume it causes no trouble,
- so we set the SAFE field. */
-
- static struct decomposition
- decompose (x)
- rtx x;
- {
- struct decomposition val;
- int all_const = 0;
-
- val.reg_flag = 0;
- val.safe = 0;
- if (GET_CODE (x) == MEM)
- {
- rtx base, offset = 0;
- rtx addr = XEXP (x, 0);
-
- if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
- || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
- {
- val.base = XEXP (addr, 0);
- val.start = - GET_MODE_SIZE (GET_MODE (x));
- val.end = GET_MODE_SIZE (GET_MODE (x));
- val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
- return val;
- }
-
- if (GET_CODE (addr) == CONST)
- {
- addr = XEXP (addr, 0);
- all_const = 1;
- }
- if (GET_CODE (addr) == PLUS)
- {
- if (CONSTANT_P (XEXP (addr, 0)))
- {
- base = XEXP (addr, 1);
- offset = XEXP (addr, 0);
- }
- else if (CONSTANT_P (XEXP (addr, 1)))
- {
- base = XEXP (addr, 0);
- offset = XEXP (addr, 1);
- }
- }
-
- if (offset == 0)
- {
- base = addr;
- offset = const0_rtx;
- }
- if (GET_CODE (offset) == CONST)
- offset = XEXP (offset, 0);
- if (GET_CODE (offset) == PLUS)
- {
- if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 1));
- offset = XEXP (offset, 0);
- }
- else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, XEXP (offset, 0));
- offset = XEXP (offset, 1);
- }
- else
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, offset);
- offset = const0_rtx;
- }
- }
- else if (GET_CODE (offset) != CONST_INT)
- {
- base = gen_rtx (PLUS, GET_MODE (base), base, offset);
- offset = const0_rtx;
- }
-
- if (all_const && GET_CODE (base) == PLUS)
- base = gen_rtx (CONST, GET_MODE (base), base);
-
- if (GET_CODE (offset) != CONST_INT)
- abort ();
-
- val.start = INTVAL (offset);
- val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
- val.base = base;
- return val;
- }
- else if (GET_CODE (x) == REG)
- {
- val.reg_flag = 1;
- val.start = true_regnum (x);
- if (val.start < 0)
- {
- /* A pseudo with no hard reg. */
- val.start = REGNO (x);
- val.end = val.start + 1;
- }
- else
- /* A hard reg. */
- val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
- }
- else if (GET_CODE (x) == SUBREG)
- {
- if (GET_CODE (SUBREG_REG (x)) != REG)
- /* This could be more precise, but it's good enough. */
- return decompose (SUBREG_REG (x));
- val.reg_flag = 1;
- val.start = true_regnum (x);
- if (val.start < 0)
- return decompose (SUBREG_REG (x));
- else
- /* A hard reg. */
- val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
- }
- else if (CONSTANT_P (x)
- /* This hasn't been assigned yet, so it can't conflict yet. */
- || GET_CODE (x) == SCRATCH)
- val.safe = 1;
- else
- abort ();
- return val;
- }
-
- /* Return 1 if altering Y will not modify the value of X.
- Y is also described by YDATA, which should be decompose (Y). */
-
- static int
- immune_p (x, y, ydata)
- rtx x, y;
- struct decomposition ydata;
- {
- struct decomposition xdata;
-
- if (ydata.reg_flag)
- return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
- if (ydata.safe)
- return 1;
-
- if (GET_CODE (y) != MEM)
- abort ();
- /* If Y is memory and X is not, Y can't affect X. */
- if (GET_CODE (x) != MEM)
- return 1;
-
- xdata = decompose (x);
-
- if (! rtx_equal_p (xdata.base, ydata.base))
- {
- /* If bases are distinct symbolic constants, there is no overlap. */
- if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
- return 1;
- /* Constants and stack slots never overlap. */
- if (CONSTANT_P (xdata.base)
- && (ydata.base == frame_pointer_rtx
- || ydata.base == hard_frame_pointer_rtx
- || ydata.base == stack_pointer_rtx))
- return 1;
- if (CONSTANT_P (ydata.base)
- && (xdata.base == frame_pointer_rtx
- || xdata.base == hard_frame_pointer_rtx
- || xdata.base == stack_pointer_rtx))
- return 1;
- /* If either base is variable, we don't know anything. */
- return 0;
- }
-
-
- return (xdata.start >= ydata.end || ydata.start >= xdata.end);
- }
-
- /* Similar, but calls decompose. */
-
- int
- safe_from_earlyclobber (op, clobber)
- rtx op, clobber;
- {
- struct decomposition early_data;
-
- early_data = decompose (clobber);
- return immune_p (op, clobber, early_data);
- }
-
- /* Main entry point of this file: search the body of INSN
- for values that need reloading and record them with push_reload.
- REPLACE nonzero means record also where the values occur
- so that subst_reloads can be used.
-
- IND_LEVELS says how many levels of indirection are supported by this
- machine; a value of zero means that a memory reference is not a valid
- memory address.
-
- LIVE_KNOWN says we have valid information about which hard
- regs are live at each point in the program; this is true when
- we are called from global_alloc but false when stupid register
- allocation has been done.
-
- RELOAD_REG_P if nonzero is a vector indexed by hard reg number
- which is nonnegative if the reg has been commandeered for reloading into.
- It is copied into STATIC_RELOAD_REG_P and referenced from there
- by various subroutines. */
-
- void
- find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
- rtx insn;
- int replace, ind_levels;
- int live_known;
- short *reload_reg_p;
- {
- #ifdef REGISTER_CONSTRAINTS
-
- register int insn_code_number;
- register int i, j;
- int noperands;
- /* These are the constraints for the insn. We don't change them. */
- char *constraints1[MAX_RECOG_OPERANDS];
- /* These start out as the constraints for the insn
- and they are chewed up as we consider alternatives. */
- char *constraints[MAX_RECOG_OPERANDS];
- /* These are the preferred classes for an operand, or NO_REGS if it isn't
- a register. */
- enum reg_class preferred_class[MAX_RECOG_OPERANDS];
- char pref_or_nothing[MAX_RECOG_OPERANDS];
- /* Nonzero for a MEM operand whose entire address needs a reload. */
- int address_reloaded[MAX_RECOG_OPERANDS];
- /* Value of enum reload_type to use for operand. */
- enum reload_type operand_type[MAX_RECOG_OPERANDS];
- /* Value of enum reload_type to use within address of operand. */
- enum reload_type address_type[MAX_RECOG_OPERANDS];
- /* Save the usage of each operand. */
- enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
- int no_input_reloads = 0, no_output_reloads = 0;
- int n_alternatives;
- int this_alternative[MAX_RECOG_OPERANDS];
- char this_alternative_win[MAX_RECOG_OPERANDS];
- char this_alternative_offmemok[MAX_RECOG_OPERANDS];
- char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
- int this_alternative_matches[MAX_RECOG_OPERANDS];
- int swapped;
- int goal_alternative[MAX_RECOG_OPERANDS];
- int this_alternative_number;
- int goal_alternative_number;
- int operand_reloadnum[MAX_RECOG_OPERANDS];
- int goal_alternative_matches[MAX_RECOG_OPERANDS];
- int goal_alternative_matched[MAX_RECOG_OPERANDS];
- char goal_alternative_win[MAX_RECOG_OPERANDS];
- char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
- char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
- int goal_alternative_swapped;
- int best;
- int commutative;
- char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
- rtx substed_operand[MAX_RECOG_OPERANDS];
- rtx body = PATTERN (insn);
- rtx set = single_set (insn);
- int goal_earlyclobber, this_earlyclobber;
- enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
-
- this_insn = insn;
- this_insn_is_asm = 0; /* Tentative. */
- n_reloads = 0;
- n_replacements = 0;
- n_memlocs = 0;
- n_earlyclobbers = 0;
- replace_reloads = replace;
- hard_regs_live_known = live_known;
- static_reload_reg_p = reload_reg_p;
-
- /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
- neither are insns that SET cc0. Insns that use CC0 are not allowed
- to have any input reloads. */
- if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
- no_output_reloads = 1;
-
- #ifdef HAVE_cc0
- if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
- no_input_reloads = 1;
- if (reg_set_p (cc0_rtx, PATTERN (insn)))
- no_output_reloads = 1;
- #endif
-
- #ifdef SECONDARY_MEMORY_NEEDED
- /* The eliminated forms of any secondary memory locations are per-insn, so
- clear them out here. */
-
- bzero (secondary_memlocs_elim, sizeof secondary_memlocs_elim);
- #endif
-
- /* Find what kind of insn this is. NOPERANDS gets number of operands.
- Make OPERANDS point to a vector of operand values.
- Make OPERAND_LOCS point to a vector of pointers to
- where the operands were found.
- Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
- constraint-strings for this insn.
- Return if the insn needs no reload processing. */
-
- switch (GET_CODE (body))
- {
- case USE:
- case CLOBBER:
- case ASM_INPUT:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
- case SET:
- /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
- is cheap to move between them. If it is not, there may not be an insn
- to do the copy, so we may need a reload. */
- if (GET_CODE (SET_DEST (body)) == REG
- && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
- && GET_CODE (SET_SRC (body)) == REG
- && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
- && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
- REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
- return;
- case PARALLEL:
- case ASM_OPERANDS:
- reload_n_operands = noperands = asm_noperands (body);
- if (noperands >= 0)
- {
- /* This insn is an `asm' with operands. */
-
- insn_code_number = -1;
- this_insn_is_asm = 1;
-
- /* expand_asm_operands makes sure there aren't too many operands. */
- if (noperands > MAX_RECOG_OPERANDS)
- abort ();
-
- /* Now get the operand values and constraints out of the insn. */
-
- decode_asm_operands (body, recog_operand, recog_operand_loc,
- constraints, operand_mode);
- if (noperands > 0)
- {
- bcopy (constraints, constraints1, noperands * sizeof (char *));
- n_alternatives = n_occurrences (',', constraints[0]) + 1;
- for (i = 1; i < noperands; i++)
- if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
- {
- error_for_asm (insn, "operand constraints differ in number of alternatives");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- n_reloads = 0;
- return;
- }
- }
- break;
- }
-
- default:
- /* Ordinary insn: recognize it, get the operands via insn_extract
- and get the constraints. */
-
- insn_code_number = recog_memoized (insn);
- if (insn_code_number < 0)
- fatal_insn_not_found (insn);
-
- reload_n_operands = noperands = insn_n_operands[insn_code_number];
- n_alternatives = insn_n_alternatives[insn_code_number];
- /* Just return "no reloads" if insn has no operands with constraints. */
- if (n_alternatives == 0)
- return;
- insn_extract (insn);
- for (i = 0; i < noperands; i++)
- {
- constraints[i] = constraints1[i]
- = insn_operand_constraint[insn_code_number][i];
- operand_mode[i] = insn_operand_mode[insn_code_number][i];
- }
- }
-
- if (noperands == 0)
- return;
-
- commutative = -1;
-
- /* If we will need to know, later, whether some pair of operands
- are the same, we must compare them now and save the result.
- Reloading the base and index registers will clobber them
- and afterward they will fail to match. */
-
- for (i = 0; i < noperands; i++)
- {
- register char *p;
- register int c;
-
- substed_operand[i] = recog_operand[i];
- p = constraints[i];
-
- modified[i] = RELOAD_READ;
-
- /* Scan this operand's constraint to see if it is an output operand,
- an in-out operand, is commutative, or should match another. */
-
- while (c = *p++)
- {
- if (c == '=')
- modified[i] = RELOAD_WRITE;
- else if (c == '+')
- modified[i] = RELOAD_READ_WRITE;
- else if (c == '%')
- {
- /* The last operand should not be marked commutative. */
- if (i == noperands - 1)
- {
- if (this_insn_is_asm)
- warning_for_asm (this_insn,
- "`%%' constraint used with last operand");
- else
- abort ();
- }
- else
- commutative = i;
- }
- else if (c >= '0' && c <= '9')
- {
- c -= '0';
- operands_match[c][i]
- = operands_match_p (recog_operand[c], recog_operand[i]);
-
- /* An operand may not match itself. */
- if (c == i)
- {
- if (this_insn_is_asm)
- warning_for_asm (this_insn,
- "operand %d has constraint %d", i, c);
- else
- abort ();
- }
-
- /* If C can be commuted with C+1, and C might need to match I,
- then C+1 might also need to match I. */
- if (commutative >= 0)
- {
- if (c == commutative || c == commutative + 1)
- {
- int other = c + (c == commutative ? 1 : -1);
- operands_match[other][i]
- = operands_match_p (recog_operand[other], recog_operand[i]);
- }
- if (i == commutative || i == commutative + 1)
- {
- int other = i + (i == commutative ? 1 : -1);
- operands_match[c][other]
- = operands_match_p (recog_operand[c], recog_operand[other]);
- }
- /* Note that C is supposed to be less than I.
- No need to consider altering both C and I because in
- that case we would alter one into the other. */
- }
- }
- }
- }
-
- /* Examine each operand that is a memory reference or memory address
- and reload parts of the addresses into index registers.
- Also here any references to pseudo regs that didn't get hard regs
- but are equivalent to constants get replaced in the insn itself
- with those constants. Nobody will ever see them again.
-
- Finally, set up the preferred classes of each operand. */
-
- for (i = 0; i < noperands; i++)
- {
- register RTX_CODE code = GET_CODE (recog_operand[i]);
-
- address_reloaded[i] = 0;
- operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
- : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
- : RELOAD_OTHER);
- address_type[i]
- = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
- : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
- : RELOAD_OTHER);
-
- if (*constraints[i] == 0)
- /* Ignore things like match_operator operands. */
- ;
- else if (constraints[i][0] == 'p')
- {
- find_reloads_address (VOIDmode, NULL_PTR,
- recog_operand[i], recog_operand_loc[i],
- i, operand_type[i], ind_levels);
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
- }
- else if (code == MEM)
- {
- if (find_reloads_address (GET_MODE (recog_operand[i]),
- recog_operand_loc[i],
- XEXP (recog_operand[i], 0),
- &XEXP (recog_operand[i], 0),
- i, address_type[i], ind_levels))
- address_reloaded[i] = 1;
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
- }
- else if (code == SUBREG)
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
- = find_reloads_toplev (recog_operand[i], i, address_type[i],
- ind_levels,
- set != 0
- && &SET_DEST (set) == recog_operand_loc[i]);
- else if (code == PLUS)
- /* We can get a PLUS as an "operand" as a result of
- register elimination. See eliminate_regs and gen_input_reload. */
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
- = find_reloads_toplev (recog_operand[i], i, address_type[i],
- ind_levels, 0);
- else if (code == REG)
- {
- /* This is equivalent to calling find_reloads_toplev.
- The code is duplicated for speed.
- When we find a pseudo always equivalent to a constant,
- we replace it by the constant. We must be sure, however,
- that we don't try to replace it in the insn in which it
- is being set. */
- register int regno = REGNO (recog_operand[i]);
- if (reg_equiv_constant[regno] != 0
- && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
- substed_operand[i] = recog_operand[i]
- = reg_equiv_constant[regno];
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- substed_operand[i] = recog_operand[i]
- = reg_equiv_mem[regno];
- #endif
- if (reg_equiv_address[regno] != 0)
- {
- /* If reg_equiv_address is not a constant address, copy it,
- since it may be shared. */
- rtx address = reg_equiv_address[regno];
-
- if (rtx_varies_p (address))
- address = copy_rtx (address);
-
- /* If this is an output operand, we must output a CLOBBER
- after INSN so find_equiv_reg knows REGNO is being written.
- Mark this insn specially, do we can put our output reloads
- after it. */
-
- if (modified[i] != RELOAD_READ)
- PUT_MODE (emit_insn_after (gen_rtx (CLOBBER, VOIDmode,
- recog_operand[i]),
- insn),
- DImode);
-
- *recog_operand_loc[i] = recog_operand[i]
- = gen_rtx (MEM, GET_MODE (recog_operand[i]), address);
- RTX_UNCHANGING_P (recog_operand[i])
- = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
- find_reloads_address (GET_MODE (recog_operand[i]),
- recog_operand_loc[i],
- XEXP (recog_operand[i], 0),
- &XEXP (recog_operand[i], 0),
- i, address_type[i], ind_levels);
- substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
- }
- }
- /* If the operand is still a register (we didn't replace it with an
- equivalent), get the preferred class to reload it into. */
- code = GET_CODE (recog_operand[i]);
- preferred_class[i]
- = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
- ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
- pref_or_nothing[i]
- = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
- && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
- }
-
- /* If this is simply a copy from operand 1 to operand 0, merge the
- preferred classes for the operands. */
- if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
- && recog_operand[1] == SET_SRC (set))
- {
- preferred_class[0] = preferred_class[1]
- = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
- pref_or_nothing[0] |= pref_or_nothing[1];
- pref_or_nothing[1] |= pref_or_nothing[0];
- }
-
- /* Now see what we need for pseudo-regs that didn't get hard regs
- or got the wrong kind of hard reg. For this, we must consider
- all the operands together against the register constraints. */
-
- best = MAX_RECOG_OPERANDS + 300;
-
- swapped = 0;
- goal_alternative_swapped = 0;
- try_swapped:
-
- /* The constraints are made of several alternatives.
- Each operand's constraint looks like foo,bar,... with commas
- separating the alternatives. The first alternatives for all
- operands go together, the second alternatives go together, etc.
-
- First loop over alternatives. */
-
- for (this_alternative_number = 0;
- this_alternative_number < n_alternatives;
- this_alternative_number++)
- {
- /* Loop over operands for one constraint alternative. */
- /* LOSERS counts those that don't fit this alternative
- and would require loading. */
- int losers = 0;
- /* BAD is set to 1 if it some operand can't fit this alternative
- even after reloading. */
- int bad = 0;
- /* REJECT is a count of how undesirable this alternative says it is
- if any reloading is required. If the alternative matches exactly
- then REJECT is ignored, but otherwise it gets this much
- counted against it in addition to the reloading needed. Each
- ? counts three times here since we want the disparaging caused by
- a bad register class to only count 1/3 as much. */
- int reject = 0;
-
- this_earlyclobber = 0;
-
- for (i = 0; i < noperands; i++)
- {
- register char *p = constraints[i];
- register int win = 0;
- /* 0 => this operand can be reloaded somehow for this alternative */
- int badop = 1;
- /* 0 => this operand can be reloaded if the alternative allows regs. */
- int winreg = 0;
- int c;
- register rtx operand = recog_operand[i];
- int offset = 0;
- /* Nonzero means this is a MEM that must be reloaded into a reg
- regardless of what the constraint says. */
- int force_reload = 0;
- int offmemok = 0;
- int earlyclobber = 0;
-
- /* If the operand is a SUBREG, extract
- the REG or MEM (or maybe even a constant) within.
- (Constants can occur as a result of reg_equiv_constant.) */
-
- while (GET_CODE (operand) == SUBREG)
- {
- offset += SUBREG_WORD (operand);
- operand = SUBREG_REG (operand);
- /* Force reload if this is a constant or PLUS or if there may may
- be a problem accessing OPERAND in the outer mode. */
- if (CONSTANT_P (operand)
- || GET_CODE (operand) == PLUS
- /* We must force a reload of paradoxical SUBREGs
- of a MEM because the alignment of the inner value
- may not be enough to do the outer reference.
-
- On machines that extend byte operations and we have a
- SUBREG where both the inner and outer modes are different
- size but no wider than a word, combine.c has made
- assumptions about the behavior of the machine in such
- register access. If the data is, in fact, in memory we
- must always load using the size assumed to be in the
- register and let the insn do the different-sized
- accesses. */
- || ((GET_CODE (operand) == MEM
- || (GET_CODE (operand)== REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
- && (((GET_MODE_BITSIZE (GET_MODE (operand))
- < BIGGEST_ALIGNMENT)
- && (GET_MODE_SIZE (operand_mode[i])
- > GET_MODE_SIZE (GET_MODE (operand))))
- #ifdef LOAD_EXTEND_OP
- || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (operand))
- <= UNITS_PER_WORD)
- && (GET_MODE_SIZE (operand_mode[i])
- != GET_MODE_SIZE (GET_MODE (operand))))
- #endif
- ))
- /* Subreg of a hard reg which can't handle the subreg's mode
- or which would handle that mode in the wrong number of
- registers for subregging to work. */
- || (GET_CODE (operand) == REG
- && REGNO (operand) < FIRST_PSEUDO_REGISTER
- && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
- && (GET_MODE_SIZE (GET_MODE (operand))
- > UNITS_PER_WORD)
- && ((GET_MODE_SIZE (GET_MODE (operand))
- / UNITS_PER_WORD)
- != HARD_REGNO_NREGS (REGNO (operand),
- GET_MODE (operand))))
- || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
- operand_mode[i]))))
- force_reload = 1;
- }
-
- this_alternative[i] = (int) NO_REGS;
- this_alternative_win[i] = 0;
- this_alternative_offmemok[i] = 0;
- this_alternative_earlyclobber[i] = 0;
- this_alternative_matches[i] = -1;
-
- /* An empty constraint or empty alternative
- allows anything which matched the pattern. */
- if (*p == 0 || *p == ',')
- win = 1, badop = 0;
-
- /* Scan this alternative's specs for this operand;
- set WIN if the operand fits any letter in this alternative.
- Otherwise, clear BADOP if this operand could
- fit some letter after reloads,
- or set WINREG if this operand could fit after reloads
- provided the constraint allows some registers. */
-
- while (*p && (c = *p++) != ',')
- switch (c)
- {
- case '=':
- case '+':
- case '*':
- break;
-
- case '%':
- /* The last operand should not be marked commutative. */
- if (i != noperands - 1)
- commutative = i;
- break;
-
- case '?':
- reject += 3;
- break;
-
- case '!':
- reject = 300;
- break;
-
- case '#':
- /* Ignore rest of this alternative as far as
- reloading is concerned. */
- while (*p && *p != ',') p++;
- break;
-
- case '0':
- case '1':
- case '2':
- case '3':
- case '4':
- c -= '0';
- this_alternative_matches[i] = c;
- /* We are supposed to match a previous operand.
- If we do, we win if that one did.
- If we do not, count both of the operands as losers.
- (This is too conservative, since most of the time
- only a single reload insn will be needed to make
- the two operands win. As a result, this alternative
- may be rejected when it is actually desirable.) */
- if ((swapped && (c != commutative || i != commutative + 1))
- /* If we are matching as if two operands were swapped,
- also pretend that operands_match had been computed
- with swapped.
- But if I is the second of those and C is the first,
- don't exchange them, because operands_match is valid
- only on one side of its diagonal. */
- ? (operands_match
- [(c == commutative || c == commutative + 1)
- ? 2*commutative + 1 - c : c]
- [(i == commutative || i == commutative + 1)
- ? 2*commutative + 1 - i : i])
- : operands_match[c][i])
- win = this_alternative_win[c];
- else
- {
- /* Operands don't match. */
- rtx value;
- /* Retroactively mark the operand we had to match
- as a loser, if it wasn't already. */
- if (this_alternative_win[c])
- losers++;
- this_alternative_win[c] = 0;
- if (this_alternative[c] == (int) NO_REGS)
- bad = 1;
- /* But count the pair only once in the total badness of
- this alternative, if the pair can be a dummy reload. */
- value
- = find_dummy_reload (recog_operand[i], recog_operand[c],
- recog_operand_loc[i], recog_operand_loc[c],
- operand_mode[i], operand_mode[c],
- this_alternative[c], -1);
-
- if (value != 0)
- losers--;
- }
- /* This can be fixed with reloads if the operand
- we are supposed to match can be fixed with reloads. */
- badop = 0;
- this_alternative[i] = this_alternative[c];
-
- /* If we have to reload this operand and some previous
- operand also had to match the same thing as this
- operand, we don't know how to do that. So reject this
- alternative. */
- if (! win || force_reload)
- for (j = 0; j < i; j++)
- if (this_alternative_matches[j]
- == this_alternative_matches[i])
- badop = 1;
-
- break;
-
- case 'p':
- /* All necessary reloads for an address_operand
- were handled in find_reloads_address. */
- this_alternative[i] = (int) ALL_REGS;
- win = 1;
- break;
-
- case 'm':
- if (force_reload)
- break;
- if (GET_CODE (operand) == MEM
- || (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0))
- win = 1;
- if (CONSTANT_P (operand))
- badop = 0;
- break;
-
- case '<':
- if (GET_CODE (operand) == MEM
- && ! address_reloaded[i]
- && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
- || GET_CODE (XEXP (operand, 0)) == POST_DEC))
- win = 1;
- break;
-
- case '>':
- if (GET_CODE (operand) == MEM
- && ! address_reloaded[i]
- && (GET_CODE (XEXP (operand, 0)) == PRE_INC
- || GET_CODE (XEXP (operand, 0)) == POST_INC))
- win = 1;
- break;
-
- /* Memory operand whose address is not offsettable. */
- case 'V':
- if (force_reload)
- break;
- if (GET_CODE (operand) == MEM
- && ! (ind_levels ? offsettable_memref_p (operand)
- : offsettable_nonstrict_memref_p (operand))
- /* Certain mem addresses will become offsettable
- after they themselves are reloaded. This is important;
- we don't want our own handling of unoffsettables
- to override the handling of reg_equiv_address. */
- && !(GET_CODE (XEXP (operand, 0)) == REG
- && (ind_levels == 0
- || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
- win = 1;
- break;
-
- /* Memory operand whose address is offsettable. */
- case 'o':
- if (force_reload)
- break;
- if ((GET_CODE (operand) == MEM
- /* If IND_LEVELS, find_reloads_address won't reload a
- pseudo that didn't get a hard reg, so we have to
- reject that case. */
- && (ind_levels ? offsettable_memref_p (operand)
- : offsettable_nonstrict_memref_p (operand)))
- /* Certain mem addresses will become offsettable
- after they themselves are reloaded. This is important;
- we don't want our own handling of unoffsettables
- to override the handling of reg_equiv_address. */
- || (GET_CODE (operand) == MEM
- && GET_CODE (XEXP (operand, 0)) == REG
- && (ind_levels == 0
- || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
- || (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0
- /* If reg_equiv_address is nonzero, we will be
- loading it into a register; hence it will be
- offsettable, but we cannot say that reg_equiv_mem
- is offsettable without checking. */
- && ((reg_equiv_mem[REGNO (operand)] != 0
- && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
- || (reg_equiv_address[REGNO (operand)] != 0))))
- win = 1;
- if (CONSTANT_P (operand) || GET_CODE (operand) == MEM)
- badop = 0;
- offmemok = 1;
- break;
-
- case '&':
- /* Output operand that is stored before the need for the
- input operands (and their index registers) is over. */
- earlyclobber = 1, this_earlyclobber = 1;
- break;
-
- case 'E':
- /* Match any floating double constant, but only if
- we can examine the bits of it reliably. */
- if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
- || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
- && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
- break;
- if (GET_CODE (operand) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'F':
- if (GET_CODE (operand) == CONST_DOUBLE)
- win = 1;
- break;
-
- case 'G':
- case 'H':
- if (GET_CODE (operand) == CONST_DOUBLE
- && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
- win = 1;
- break;
-
- case 's':
- if (GET_CODE (operand) == CONST_INT
- || (GET_CODE (operand) == CONST_DOUBLE
- && GET_MODE (operand) == VOIDmode))
- break;
- case 'i':
- if (CONSTANT_P (operand)
- #ifdef LEGITIMATE_PIC_OPERAND_P
- && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
- #endif
- )
- win = 1;
- break;
-
- case 'n':
- if (GET_CODE (operand) == CONST_INT
- || (GET_CODE (operand) == CONST_DOUBLE
- && GET_MODE (operand) == VOIDmode))
- win = 1;
- break;
-
- case 'I':
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- if (GET_CODE (operand) == CONST_INT
- && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
- win = 1;
- break;
-
- case 'X':
- win = 1;
- break;
-
- case 'g':
- if (! force_reload
- /* A PLUS is never a valid operand, but reload can make
- it from a register when eliminating registers. */
- && GET_CODE (operand) != PLUS
- /* A SCRATCH is not a valid operand. */
- && GET_CODE (operand) != SCRATCH
- #ifdef LEGITIMATE_PIC_OPERAND_P
- && (! CONSTANT_P (operand)
- || ! flag_pic
- || LEGITIMATE_PIC_OPERAND_P (operand))
- #endif
- && (GENERAL_REGS == ALL_REGS
- || GET_CODE (operand) != REG
- || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[REGNO (operand)] < 0)))
- win = 1;
- /* Drop through into 'r' case */
-
- case 'r':
- this_alternative[i]
- = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
- goto reg;
-
- #ifdef EXTRA_CONSTRAINT
- case 'Q':
- case 'R':
- case 'S':
- case 'T':
- case 'U':
- if (EXTRA_CONSTRAINT (operand, c))
- win = 1;
- break;
- #endif
-
- default:
- this_alternative[i]
- = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
-
- reg:
- if (GET_MODE (operand) == BLKmode)
- break;
- winreg = 1;
- if (GET_CODE (operand) == REG
- && reg_fits_class_p (operand, this_alternative[i],
- offset, GET_MODE (recog_operand[i])))
- win = 1;
- break;
- }
-
- constraints[i] = p;
-
- /* If this operand could be handled with a reg,
- and some reg is allowed, then this operand can be handled. */
- if (winreg && this_alternative[i] != (int) NO_REGS)
- badop = 0;
-
- /* Record which operands fit this alternative. */
- this_alternative_earlyclobber[i] = earlyclobber;
- if (win && ! force_reload)
- this_alternative_win[i] = 1;
- else
- {
- this_alternative_offmemok[i] = offmemok;
- losers++;
- if (badop)
- bad = 1;
- /* Alternative loses if it has no regs for a reg operand. */
- if (GET_CODE (operand) == REG
- && this_alternative[i] == (int) NO_REGS
- && this_alternative_matches[i] < 0)
- bad = 1;
-
- /* Alternative loses if it requires a type of reload not
- permitted for this insn. We can always reload SCRATCH
- and objects with a REG_UNUSED note. */
- if (GET_CODE (operand) != SCRATCH
- && modified[i] != RELOAD_READ && no_output_reloads
- && ! find_reg_note (insn, REG_UNUSED, operand))
- bad = 1;
- else if (modified[i] != RELOAD_WRITE && no_input_reloads)
- bad = 1;
-
- /* If this is a constant that is reloaded into the desired
- class by copying it to memory first, count that as another
- reload. This is consistent with other code and is
- required to avoid chosing another alternative when
- the constant is moved into memory by this function on
- an early reload pass. Note that the test here is
- precisely the same as in the code below that calls
- force_const_mem. */
- if (CONSTANT_P (operand)
- && (PREFERRED_RELOAD_CLASS (operand,
- (enum reg_class) this_alternative[i])
- == NO_REGS)
- && this_alternative[i] != (int) NO_REGS
- && operand_mode[i] != VOIDmode)
- losers++;
-
- /* We prefer to reload pseudos over reloading other things,
- since such reloads may be able to be eliminated later.
- If we are reloading a SCRATCH, we won't be generating any
- insns, just using a register, so it is also preferred.
- So bump REJECT in other cases. */
- if (! (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
- && GET_CODE (operand) != SCRATCH)
- reject++;
- }
-
- /* If this operand is a pseudo register that didn't get a hard
- reg and this alternative accepts some register, see if the
- class that we want is a subset of the preferred class for this
- register. If not, but it intersects that class, use the
- preferred class instead. If it does not intersect the preferred
- class, show that usage of this alternative should be discouraged;
- it will be discouraged more still if the register is `preferred
- or nothing'. We do this because it increases the chance of
- reusing our spill register in a later insn and avoiding a pair
- of memory stores and loads.
-
- Don't bother with this if this alternative will accept this
- operand.
-
- Don't do this for a multiword operand, if
- we have to worry about small classes, because making reg groups
- harder to allocate is asking for trouble.
-
- Don't do this if the preferred class has only one register
- because we might otherwise exhaust the class. */
-
-
- if (! win && this_alternative[i] != (int) NO_REGS
- #ifdef SMALL_REGISTER_CLASSES
- && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
- #endif
- && reg_class_size[(int) preferred_class[i]] > 1)
- {
- if (! reg_class_subset_p (this_alternative[i],
- preferred_class[i]))
- {
- /* Since we don't have a way of forming the intersection,
- we just do something special if the preferred class
- is a subset of the class we have; that's the most
- common case anyway. */
- if (reg_class_subset_p (preferred_class[i],
- this_alternative[i]))
- this_alternative[i] = (int) preferred_class[i];
- else
- reject += (1 + pref_or_nothing[i]);
- }
- }
- }
-
- /* Now see if any output operands that are marked "earlyclobber"
- in this alternative conflict with any input operands
- or any memory addresses. */
-
- for (i = 0; i < noperands; i++)
- if (this_alternative_earlyclobber[i]
- && this_alternative_win[i])
- {
- struct decomposition early_data;
-
- early_data = decompose (recog_operand[i]);
-
- if (modified[i] == RELOAD_READ)
- {
- if (this_insn_is_asm)
- warning_for_asm (this_insn,
- "`&' constraint used with input operand");
- else
- abort ();
- continue;
- }
-
- if (this_alternative[i] == NO_REGS)
- {
- this_alternative_earlyclobber[i] = 0;
- if (this_insn_is_asm)
- error_for_asm (this_insn,
- "`&' constraint used with no register class");
- else
- abort ();
- }
-
- for (j = 0; j < noperands; j++)
- /* Is this an input operand or a memory ref? */
- if ((GET_CODE (recog_operand[j]) == MEM
- || modified[j] != RELOAD_WRITE)
- && j != i
- /* Ignore things like match_operator operands. */
- && *constraints1[j] != 0
- /* Don't count an input operand that is constrained to match
- the early clobber operand. */
- && ! (this_alternative_matches[j] == i
- && rtx_equal_p (recog_operand[i], recog_operand[j]))
- /* Is it altered by storing the earlyclobber operand? */
- && !immune_p (recog_operand[j], recog_operand[i], early_data))
- {
- /* If the output is in a single-reg class,
- it's costly to reload it, so reload the input instead. */
- if (reg_class_size[this_alternative[i]] == 1
- && (GET_CODE (recog_operand[j]) == REG
- || GET_CODE (recog_operand[j]) == SUBREG))
- {
- losers++;
- this_alternative_win[j] = 0;
- }
- else
- break;
- }
- /* If an earlyclobber operand conflicts with something,
- it must be reloaded, so request this and count the cost. */
- if (j != noperands)
- {
- losers++;
- this_alternative_win[i] = 0;
- for (j = 0; j < noperands; j++)
- if (this_alternative_matches[j] == i
- && this_alternative_win[j])
- {
- this_alternative_win[j] = 0;
- losers++;
- }
- }
- }
-
- /* If one alternative accepts all the operands, no reload required,
- choose that alternative; don't consider the remaining ones. */
- if (losers == 0)
- {
- /* Unswap these so that they are never swapped at `finish'. */
- if (commutative >= 0)
- {
- recog_operand[commutative] = substed_operand[commutative];
- recog_operand[commutative + 1]
- = substed_operand[commutative + 1];
- }
- for (i = 0; i < noperands; i++)
- {
- goal_alternative_win[i] = 1;
- goal_alternative[i] = this_alternative[i];
- goal_alternative_offmemok[i] = this_alternative_offmemok[i];
- goal_alternative_matches[i] = this_alternative_matches[i];
- goal_alternative_earlyclobber[i]
- = this_alternative_earlyclobber[i];
- }
- goal_alternative_number = this_alternative_number;
- goal_alternative_swapped = swapped;
- goal_earlyclobber = this_earlyclobber;
- goto finish;
- }
-
- /* REJECT, set by the ! and ? constraint characters and when a register
- would be reloaded into a non-preferred class, discourages the use of
- this alternative for a reload goal. REJECT is incremented by three
- for each ? and one for each non-preferred class. */
- losers = losers * 3 + reject;
-
- /* If this alternative can be made to work by reloading,
- and it needs less reloading than the others checked so far,
- record it as the chosen goal for reloading. */
- if (! bad && best > losers)
- {
- for (i = 0; i < noperands; i++)
- {
- goal_alternative[i] = this_alternative[i];
- goal_alternative_win[i] = this_alternative_win[i];
- goal_alternative_offmemok[i] = this_alternative_offmemok[i];
- goal_alternative_matches[i] = this_alternative_matches[i];
- goal_alternative_earlyclobber[i]
- = this_alternative_earlyclobber[i];
- }
- goal_alternative_swapped = swapped;
- best = losers;
- goal_alternative_number = this_alternative_number;
- goal_earlyclobber = this_earlyclobber;
- }
- }
-
- /* If insn is commutative (it's safe to exchange a certain pair of operands)
- then we need to try each alternative twice,
- the second time matching those two operands
- as if we had exchanged them.
- To do this, really exchange them in operands.
-
- If we have just tried the alternatives the second time,
- return operands to normal and drop through. */
-
- if (commutative >= 0)
- {
- swapped = !swapped;
- if (swapped)
- {
- register enum reg_class tclass;
- register int t;
-
- recog_operand[commutative] = substed_operand[commutative + 1];
- recog_operand[commutative + 1] = substed_operand[commutative];
-
- tclass = preferred_class[commutative];
- preferred_class[commutative] = preferred_class[commutative + 1];
- preferred_class[commutative + 1] = tclass;
-
- t = pref_or_nothing[commutative];
- pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
- pref_or_nothing[commutative + 1] = t;
-
- bcopy (constraints1, constraints, noperands * sizeof (char *));
- goto try_swapped;
- }
- else
- {
- recog_operand[commutative] = substed_operand[commutative];
- recog_operand[commutative + 1] = substed_operand[commutative + 1];
- }
- }
-
- /* The operands don't meet the constraints.
- goal_alternative describes the alternative
- that we could reach by reloading the fewest operands.
- Reload so as to fit it. */
-
- if (best == MAX_RECOG_OPERANDS + 300)
- {
- /* No alternative works with reloads?? */
- if (insn_code_number >= 0)
- abort ();
- error_for_asm (insn, "inconsistent operand constraints in an `asm'");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- n_reloads = 0;
- return;
- }
-
- /* Jump to `finish' from above if all operands are valid already.
- In that case, goal_alternative_win is all 1. */
- finish:
-
- /* Right now, for any pair of operands I and J that are required to match,
- with I < J,
- goal_alternative_matches[J] is I.
- Set up goal_alternative_matched as the inverse function:
- goal_alternative_matched[I] = J. */
-
- for (i = 0; i < noperands; i++)
- goal_alternative_matched[i] = -1;
-
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && goal_alternative_matches[i] >= 0)
- goal_alternative_matched[goal_alternative_matches[i]] = i;
-
- /* If the best alternative is with operands 1 and 2 swapped,
- consider them swapped before reporting the reloads. Update the
- operand numbers of any reloads already pushed. */
-
- if (goal_alternative_swapped)
- {
- register rtx tem;
-
- tem = substed_operand[commutative];
- substed_operand[commutative] = substed_operand[commutative + 1];
- substed_operand[commutative + 1] = tem;
- tem = recog_operand[commutative];
- recog_operand[commutative] = recog_operand[commutative + 1];
- recog_operand[commutative + 1] = tem;
-
- for (i = 0; i < n_reloads; i++)
- {
- if (reload_opnum[i] == commutative)
- reload_opnum[i] = commutative + 1;
- else if (reload_opnum[i] == commutative + 1)
- reload_opnum[i] = commutative;
- }
- }
-
- /* Perform whatever substitutions on the operands we are supposed
- to make due to commutativity or replacement of registers
- with equivalent constants or memory slots. */
-
- for (i = 0; i < noperands; i++)
- {
- *recog_operand_loc[i] = substed_operand[i];
- /* While we are looping on operands, initialize this. */
- operand_reloadnum[i] = -1;
-
- /* If this is an earlyclobber operand, we need to widen the scope.
- The reload must remain valid from the start of the insn being
- reloaded until after the operand is stored into its destination.
- We approximate this with RELOAD_OTHER even though we know that we
- do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
-
- One special case that is worth checking is when we have an
- output that is earlyclobber but isn't used past the insn (typically
- a SCRATCH). In this case, we only need have the reload live
- through the insn itself, but not for any of our input or output
- reloads.
-
- In any case, anything needed to address this operand can remain
- however they were previously categorized. */
-
- if (goal_alternative_earlyclobber[i])
- operand_type[i]
- = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
- ? RELOAD_FOR_INSN : RELOAD_OTHER);
- }
-
- /* Any constants that aren't allowed and can't be reloaded
- into registers are here changed into memory references. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i]
- && CONSTANT_P (recog_operand[i])
- && (PREFERRED_RELOAD_CLASS (recog_operand[i],
- (enum reg_class) goal_alternative[i])
- == NO_REGS)
- && operand_mode[i] != VOIDmode)
- {
- *recog_operand_loc[i] = recog_operand[i]
- = find_reloads_toplev (force_const_mem (operand_mode[i],
- recog_operand[i]),
- i, address_type[i], ind_levels, 0);
- if (alternative_allows_memconst (constraints1[i],
- goal_alternative_number))
- goal_alternative_win[i] = 1;
- }
-
- /* Record the values of the earlyclobber operands for the caller. */
- if (goal_earlyclobber)
- for (i = 0; i < noperands; i++)
- if (goal_alternative_earlyclobber[i])
- reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
-
- /* Now record reloads for all the operands that need them. */
- for (i = 0; i < noperands; i++)
- if (! goal_alternative_win[i])
- {
- /* Operands that match previous ones have already been handled. */
- if (goal_alternative_matches[i] >= 0)
- ;
- /* Handle an operand with a nonoffsettable address
- appearing where an offsettable address will do
- by reloading the address into a base register.
-
- ??? We can also do this when the operand is a register and
- reg_equiv_mem is not offsettable, but this is a bit tricky,
- so we don't bother with it. It may not be worth doing. */
- else if (goal_alternative_matched[i] == -1
- && goal_alternative_offmemok[i]
- && GET_CODE (recog_operand[i]) == MEM)
- {
- operand_reloadnum[i]
- = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
- &XEXP (recog_operand[i], 0), NULL_PTR,
- BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
- VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
- reload_inc[operand_reloadnum[i]]
- = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
-
- /* If this operand is an output, we will have made any
- reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
- now we are treating part of the operand as an input, so
- we must change these to RELOAD_FOR_INPUT_ADDRESS. */
-
- if (modified[i] == RELOAD_WRITE)
- for (j = 0; j < n_reloads; j++)
- if (reload_opnum[j] == i
- && reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
- reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
- }
- else if (goal_alternative_matched[i] == -1)
- operand_reloadnum[i] =
- push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
- modified[i] != RELOAD_READ ? recog_operand[i] : 0,
- (modified[i] != RELOAD_WRITE ?
- recog_operand_loc[i] : 0),
- modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE
- ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ
- ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_operand_strict_low[insn_code_number][i]),
- 0, i, operand_type[i]);
- /* In a matching pair of operands, one must be input only
- and the other must be output only.
- Pass the input operand as IN and the other as OUT. */
- else if (modified[i] == RELOAD_READ
- && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
- {
- operand_reloadnum[i]
- = push_reload (recog_operand[i],
- recog_operand[goal_alternative_matched[i]],
- recog_operand_loc[i],
- recog_operand_loc[goal_alternative_matched[i]],
- (enum reg_class) goal_alternative[i],
- operand_mode[i],
- operand_mode[goal_alternative_matched[i]],
- 0, 0, i, RELOAD_OTHER);
- operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
- }
- else if (modified[i] == RELOAD_WRITE
- && modified[goal_alternative_matched[i]] == RELOAD_READ)
- {
- operand_reloadnum[goal_alternative_matched[i]]
- = push_reload (recog_operand[goal_alternative_matched[i]],
- recog_operand[i],
- recog_operand_loc[goal_alternative_matched[i]],
- recog_operand_loc[i],
- (enum reg_class) goal_alternative[i],
- operand_mode[goal_alternative_matched[i]],
- operand_mode[i],
- 0, 0, i, RELOAD_OTHER);
- operand_reloadnum[i] = output_reloadnum;
- }
- else if (insn_code_number >= 0)
- abort ();
- else
- {
- error_for_asm (insn, "inconsistent operand constraints in an `asm'");
- /* Avoid further trouble with this insn. */
- PATTERN (insn) = gen_rtx (USE, VOIDmode, const0_rtx);
- n_reloads = 0;
- return;
- }
- }
- else if (goal_alternative_matched[i] < 0
- && goal_alternative_matches[i] < 0
- && optimize)
- {
- /* For each non-matching operand that's a MEM or a pseudo-register
- that didn't get a hard register, make an optional reload.
- This may get done even if the insn needs no reloads otherwise. */
-
- rtx operand = recog_operand[i];
-
- while (GET_CODE (operand) == SUBREG)
- operand = XEXP (operand, 0);
- if ((GET_CODE (operand) == MEM
- || (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
- && (enum reg_class) goal_alternative[i] != NO_REGS
- && ! no_input_reloads
- /* Optional output reloads don't do anything and we mustn't
- make in-out reloads on insns that are not permitted output
- reloads. */
- && (modified[i] == RELOAD_READ
- || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
- operand_reloadnum[i]
- = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
- modified[i] != RELOAD_READ ? recog_operand[i] : 0,
- (modified[i] != RELOAD_WRITE
- ? recog_operand_loc[i] : 0),
- (modified[i] != RELOAD_READ
- ? recog_operand_loc[i] : 0),
- (enum reg_class) goal_alternative[i],
- (modified[i] == RELOAD_WRITE
- ? VOIDmode : operand_mode[i]),
- (modified[i] == RELOAD_READ
- ? VOIDmode : operand_mode[i]),
- (insn_code_number < 0 ? 0
- : insn_operand_strict_low[insn_code_number][i]),
- 1, i, operand_type[i]);
- }
- else if (goal_alternative_matches[i] >= 0
- && goal_alternative_win[goal_alternative_matches[i]]
- && modified[i] == RELOAD_READ
- && modified[goal_alternative_matches[i]] == RELOAD_WRITE
- && ! no_input_reloads && ! no_output_reloads
- && optimize)
- {
- /* Similarly, make an optional reload for a pair of matching
- objects that are in MEM or a pseudo that didn't get a hard reg. */
-
- rtx operand = recog_operand[i];
-
- while (GET_CODE (operand) == SUBREG)
- operand = XEXP (operand, 0);
- if ((GET_CODE (operand) == MEM
- || (GET_CODE (operand) == REG
- && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
- && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
- != NO_REGS))
- operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
- = push_reload (recog_operand[goal_alternative_matches[i]],
- recog_operand[i],
- recog_operand_loc[goal_alternative_matches[i]],
- recog_operand_loc[i],
- (enum reg_class) goal_alternative[goal_alternative_matches[i]],
- operand_mode[goal_alternative_matches[i]],
- operand_mode[i],
- 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
- }
-
- /* If this insn pattern contains any MATCH_DUP's, make sure that
- they will be substituted if the operands they match are substituted.
- Also do now any substitutions we already did on the operands.
-
- Don't do this if we aren't making replacements because we might be
- propagating things allocated by frame pointer elimination into places
- it doesn't expect. */
-
- if (insn_code_number >= 0 && replace)
- for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
- {
- int opno = recog_dup_num[i];
- *recog_dup_loc[i] = *recog_operand_loc[opno];
- if (operand_reloadnum[opno] >= 0)
- push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
- insn_operand_mode[insn_code_number][opno]);
- }
-
- #if 0
- /* This loses because reloading of prior insns can invalidate the equivalence
- (or at least find_equiv_reg isn't smart enough to find it any more),
- causing this insn to need more reload regs than it needed before.
- It may be too late to make the reload regs available.
- Now this optimization is done safely in choose_reload_regs. */
-
- /* For each reload of a reg into some other class of reg,
- search for an existing equivalent reg (same value now) in the right class.
- We can use it as long as we don't need to change its contents. */
- for (i = 0; i < n_reloads; i++)
- if (reload_reg_rtx[i] == 0
- && reload_in[i] != 0
- && GET_CODE (reload_in[i]) == REG
- && reload_out[i] == 0)
- {
- reload_reg_rtx[i]
- = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
- static_reload_reg_p, 0, reload_inmode[i]);
- /* Prevent generation of insn to load the value
- because the one we found already has the value. */
- if (reload_reg_rtx[i])
- reload_in[i] = reload_reg_rtx[i];
- }
- #endif
-
- /* Perhaps an output reload can be combined with another
- to reduce needs by one. */
- if (!goal_earlyclobber)
- combine_reloads ();
-
- /* If we have a pair of reloads for parts of an address, they are reloading
- the same object, the operands themselves were not reloaded, and they
- are for two operands that are supposed to match, merge the reloads and
- change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
-
- for (i = 0; i < n_reloads; i++)
- {
- int k;
-
- for (j = i + 1; j < n_reloads; j++)
- if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
- || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
- && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
- || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
- && rtx_equal_p (reload_in[i], reload_in[j])
- && (operand_reloadnum[reload_opnum[i]] < 0
- || reload_optional[operand_reloadnum[reload_opnum[i]]])
- && (operand_reloadnum[reload_opnum[j]] < 0
- || reload_optional[operand_reloadnum[reload_opnum[j]]])
- && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
- || (goal_alternative_matches[reload_opnum[j]]
- == reload_opnum[i])))
- {
- for (k = 0; k < n_replacements; k++)
- if (replacements[k].what == j)
- replacements[k].what = i;
-
- reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
- reload_in[j] = 0;
- }
- }
-
- /* Scan all the reloads and update their type.
- If a reload is for the address of an operand and we didn't reload
- that operand, change the type. Similarly, change the operand number
- of a reload when two operands match. If a reload is optional, treat it
- as though the operand isn't reloaded.
-
- ??? This latter case is somewhat odd because if we do the optional
- reload, it means the object is hanging around. Thus we need only
- do the address reload if the optional reload was NOT done.
-
- Change secondary reloads to be the address type of their operand, not
- the normal type.
-
- If an operand's reload is now RELOAD_OTHER, change any
- RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
- RELOAD_FOR_OTHER_ADDRESS. */
-
- for (i = 0; i < n_reloads; i++)
- {
- if (reload_secondary_p[i]
- && reload_when_needed[i] == operand_type[reload_opnum[i]])
- reload_when_needed[i] = address_type[reload_opnum[i]];
-
- if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
- || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS)
- && (operand_reloadnum[reload_opnum[i]] < 0
- || reload_optional[operand_reloadnum[reload_opnum[i]]]))
- reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
-
- if (reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
- && operand_reloadnum[reload_opnum[i]] >= 0
- && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
- == RELOAD_OTHER))
- reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
-
- if (goal_alternative_matches[reload_opnum[i]] >= 0)
- reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
- }
-
- /* See if we have any reloads that are now allowed to be merged
- because we've changed when the reload is needed to
- RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
- check for the most common cases. */
-
- for (i = 0; i < n_reloads; i++)
- if (reload_in[i] != 0 && reload_out[i] == 0
- && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
- || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
- for (j = 0; j < n_reloads; j++)
- if (i != j && reload_in[j] != 0 && reload_out[j] == 0
- && reload_when_needed[j] == reload_when_needed[i]
- && MATCHES (reload_in[i], reload_in[j])
- && reload_reg_class[i] == reload_reg_class[j]
- && !reload_nocombine[i] && !reload_nocombine[j]
- && reload_reg_rtx[i] == reload_reg_rtx[j])
- {
- reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
- transfer_replacements (i, j);
- reload_in[j] = 0;
- }
-
- #else /* no REGISTER_CONSTRAINTS */
- int noperands;
- int insn_code_number;
- int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
- register int i;
- rtx body = PATTERN (insn);
-
- n_reloads = 0;
- n_replacements = 0;
- n_earlyclobbers = 0;
- replace_reloads = replace;
- this_insn = insn;
-
- /* Find what kind of insn this is. NOPERANDS gets number of operands.
- Store the operand values in RECOG_OPERAND and the locations
- of the words in the insn that point to them in RECOG_OPERAND_LOC.
- Return if the insn needs no reload processing. */
-
- switch (GET_CODE (body))
- {
- case USE:
- case CLOBBER:
- case ASM_INPUT:
- case ADDR_VEC:
- case ADDR_DIFF_VEC:
- return;
-
- case PARALLEL:
- case SET:
- noperands = asm_noperands (body);
- if (noperands >= 0)
- {
- /* This insn is an `asm' with operands.
- First, find out how many operands, and allocate space. */
-
- insn_code_number = -1;
- /* ??? This is a bug! ???
- Give up and delete this insn if it has too many operands. */
- if (noperands > MAX_RECOG_OPERANDS)
- abort ();
-
- /* Now get the operand values out of the insn. */
-
- decode_asm_operands (body, recog_operand, recog_operand_loc,
- NULL_PTR, NULL_PTR);
- break;
- }
-
- default:
- /* Ordinary insn: recognize it, allocate space for operands and
- constraints, and get them out via insn_extract. */
-
- insn_code_number = recog_memoized (insn);
- noperands = insn_n_operands[insn_code_number];
- insn_extract (insn);
- }
-
- if (noperands == 0)
- return;
-
- for (i = 0; i < noperands; i++)
- {
- register RTX_CODE code = GET_CODE (recog_operand[i]);
- int is_set_dest = GET_CODE (body) == SET && (i == 0);
-
- if (insn_code_number >= 0)
- if (insn_operand_address_p[insn_code_number][i])
- find_reloads_address (VOIDmode, NULL_PTR,
- recog_operand[i], recog_operand_loc[i],
- i, RELOAD_FOR_INPUT, ind_levels);
-
- /* In these cases, we can't tell if the operand is an input
- or an output, so be conservative. In practice it won't be
- problem. */
-
- if (code == MEM)
- find_reloads_address (GET_MODE (recog_operand[i]),
- recog_operand_loc[i],
- XEXP (recog_operand[i], 0),
- &XEXP (recog_operand[i], 0),
- i, RELOAD_OTHER, ind_levels);
- if (code == SUBREG)
- recog_operand[i] = *recog_operand_loc[i]
- = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
- ind_levels, is_set_dest);
- if (code == REG)
- {
- register int regno = REGNO (recog_operand[i]);
- if (reg_equiv_constant[regno] != 0 && !is_set_dest)
- recog_operand[i] = *recog_operand_loc[i]
- = reg_equiv_constant[regno];
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- recog_operand[i] = *recog_operand_loc[i]
- = reg_equiv_mem[regno];
- #endif
- }
- }
-
- /* Perhaps an output reload can be combined with another
- to reduce needs by one. */
- if (!goal_earlyclobber)
- combine_reloads ();
- #endif /* no REGISTER_CONSTRAINTS */
- }
-
- /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
- accepts a memory operand with constant address. */
-
- static int
- alternative_allows_memconst (constraint, altnum)
- char *constraint;
- int altnum;
- {
- register int c;
- /* Skip alternatives before the one requested. */
- while (altnum > 0)
- {
- while (*constraint++ != ',');
- altnum--;
- }
- /* Scan the requested alternative for 'm' or 'o'.
- If one of them is present, this alternative accepts memory constants. */
- while ((c = *constraint++) && c != ',' && c != '#')
- if (c == 'm' || c == 'o')
- return 1;
- return 0;
- }
-
- /* Scan X for memory references and scan the addresses for reloading.
- Also checks for references to "constant" regs that we want to eliminate
- and replaces them with the values they stand for.
- We may alter X destructively if it contains a reference to such.
- If X is just a constant reg, we return the equivalent value
- instead of X.
-
- IND_LEVELS says how many levels of indirect addressing this machine
- supports.
-
- OPNUM and TYPE identify the purpose of the reload.
-
- IS_SET_DEST is true if X is the destination of a SET, which is not
- appropriate to be replaced by a constant. */
-
- static rtx
- find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
- rtx x;
- int opnum;
- enum reload_type type;
- int ind_levels;
- int is_set_dest;
- {
- register RTX_CODE code = GET_CODE (x);
-
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
-
- if (code == REG)
- {
- /* This code is duplicated for speed in find_reloads. */
- register int regno = REGNO (x);
- if (reg_equiv_constant[regno] != 0 && !is_set_dest)
- x = reg_equiv_constant[regno];
- #if 0
- /* This creates (subreg (mem...)) which would cause an unnecessary
- reload of the mem. */
- else if (reg_equiv_mem[regno] != 0)
- x = reg_equiv_mem[regno];
- #endif
- else if (reg_equiv_address[regno] != 0)
- {
- /* If reg_equiv_address varies, it may be shared, so copy it. */
- rtx addr = reg_equiv_address[regno];
-
- if (rtx_varies_p (addr))
- addr = copy_rtx (addr);
-
- x = gen_rtx (MEM, GET_MODE (x), addr);
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
- find_reloads_address (GET_MODE (x), NULL_PTR,
- XEXP (x, 0),
- &XEXP (x, 0), opnum, type, ind_levels);
- }
- return x;
- }
- if (code == MEM)
- {
- rtx tem = x;
- find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
- opnum, type, ind_levels);
- return tem;
- }
-
- if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
- {
- /* Check for SUBREG containing a REG that's equivalent to a constant.
- If the constant has a known value, truncate it right now.
- Similarly if we are extracting a single-word of a multi-word
- constant. If the constant is symbolic, allow it to be substituted
- normally. push_reload will strip the subreg later. If the
- constant is VOIDmode, abort because we will lose the mode of
- the register (this should never happen because one of the cases
- above should handle it). */
-
- register int regno = REGNO (SUBREG_REG (x));
- rtx tem;
-
- if (subreg_lowpart_p (x)
- && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0
- && (tem = gen_lowpart_common (GET_MODE (x),
- reg_equiv_constant[regno])) != 0)
- return tem;
-
- if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
- && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0
- && (tem = operand_subword (reg_equiv_constant[regno],
- SUBREG_WORD (x), 0,
- GET_MODE (SUBREG_REG (x)))) != 0)
- return tem;
-
- if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0
- && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
- abort ();
-
- /* If the subreg contains a reg that will be converted to a mem,
- convert the subreg to a narrower memref now.
- Otherwise, we would get (subreg (mem ...) ...),
- which would force reload of the mem.
-
- We also need to do this if there is an equivalent MEM that is
- not offsettable. In that case, alter_subreg would produce an
- invalid address on big-endian machines.
-
- For machines that extend byte loads, we must not reload using
- a wider mode if we have a paradoxical SUBREG. find_reloads will
- force a reload in that case. So we should not do anything here. */
-
- else if (regno >= FIRST_PSEUDO_REGISTER
- #ifdef LOAD_EXTEND_OP
- && (GET_MODE_SIZE (GET_MODE (x))
- <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
- #endif
- && (reg_equiv_address[regno] != 0
- || (reg_equiv_mem[regno] != 0
- && (! strict_memory_address_p (GET_MODE (x),
- XEXP (reg_equiv_mem[regno], 0))
- || ! offsettable_memref_p (reg_equiv_mem[regno])))))
- {
- int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
- rtx addr = (reg_equiv_address[regno] ? reg_equiv_address[regno]
- : XEXP (reg_equiv_mem[regno], 0));
- #if BYTES_BIG_ENDIAN
- int size;
- size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
- offset += MIN (size, UNITS_PER_WORD);
- size = GET_MODE_SIZE (GET_MODE (x));
- offset -= MIN (size, UNITS_PER_WORD);
- #endif
- addr = plus_constant (addr, offset);
- x = gen_rtx (MEM, GET_MODE (x), addr);
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
- find_reloads_address (GET_MODE (x), NULL_PTR,
- XEXP (x, 0),
- &XEXP (x, 0), opnum, type, ind_levels);
- }
-
- }
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
- ind_levels, is_set_dest);
- }
- return x;
- }
-
- /* Return a mem ref for the memory equivalent of reg REGNO.
- This mem ref is not shared with anything. */
-
- static rtx
- make_memloc (ad, regno)
- rtx ad;
- int regno;
- {
- register int i;
- rtx tem = reg_equiv_address[regno];
-
- #if 0 /* We cannot safely reuse a memloc made here;
- if the pseudo appears twice, and its mem needs a reload,
- it gets two separate reloads assigned, but it only
- gets substituted with the second of them;
- then it can get used before that reload reg gets loaded up. */
- for (i = 0; i < n_memlocs; i++)
- if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
- return memlocs[i];
- #endif
-
- /* If TEM might contain a pseudo, we must copy it to avoid
- modifying it when we do the substitution for the reload. */
- if (rtx_varies_p (tem))
- tem = copy_rtx (tem);
-
- tem = gen_rtx (MEM, GET_MODE (ad), tem);
- RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
- memlocs[n_memlocs++] = tem;
- return tem;
- }
-
- /* Record all reloads needed for handling memory address AD
- which appears in *LOC in a memory reference to mode MODE
- which itself is found in location *MEMREFLOC.
- Note that we take shortcuts assuming that no multi-reg machine mode
- occurs as part of an address.
-
- OPNUM and TYPE specify the purpose of this reload.
-
- IND_LEVELS says how many levels of indirect addressing this machine
- supports.
-
- Value is nonzero if this address is reloaded or replaced as a whole.
- This is interesting to the caller if the address is an autoincrement.
-
- Note that there is no verification that the address will be valid after
- this routine does its work. Instead, we rely on the fact that the address
- was valid when reload started. So we need only undo things that reload
- could have broken. These are wrong register types, pseudos not allocated
- to a hard register, and frame pointer elimination. */
-
- static int
- find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels)
- enum machine_mode mode;
- rtx *memrefloc;
- rtx ad;
- rtx *loc;
- int opnum;
- enum reload_type type;
- int ind_levels;
- {
- register int regno;
- rtx tem;
-
- /* If the address is a register, see if it is a legitimate address and
- reload if not. We first handle the cases where we need not reload
- or where we must reload in a non-standard way. */
-
- if (GET_CODE (ad) == REG)
- {
- regno = REGNO (ad);
-
- if (reg_equiv_constant[regno] != 0
- && strict_memory_address_p (mode, reg_equiv_constant[regno]))
- {
- *loc = ad = reg_equiv_constant[regno];
- return 1;
- }
-
- else if (reg_equiv_address[regno] != 0)
- {
- tem = make_memloc (ad, regno);
- find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
- &XEXP (tem, 0), opnum, type, ind_levels);
- push_reload (tem, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
- GET_MODE (ad), VOIDmode, 0, 0,
- opnum, type);
- return 1;
- }
-
- /* We can avoid a reload if the register's equivalent memory expression
- is valid as an indirect memory address.
- But not all addresses are valid in a mem used as an indirect address:
- only reg or reg+constant. */
-
- else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
- && strict_memory_address_p (mode, reg_equiv_mem[regno])
- && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
- || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
- && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
- && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)))))
- return 0;
-
- /* The only remaining case where we can avoid a reload is if this is a
- hard register that is valid as a base register and which is not the
- subject of a CLOBBER in this insn. */
-
- else if (regno < FIRST_PSEUDO_REGISTER && REGNO_OK_FOR_BASE_P (regno)
- && ! regno_clobbered_p (regno, this_insn))
- return 0;
-
- /* If we do not have one of the cases above, we must do the reload. */
- push_reload (ad, NULL_RTX, loc, NULL_PTR, BASE_REG_CLASS,
- GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
-
- if (strict_memory_address_p (mode, ad))
- {
- /* The address appears valid, so reloads are not needed.
- But the address may contain an eliminable register.
- This can happen because a machine with indirect addressing
- may consider a pseudo register by itself a valid address even when
- it has failed to get a hard reg.
- So do a tree-walk to find and eliminate all such regs. */
-
- /* But first quickly dispose of a common case. */
- if (GET_CODE (ad) == PLUS
- && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && GET_CODE (XEXP (ad, 0)) == REG
- && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
- return 0;
-
- subst_reg_equivs_changed = 0;
- *loc = subst_reg_equivs (ad);
-
- if (! subst_reg_equivs_changed)
- return 0;
-
- /* Check result for validity after substitution. */
- if (strict_memory_address_p (mode, ad))
- return 0;
- }
-
- /* The address is not valid. We have to figure out why. One possibility
- is that it is itself a MEM. This can happen when the frame pointer is
- being eliminated, a pseudo is not allocated to a hard register, and the
- offset between the frame and stack pointers is not its initial value.
- In that case the pseudo will have been replaced by a MEM referring to
- the stack pointer. */
- if (GET_CODE (ad) == MEM)
- {
- /* First ensure that the address in this MEM is valid. Then, unless
- indirect addresses are valid, reload the MEM into a register. */
- tem = ad;
- find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
- opnum, type, ind_levels == 0 ? 0 : ind_levels - 1);
-
- /* If tem was changed, then we must create a new memory reference to
- hold it and store it back into memrefloc. */
- if (tem != ad && memrefloc)
- {
- *memrefloc = copy_rtx (*memrefloc);
- copy_replacements (tem, XEXP (*memrefloc, 0));
- loc = &XEXP (*memrefloc, 0);
- }
-
- /* Check similar cases as for indirect addresses as above except
- that we can allow pseudos and a MEM since they should have been
- taken care of above. */
-
- if (ind_levels == 0
- || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
- || GET_CODE (XEXP (tem, 0)) == MEM
- || ! (GET_CODE (XEXP (tem, 0)) == REG
- || (GET_CODE (XEXP (tem, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
- && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
- {
- /* Must use TEM here, not AD, since it is the one that will
- have any subexpressions reloaded, if needed. */
- push_reload (tem, NULL_RTX, loc, NULL_PTR,
- BASE_REG_CLASS, GET_MODE (tem), VOIDmode, 0,
- 0, opnum, type);
- return 1;
- }
- else
- return 0;
- }
-
- /* If we have address of a stack slot but it's not valid
- (displacement is too large), compute the sum in a register. */
- else if (GET_CODE (ad) == PLUS
- && (XEXP (ad, 0) == frame_pointer_rtx
- #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- || XEXP (ad, 0) == hard_frame_pointer_rtx
- #endif
- #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || XEXP (ad, 0) == arg_pointer_rtx
- #endif
- || XEXP (ad, 0) == stack_pointer_rtx)
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- {
- /* Unshare the MEM rtx so we can safely alter it. */
- if (memrefloc)
- {
- rtx oldref = *memrefloc;
- *memrefloc = copy_rtx (*memrefloc);
- loc = &XEXP (*memrefloc, 0);
- }
- if (double_reg_address_ok)
- {
- /* Unshare the sum as well. */
- *loc = ad = copy_rtx (ad);
- /* Reload the displacement into an index reg.
- We assume the frame pointer or arg pointer is a base reg. */
- find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
- INDEX_REG_CLASS, GET_MODE (ad), opnum,
- type, ind_levels);
- }
- else
- {
- /* If the sum of two regs is not necessarily valid,
- reload the sum into a base reg.
- That will at least work. */
- find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode,
- opnum, type, ind_levels);
- }
- return 1;
- }
-
- /* If we have an indexed stack slot, there are three possible reasons why
- it might be invalid: The index might need to be reloaded, the address
- might have been made by frame pointer elimination and hence have a
- constant out of range, or both reasons might apply.
-
- We can easily check for an index needing reload, but even if that is the
- case, we might also have an invalid constant. To avoid making the
- conservative assumption and requiring two reloads, we see if this address
- is valid when not interpreted strictly. If it is, the only problem is
- that the index needs a reload and find_reloads_address_1 will take care
- of it.
-
- There is still a case when we might generate an extra reload,
- however. In certain cases eliminate_regs will return a MEM for a REG
- (see the code there for details). In those cases, memory_address_p
- applied to our address will return 0 so we will think that our offset
- must be too large. But it might indeed be valid and the only problem
- is that a MEM is present where a REG should be. This case should be
- very rare and there doesn't seem to be any way to avoid it.
-
- If we decide to do something here, it must be that
- `double_reg_address_ok' is true and that this address rtl was made by
- eliminate_regs. We generate a reload of the fp/sp/ap + constant and
- rework the sum so that the reload register will be added to the index.
- This is safe because we know the address isn't shared.
-
- We check for fp/ap/sp as both the first and second operand of the
- innermost PLUS. */
-
- else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && GET_CODE (XEXP (ad, 0)) == PLUS
- && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
- #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
- || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
- #endif
- #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
- #endif
- || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
- && ! memory_address_p (mode, ad))
- {
- *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
- plus_constant (XEXP (XEXP (ad, 0), 0),
- INTVAL (XEXP (ad, 1))),
- XEXP (XEXP (ad, 0), 1));
- find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
- GET_MODE (ad), opnum, type, ind_levels);
- find_reloads_address_1 (XEXP (ad, 1), 1, &XEXP (ad, 1), opnum, type, 0);
-
- return 1;
- }
-
- else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
- && GET_CODE (XEXP (ad, 0)) == PLUS
- && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
- #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
- #endif
- #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
- || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
- #endif
- || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
- && ! memory_address_p (mode, ad))
- {
- *loc = ad = gen_rtx (PLUS, GET_MODE (ad),
- plus_constant (XEXP (XEXP (ad, 0), 1),
- INTVAL (XEXP (ad, 1))),
- XEXP (XEXP (ad, 0), 0));
- find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0), BASE_REG_CLASS,
- GET_MODE (ad), opnum, type, ind_levels);
- find_reloads_address_1 (XEXP (ad, 1), 1, &XEXP (ad, 1), opnum, type, 0);
-
- return 1;
- }
-
- /* See if address becomes valid when an eliminable register
- in a sum is replaced. */
-
- tem = ad;
- if (GET_CODE (ad) == PLUS)
- tem = subst_indexed_address (ad);
- if (tem != ad && strict_memory_address_p (mode, tem))
- {
- /* Ok, we win that way. Replace any additional eliminable
- registers. */
-
- subst_reg_equivs_changed = 0;
- tem = subst_reg_equivs (tem);
-
- /* Make sure that didn't make the address invalid again. */
-
- if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
- {
- *loc = tem;
- return 0;
- }
- }
-
- /* If constants aren't valid addresses, reload the constant address
- into a register. */
- if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
- {
- /* If AD is in address in the constant pool, the MEM rtx may be shared.
- Unshare it so we can safely alter it. */
- if (memrefloc && GET_CODE (ad) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (ad))
- {
- rtx oldref = *memrefloc;
- *memrefloc = copy_rtx (*memrefloc);
- loc = &XEXP (*memrefloc, 0);
- }
-
- find_reloads_address_part (ad, loc, BASE_REG_CLASS, Pmode, opnum, type,
- ind_levels);
- return 1;
- }
-
- return find_reloads_address_1 (ad, 0, loc, opnum, type, ind_levels);
- }
-
- /* Find all pseudo regs appearing in AD
- that are eliminable in favor of equivalent values
- and do not have hard regs; replace them by their equivalents. */
-
- static rtx
- subst_reg_equivs (ad)
- rtx ad;
- {
- register RTX_CODE code = GET_CODE (ad);
- register int i;
- register char *fmt;
-
- switch (code)
- {
- case HIGH:
- case CONST_INT:
- case CONST:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case LABEL_REF:
- case PC:
- case CC0:
- return ad;
-
- case REG:
- {
- register int regno = REGNO (ad);
-
- if (reg_equiv_constant[regno] != 0)
- {
- subst_reg_equivs_changed = 1;
- return reg_equiv_constant[regno];
- }
- }
- return ad;
-
- case PLUS:
- /* Quickly dispose of a common case. */
- if (XEXP (ad, 0) == frame_pointer_rtx
- && GET_CODE (XEXP (ad, 1)) == CONST_INT)
- return ad;
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
- return ad;
- }
-
- /* Compute the sum of X and Y, making canonicalizations assumed in an
- address, namely: sum constant integers, surround the sum of two
- constants with a CONST, put the constant as the second operand, and
- group the constant on the outermost sum.
-
- This routine assumes both inputs are already in canonical form. */
-
- rtx
- form_sum (x, y)
- rtx x, y;
- {
- rtx tem;
- enum machine_mode mode = GET_MODE (x);
-
- if (mode == VOIDmode)
- mode = GET_MODE (y);
-
- if (mode == VOIDmode)
- mode = Pmode;
-
- if (GET_CODE (x) == CONST_INT)
- return plus_constant (y, INTVAL (x));
- else if (GET_CODE (y) == CONST_INT)
- return plus_constant (x, INTVAL (y));
- else if (CONSTANT_P (x))
- tem = x, x = y, y = tem;
-
- if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
- return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
-
- /* Note that if the operands of Y are specified in the opposite
- order in the recursive calls below, infinite recursion will occur. */
- if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
- return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
-
- /* If both constant, encapsulate sum. Otherwise, just form sum. A
- constant will have been placed second. */
- if (CONSTANT_P (x) && CONSTANT_P (y))
- {
- if (GET_CODE (x) == CONST)
- x = XEXP (x, 0);
- if (GET_CODE (y) == CONST)
- y = XEXP (y, 0);
-
- return gen_rtx (CONST, VOIDmode, gen_rtx (PLUS, mode, x, y));
- }
-
- return gen_rtx (PLUS, mode, x, y);
- }
-
- /* If ADDR is a sum containing a pseudo register that should be
- replaced with a constant (from reg_equiv_constant),
- return the result of doing so, and also apply the associative
- law so that the result is more likely to be a valid address.
- (But it is not guaranteed to be one.)
-
- Note that at most one register is replaced, even if more are
- replaceable. Also, we try to put the result into a canonical form
- so it is more likely to be a valid address.
-
- In all other cases, return ADDR. */
-
- static rtx
- subst_indexed_address (addr)
- rtx addr;
- {
- rtx op0 = 0, op1 = 0, op2 = 0;
- rtx tem;
- int regno;
-
- if (GET_CODE (addr) == PLUS)
- {
- /* Try to find a register to replace. */
- op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
- if (GET_CODE (op0) == REG
- && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- op0 = reg_equiv_constant[regno];
- else if (GET_CODE (op1) == REG
- && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
- && reg_renumber[regno] < 0
- && reg_equiv_constant[regno] != 0)
- op1 = reg_equiv_constant[regno];
- else if (GET_CODE (op0) == PLUS
- && (tem = subst_indexed_address (op0)) != op0)
- op0 = tem;
- else if (GET_CODE (op1) == PLUS
- && (tem = subst_indexed_address (op1)) != op1)
- op1 = tem;
- else
- return addr;
-
- /* Pick out up to three things to add. */
- if (GET_CODE (op1) == PLUS)
- op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
- else if (GET_CODE (op0) == PLUS)
- op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
-
- /* Compute the sum. */
- if (op2 != 0)
- op1 = form_sum (op1, op2);
- if (op1 != 0)
- op0 = form_sum (op0, op1);
-
- return op0;
- }
- return addr;
- }
-
- /* Record the pseudo registers we must reload into hard registers
- in a subexpression of a would-be memory address, X.
- (This function is not called if the address we find is strictly valid.)
- CONTEXT = 1 means we are considering regs as index regs,
- = 0 means we are considering them as base regs.
-
- OPNUM and TYPE specify the purpose of any reloads made.
-
- IND_LEVELS says how many levels of indirect addressing are
- supported at this point in the address.
-
- We return nonzero if X, as a whole, is reloaded or replaced. */
-
- /* Note that we take shortcuts assuming that no multi-reg machine mode
- occurs as part of an address.
- Also, this is not fully machine-customizable; it works for machines
- such as vaxes and 68000's and 32000's, but other possible machines
- could have addressing modes that this does not handle right. */
-
- static int
- find_reloads_address_1 (x, context, loc, opnum, type, ind_levels)
- rtx x;
- int context;
- rtx *loc;
- int opnum;
- enum reload_type type;
- int ind_levels;
- {
- register RTX_CODE code = GET_CODE (x);
-
- if (code == PLUS)
- {
- register rtx orig_op0 = XEXP (x, 0);
- register rtx orig_op1 = XEXP (x, 1);
- register RTX_CODE code0 = GET_CODE (orig_op0);
- register RTX_CODE code1 = GET_CODE (orig_op1);
- register rtx op0 = orig_op0;
- register rtx op1 = orig_op1;
-
- if (GET_CODE (op0) == SUBREG)
- {
- op0 = SUBREG_REG (op0);
- code0 = GET_CODE (op0);
- }
- if (GET_CODE (op1) == SUBREG)
- {
- op1 = SUBREG_REG (op1);
- code1 = GET_CODE (op1);
- }
-
- if (code0 == MULT || code0 == SIGN_EXTEND || code1 == MEM)
- {
- find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
- ind_levels);
- find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
- ind_levels);
- }
- else if (code1 == MULT || code1 == SIGN_EXTEND || code0 == MEM)
- {
- find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
- ind_levels);
- find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
- ind_levels);
- }
- else if (code0 == CONST_INT || code0 == CONST
- || code0 == SYMBOL_REF || code0 == LABEL_REF)
- find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type, ind_levels);
- else if (code1 == CONST_INT || code1 == CONST
- || code1 == SYMBOL_REF || code1 == LABEL_REF)
- find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type, ind_levels);
- else if (code0 == REG && code1 == REG)
- {
- if (REG_OK_FOR_INDEX_P (op0)
- && REG_OK_FOR_BASE_P (op1))
- return 0;
- else if (REG_OK_FOR_INDEX_P (op1)
- && REG_OK_FOR_BASE_P (op0))
- return 0;
- else if (REG_OK_FOR_BASE_P (op1))
- find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
- ind_levels);
- else if (REG_OK_FOR_BASE_P (op0))
- find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
- ind_levels);
- else if (REG_OK_FOR_INDEX_P (op1))
- find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
- ind_levels);
- else if (REG_OK_FOR_INDEX_P (op0))
- find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
- ind_levels);
- else
- {
- find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
- ind_levels);
- find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
- ind_levels);
- }
- }
- else if (code0 == REG)
- {
- find_reloads_address_1 (orig_op0, 1, &XEXP (x, 0), opnum, type,
- ind_levels);
- find_reloads_address_1 (orig_op1, 0, &XEXP (x, 1), opnum, type,
- ind_levels);
- }
- else if (code1 == REG)
- {
- find_reloads_address_1 (orig_op1, 1, &XEXP (x, 1), opnum, type,
- ind_levels);
- find_reloads_address_1 (orig_op0, 0, &XEXP (x, 0), opnum, type,
- ind_levels);
- }
- }
- else if (code == POST_INC || code == POST_DEC
- || code == PRE_INC || code == PRE_DEC)
- {
- if (GET_CODE (XEXP (x, 0)) == REG)
- {
- register int regno = REGNO (XEXP (x, 0));
- int value = 0;
- rtx x_orig = x;
-
- /* A register that is incremented cannot be constant! */
- if (regno >= FIRST_PSEUDO_REGISTER
- && reg_equiv_constant[regno] != 0)
- abort ();
-
- /* Handle a register that is equivalent to a memory location
- which cannot be addressed directly. */
- if (reg_equiv_address[regno] != 0)
- {
- rtx tem = make_memloc (XEXP (x, 0), regno);
- /* First reload the memory location's address. */
- find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
- &XEXP (tem, 0), opnum, type, ind_levels);
- /* Put this inside a new increment-expression. */
- x = gen_rtx (GET_CODE (x), GET_MODE (x), tem);
- /* Proceed to reload that, as if it contained a register. */
- }
-
- /* If we have a hard register that is ok as an index,
- don't make a reload. If an autoincrement of a nice register
- isn't "valid", it must be that no autoincrement is "valid".
- If that is true and something made an autoincrement anyway,
- this must be a special context where one is allowed.
- (For example, a "push" instruction.)
- We can't improve this address, so leave it alone. */
-
- /* Otherwise, reload the autoincrement into a suitable hard reg
- and record how much to increment by. */
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if ((regno >= FIRST_PSEUDO_REGISTER
- || !(context ? REGNO_OK_FOR_INDEX_P (regno)
- : REGNO_OK_FOR_BASE_P (regno))))
- {
- register rtx link;
-
- int reloadnum
- = push_reload (x, NULL_RTX, loc, NULL_PTR,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), GET_MODE (x), VOIDmode, 0,
- opnum, type);
- reload_inc[reloadnum]
- = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
-
- value = 1;
-
- #ifdef AUTO_INC_DEC
- /* Update the REG_INC notes. */
-
- for (link = REG_NOTES (this_insn);
- link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
- push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
- #endif
- }
- return value;
- }
- else if (GET_CODE (XEXP (x, 0)) == MEM)
- {
- /* This is probably the result of a substitution, by eliminate_regs,
- of an equivalent address for a pseudo that was not allocated to a
- hard register. Verify that the specified address is valid and
- reload it into a register. */
- rtx tem = XEXP (x, 0);
- register rtx link;
- int reloadnum;
-
- /* Since we know we are going to reload this item, don't decrement
- for the indirection level.
-
- Note that this is actually conservative: it would be slightly
- more efficient to use the value of SPILL_INDIRECT_LEVELS from
- reload1.c here. */
- find_reloads_address (GET_MODE (x), &XEXP (x, 0),
- XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
- opnum, type, ind_levels);
-
- reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- reload_inc[reloadnum]
- = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
-
- link = FIND_REG_INC_NOTE (this_insn, tem);
- if (link != 0)
- push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
-
- return 1;
- }
- }
- else if (code == MEM)
- {
- /* This is probably the result of a substitution, by eliminate_regs,
- of an equivalent address for a pseudo that was not allocated to a
- hard register. Verify that the specified address is valid and reload
- it into a register.
-
- Since we know we are going to reload this item, don't decrement
- for the indirection level.
-
- Note that this is actually conservative: it would be slightly more
- efficient to use the value of SPILL_INDIRECT_LEVELS from
- reload1.c here. */
-
- find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
- opnum, type, ind_levels);
-
- push_reload (*loc, NULL_RTX, loc, NULL_PTR,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
- else if (code == REG)
- {
- register int regno = REGNO (x);
-
- if (reg_equiv_constant[regno] != 0)
- {
- find_reloads_address_part (reg_equiv_constant[regno], loc,
- (context ? INDEX_REG_CLASS
- : BASE_REG_CLASS),
- GET_MODE (x), opnum, type, ind_levels);
- return 1;
- }
-
- #if 0 /* This might screw code in reload1.c to delete prior output-reload
- that feeds this insn. */
- if (reg_equiv_mem[regno] != 0)
- {
- push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
- #endif
- if (reg_equiv_address[regno] != 0)
- {
- x = make_memloc (x, regno);
- find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
- opnum, type, ind_levels);
- }
-
- if (reg_renumber[regno] >= 0)
- regno = reg_renumber[regno];
- if ((regno >= FIRST_PSEUDO_REGISTER
- || !(context ? REGNO_OK_FOR_INDEX_P (regno)
- : REGNO_OK_FOR_BASE_P (regno))))
- {
- push_reload (x, NULL_RTX, loc, NULL_PTR,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
-
- /* If a register appearing in an address is the subject of a CLOBBER
- in this insn, reload it into some other register to be safe.
- The CLOBBER is supposed to make the register unavailable
- from before this insn to after it. */
- if (regno_clobbered_p (regno, this_insn))
- {
- push_reload (x, NULL_RTX, loc, NULL_PTR,
- context ? INDEX_REG_CLASS : BASE_REG_CLASS,
- GET_MODE (x), VOIDmode, 0, 0, opnum, type);
- return 1;
- }
- }
- else
- {
- register char *fmt = GET_RTX_FORMAT (code);
- register int i;
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- find_reloads_address_1 (XEXP (x, i), context, &XEXP (x, i),
- opnum, type, ind_levels);
- }
- }
-
- return 0;
- }
-
- /* X, which is found at *LOC, is a part of an address that needs to be
- reloaded into a register of class CLASS. If X is a constant, or if
- X is a PLUS that contains a constant, check that the constant is a
- legitimate operand and that we are supposed to be able to load
- it into the register.
-
- If not, force the constant into memory and reload the MEM instead.
-
- MODE is the mode to use, in case X is an integer constant.
-
- OPNUM and TYPE describe the purpose of any reloads made.
-
- IND_LEVELS says how many levels of indirect addressing this machine
- supports. */
-
- static void
- find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
- rtx x;
- rtx *loc;
- enum reg_class class;
- enum machine_mode mode;
- int opnum;
- enum reload_type type;
- int ind_levels;
- {
- if (CONSTANT_P (x)
- && (! LEGITIMATE_CONSTANT_P (x)
- || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
- {
- rtx tem = x = force_const_mem (mode, x);
- find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
- opnum, type, ind_levels);
- }
-
- else if (GET_CODE (x) == PLUS
- && CONSTANT_P (XEXP (x, 1))
- && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
- || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
- {
- rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
-
- x = gen_rtx (PLUS, GET_MODE (x), XEXP (x, 0), tem);
- find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
- opnum, type, ind_levels);
- }
-
- push_reload (x, NULL_RTX, loc, NULL_PTR, class,
- mode, VOIDmode, 0, 0, opnum, type);
- }
-
- /* Substitute into the current INSN the registers into which we have reloaded
- the things that need reloading. The array `replacements'
- says contains the locations of all pointers that must be changed
- and says what to replace them with.
-
- Return the rtx that X translates into; usually X, but modified. */
-
- void
- subst_reloads ()
- {
- register int i;
-
- for (i = 0; i < n_replacements; i++)
- {
- register struct replacement *r = &replacements[i];
- register rtx reloadreg = reload_reg_rtx[r->what];
- if (reloadreg)
- {
- /* Encapsulate RELOADREG so its machine mode matches what
- used to be there. Note that gen_lowpart_common will
- do the wrong thing if RELOADREG is multi-word. RELOADREG
- will always be a REG here. */
- if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
- reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
-
- /* If we are putting this into a SUBREG and RELOADREG is a
- SUBREG, we would be making nested SUBREGs, so we have to fix
- this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
-
- if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
- {
- if (GET_MODE (*r->subreg_loc)
- == GET_MODE (SUBREG_REG (reloadreg)))
- *r->subreg_loc = SUBREG_REG (reloadreg);
- else
- {
- *r->where = SUBREG_REG (reloadreg);
- SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
- }
- }
- else
- *r->where = reloadreg;
- }
- /* If reload got no reg and isn't optional, something's wrong. */
- else if (! reload_optional[r->what])
- abort ();
- }
- }
-
- /* Make a copy of any replacements being done into X and move those copies
- to locations in Y, a copy of X. We only look at the highest level of
- the RTL. */
-
- void
- copy_replacements (x, y)
- rtx x;
- rtx y;
- {
- int i, j;
- enum rtx_code code = GET_CODE (x);
- char *fmt = GET_RTX_FORMAT (code);
- struct replacement *r;
-
- /* We can't support X being a SUBREG because we might then need to know its
- location if something inside it was replaced. */
- if (code == SUBREG)
- abort ();
-
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- if (fmt[i] == 'e')
- for (j = 0; j < n_replacements; j++)
- {
- if (replacements[j].subreg_loc == &XEXP (x, i))
- {
- r = &replacements[n_replacements++];
- r->where = replacements[j].where;
- r->subreg_loc = &XEXP (y, i);
- r->what = replacements[j].what;
- r->mode = replacements[j].mode;
- }
- else if (replacements[j].where == &XEXP (x, i))
- {
- r = &replacements[n_replacements++];
- r->where = &XEXP (y, i);
- r->subreg_loc = 0;
- r->what = replacements[j].what;
- r->mode = replacements[j].mode;
- }
- }
- }
-
- /* If LOC was scheduled to be replaced by something, return the replacement.
- Otherwise, return *LOC. */
-
- rtx
- find_replacement (loc)
- rtx *loc;
- {
- struct replacement *r;
-
- for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
- {
- rtx reloadreg = reload_reg_rtx[r->what];
-
- if (reloadreg && r->where == loc)
- {
- if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
- reloadreg = gen_rtx (REG, r->mode, REGNO (reloadreg));
-
- return reloadreg;
- }
- else if (reloadreg && r->subreg_loc == loc)
- {
- /* RELOADREG must be either a REG or a SUBREG.
-
- ??? Is it actually still ever a SUBREG? If so, why? */
-
- if (GET_CODE (reloadreg) == REG)
- return gen_rtx (REG, GET_MODE (*loc),
- REGNO (reloadreg) + SUBREG_WORD (*loc));
- else if (GET_MODE (reloadreg) == GET_MODE (*loc))
- return reloadreg;
- else
- return gen_rtx (SUBREG, GET_MODE (*loc), SUBREG_REG (reloadreg),
- SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
- }
- }
-
- return *loc;
- }
-
- /* Return nonzero if register in range [REGNO, ENDREGNO)
- appears either explicitly or implicitly in X
- other than being stored into (except for earlyclobber operands).
-
- References contained within the substructure at LOC do not count.
- LOC may be zero, meaning don't ignore anything.
-
- This is similar to refers_to_regno_p in rtlanal.c except that we
- look at equivalences for pseudos that didn't get hard registers. */
-
- int
- refers_to_regno_for_reload_p (regno, endregno, x, loc)
- int regno, endregno;
- rtx x;
- rtx *loc;
- {
- register int i;
- register RTX_CODE code;
- register char *fmt;
-
- if (x == 0)
- return 0;
-
- repeat:
- code = GET_CODE (x);
-
- switch (code)
- {
- case REG:
- i = REGNO (x);
-
- /* If this is a pseudo, a hard register must not have been allocated.
- X must therefore either be a constant or be in memory. */
- if (i >= FIRST_PSEUDO_REGISTER)
- {
- if (reg_equiv_memory_loc[i])
- return refers_to_regno_for_reload_p (regno, endregno,
- reg_equiv_memory_loc[i],
- NULL_PTR);
-
- if (reg_equiv_constant[i])
- return 0;
-
- abort ();
- }
-
- return (endregno > i
- && regno < i + (i < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (i, GET_MODE (x))
- : 1));
-
- case SUBREG:
- /* If this is a SUBREG of a hard reg, we can see exactly which
- registers are being modified. Otherwise, handle normally. */
- if (GET_CODE (SUBREG_REG (x)) == REG
- && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
- {
- int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
- int inner_endregno
- = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
-
- return endregno > inner_regno && regno < inner_endregno;
- }
- break;
-
- case CLOBBER:
- case SET:
- if (&SET_DEST (x) != loc
- /* Note setting a SUBREG counts as referring to the REG it is in for
- a pseudo but not for hard registers since we can
- treat each word individually. */
- && ((GET_CODE (SET_DEST (x)) == SUBREG
- && loc != &SUBREG_REG (SET_DEST (x))
- && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
- && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
- && refers_to_regno_for_reload_p (regno, endregno,
- SUBREG_REG (SET_DEST (x)),
- loc))
- /* If the ouput is an earlyclobber operand, this is
- a conflict. */
- || ((GET_CODE (SET_DEST (x)) != REG
- || earlyclobber_operand_p (SET_DEST (x)))
- && refers_to_regno_for_reload_p (regno, endregno,
- SET_DEST (x), loc))))
- return 1;
-
- if (code == CLOBBER || loc == &SET_SRC (x))
- return 0;
- x = SET_SRC (x);
- goto repeat;
- }
-
- /* X does not match, so try its subexpressions. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e' && loc != &XEXP (x, i))
- {
- if (i == 0)
- {
- x = XEXP (x, 0);
- goto repeat;
- }
- else
- if (refers_to_regno_for_reload_p (regno, endregno,
- XEXP (x, i), loc))
- return 1;
- }
- else if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >=0; j--)
- if (loc != &XVECEXP (x, i, j)
- && refers_to_regno_for_reload_p (regno, endregno,
- XVECEXP (x, i, j), loc))
- return 1;
- }
- }
- return 0;
- }
-
- /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
- we check if any register number in X conflicts with the relevant register
- numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
- contains a MEM (we don't bother checking for memory addresses that can't
- conflict because we expect this to be a rare case.
-
- This function is similar to reg_overlap_mention_p in rtlanal.c except
- that we look at equivalences for pseudos that didn't get hard registers. */
-
- int
- reg_overlap_mentioned_for_reload_p (x, in)
- rtx x, in;
- {
- int regno, endregno;
-
- if (GET_CODE (x) == SUBREG)
- {
- regno = REGNO (SUBREG_REG (x));
- if (regno < FIRST_PSEUDO_REGISTER)
- regno += SUBREG_WORD (x);
- }
- else if (GET_CODE (x) == REG)
- {
- regno = REGNO (x);
-
- /* If this is a pseudo, it must not have been assigned a hard register.
- Therefore, it must either be in memory or be a constant. */
-
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- if (reg_equiv_memory_loc[regno])
- return refers_to_mem_for_reload_p (in);
- else if (reg_equiv_constant[regno])
- return 0;
- abort ();
- }
- }
- else if (CONSTANT_P (x))
- return 0;
- else if (GET_CODE (x) == MEM)
- return refers_to_mem_for_reload_p (in);
- else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
- || GET_CODE (x) == CC0)
- return reg_mentioned_p (x, in);
- else
- abort ();
-
- endregno = regno + (regno < FIRST_PSEUDO_REGISTER
- ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
-
- return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
- }
-
- /* Return nonzero if anything in X contains a MEM. Look also for pseudo
- registers. */
-
- int
- refers_to_mem_for_reload_p (x)
- rtx x;
- {
- char *fmt;
- int i;
-
- if (GET_CODE (x) == MEM)
- return 1;
-
- if (GET_CODE (x) == REG)
- return (REGNO (x) >= FIRST_PSEUDO_REGISTER
- && reg_equiv_memory_loc[REGNO (x)]);
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- if (fmt[i] == 'e'
- && (GET_CODE (XEXP (x, i)) == MEM
- || refers_to_mem_for_reload_p (XEXP (x, i))))
- return 1;
-
- return 0;
- }
-
- /* Check the insns before INSN to see if there is a suitable register
- containing the same value as GOAL.
- If OTHER is -1, look for a register in class CLASS.
- Otherwise, just see if register number OTHER shares GOAL's value.
-
- Return an rtx for the register found, or zero if none is found.
-
- If RELOAD_REG_P is (short *)1,
- we reject any hard reg that appears in reload_reg_rtx
- because such a hard reg is also needed coming into this insn.
-
- If RELOAD_REG_P is any other nonzero value,
- it is a vector indexed by hard reg number
- and we reject any hard reg whose element in the vector is nonnegative
- as well as any that appears in reload_reg_rtx.
-
- If GOAL is zero, then GOALREG is a register number; we look
- for an equivalent for that register.
-
- MODE is the machine mode of the value we want an equivalence for.
- If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
-
- This function is used by jump.c as well as in the reload pass.
-
- If GOAL is the sum of the stack pointer and a constant, we treat it
- as if it were a constant except that sp is required to be unchanging. */
-
- rtx
- find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
- register rtx goal;
- rtx insn;
- enum reg_class class;
- register int other;
- short *reload_reg_p;
- int goalreg;
- enum machine_mode mode;
- {
- register rtx p = insn;
- rtx goaltry, valtry, value, where;
- register rtx pat;
- register int regno = -1;
- int valueno;
- int goal_mem = 0;
- int goal_const = 0;
- int goal_mem_addr_varies = 0;
- int need_stable_sp = 0;
- int nregs;
- int valuenregs;
-
- if (goal == 0)
- regno = goalreg;
- else if (GET_CODE (goal) == REG)
- regno = REGNO (goal);
- else if (GET_CODE (goal) == MEM)
- {
- enum rtx_code code = GET_CODE (XEXP (goal, 0));
- if (MEM_VOLATILE_P (goal))
- return 0;
- if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
- return 0;
- /* An address with side effects must be reexecuted. */
- switch (code)
- {
- case POST_INC:
- case PRE_INC:
- case POST_DEC:
- case PRE_DEC:
- return 0;
- }
- goal_mem = 1;
- }
- else if (CONSTANT_P (goal))
- goal_const = 1;
- else if (GET_CODE (goal) == PLUS
- && XEXP (goal, 0) == stack_pointer_rtx
- && CONSTANT_P (XEXP (goal, 1)))
- goal_const = need_stable_sp = 1;
- else
- return 0;
-
- /* On some machines, certain regs must always be rejected
- because they don't behave the way ordinary registers do. */
-
- #ifdef OVERLAPPING_REGNO_P
- if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
- && OVERLAPPING_REGNO_P (regno))
- return 0;
- #endif
-
- /* Scan insns back from INSN, looking for one that copies
- a value into or out of GOAL.
- Stop and give up if we reach a label. */
-
- while (1)
- {
- p = PREV_INSN (p);
- if (p == 0 || GET_CODE (p) == CODE_LABEL)
- return 0;
- if (GET_CODE (p) == INSN
- /* If we don't want spill regs ... */
- && (! (reload_reg_p != 0
- && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
- /* ... then ignore insns introduced by reload; they aren't useful
- and can cause results in reload_as_needed to be different
- from what they were when calculating the need for spills.
- If we notice an input-reload insn here, we will reject it below,
- but it might hide a usable equivalent. That makes bad code.
- It may even abort: perhaps no reg was spilled for this insn
- because it was assumed we would find that equivalent. */
- || INSN_UID (p) < reload_first_uid))
- {
- rtx tem;
- pat = single_set (p);
- /* First check for something that sets some reg equal to GOAL. */
- if (pat != 0
- && ((regno >= 0
- && true_regnum (SET_SRC (pat)) == regno
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
- ||
- (regno >= 0
- && true_regnum (SET_DEST (pat)) == regno
- && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
- ||
- (goal_const && rtx_equal_p (SET_SRC (pat), goal)
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
- || (goal_mem
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
- && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
- || (goal_mem
- && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
- && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
- /* If we are looking for a constant,
- and something equivalent to that constant was copied
- into a reg, we can use that reg. */
- || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
- NULL_RTX))
- && rtx_equal_p (XEXP (tem, 0), goal)
- && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
- || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
- NULL_RTX))
- && GET_CODE (SET_DEST (pat)) == REG
- && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
- && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
- && GET_CODE (goal) == CONST_INT
- && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
- VOIDmode))
- && rtx_equal_p (goal, goaltry)
- && (valtry = operand_subword (SET_DEST (pat), 0, 0,
- VOIDmode))
- && (valueno = true_regnum (valtry)) >= 0)
- || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
- NULL_RTX))
- && GET_CODE (SET_DEST (pat)) == REG
- && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
- && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
- && GET_CODE (goal) == CONST_INT
- && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
- VOIDmode))
- && rtx_equal_p (goal, goaltry)
- && (valtry
- = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
- && (valueno = true_regnum (valtry)) >= 0)))
- if (other >= 0
- ? valueno == other
- : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
- && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
- valueno)))
- {
- value = valtry;
- where = p;
- break;
- }
- }
- }
-
- /* We found a previous insn copying GOAL into a suitable other reg VALUE
- (or copying VALUE into GOAL, if GOAL is also a register).
- Now verify that VALUE is really valid. */
-
- /* VALUENO is the register number of VALUE; a hard register. */
-
- /* Don't try to re-use something that is killed in this insn. We want
- to be able to trust REG_UNUSED notes. */
- if (find_reg_note (where, REG_UNUSED, value))
- return 0;
-
- /* If we propose to get the value from the stack pointer or if GOAL is
- a MEM based on the stack pointer, we need a stable SP. */
- if (valueno == STACK_POINTER_REGNUM
- || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
- goal)))
- need_stable_sp = 1;
-
- /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
- if (GET_MODE (value) != mode)
- return 0;
-
- /* Reject VALUE if it was loaded from GOAL
- and is also a register that appears in the address of GOAL. */
-
- if (goal_mem && value == SET_DEST (PATTERN (where))
- && refers_to_regno_for_reload_p (valueno,
- (valueno
- + HARD_REGNO_NREGS (valueno, mode)),
- goal, NULL_PTR))
- return 0;
-
- /* Reject registers that overlap GOAL. */
-
- if (!goal_mem && !goal_const
- && regno + HARD_REGNO_NREGS (regno, mode) > valueno
- && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
- return 0;
-
- /* Reject VALUE if it is one of the regs reserved for reloads.
- Reload1 knows how to reuse them anyway, and it would get
- confused if we allocated one without its knowledge.
- (Now that insns introduced by reload are ignored above,
- this case shouldn't happen, but I'm not positive.) */
-
- if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
- && reload_reg_p[valueno] >= 0)
- return 0;
-
- /* On some machines, certain regs must always be rejected
- because they don't behave the way ordinary registers do. */
-
- #ifdef OVERLAPPING_REGNO_P
- if (OVERLAPPING_REGNO_P (valueno))
- return 0;
- #endif
-
- nregs = HARD_REGNO_NREGS (regno, mode);
- valuenregs = HARD_REGNO_NREGS (valueno, mode);
-
- /* Reject VALUE if it is a register being used for an input reload
- even if it is not one of those reserved. */
-
- if (reload_reg_p != 0)
- {
- int i;
- for (i = 0; i < n_reloads; i++)
- if (reload_reg_rtx[i] != 0 && reload_in[i])
- {
- int regno1 = REGNO (reload_reg_rtx[i]);
- int nregs1 = HARD_REGNO_NREGS (regno1,
- GET_MODE (reload_reg_rtx[i]));
- if (regno1 < valueno + valuenregs
- && regno1 + nregs1 > valueno)
- return 0;
- }
- }
-
- if (goal_mem)
- /* We must treat frame pointer as varying here,
- since it can vary--in a nonlocal goto as generated by expand_goto. */
- goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
-
- /* Now verify that the values of GOAL and VALUE remain unaltered
- until INSN is reached. */
-
- p = insn;
- while (1)
- {
- p = PREV_INSN (p);
- if (p == where)
- return value;
-
- /* Don't trust the conversion past a function call
- if either of the two is in a call-clobbered register, or memory. */
- if (GET_CODE (p) == CALL_INSN
- && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
- && call_used_regs[regno])
- ||
- (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
- && call_used_regs[valueno])
- ||
- goal_mem
- || need_stable_sp))
- return 0;
-
- #ifdef INSN_CLOBBERS_REGNO_P
- if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
- && INSN_CLOBBERS_REGNO_P (p, valueno))
- || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
- && INSN_CLOBBERS_REGNO_P (p, regno)))
- return 0;
- #endif
-
- if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
- {
- /* If this insn P stores in either GOAL or VALUE, return 0.
- If GOAL is a memory ref and this insn writes memory, return 0.
- If GOAL is a memory ref and its address is not constant,
- and this insn P changes a register used in GOAL, return 0. */
-
- pat = PATTERN (p);
- if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
- {
- register rtx dest = SET_DEST (pat);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (GET_CODE (dest) == REG)
- {
- register int xregno = REGNO (dest);
- int xnregs;
- if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
- xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
- else
- xnregs = 1;
- if (xregno < regno + nregs && xregno + xnregs > regno)
- return 0;
- if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (dest, goal))
- return 0;
- }
- else if (goal_mem && GET_CODE (dest) == MEM
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- else if (GET_CODE (pat) == PARALLEL)
- {
- register int i;
- for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
- {
- register rtx v1 = XVECEXP (pat, 0, i);
- if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
- {
- register rtx dest = SET_DEST (v1);
- while (GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT
- || GET_CODE (dest) == SIGN_EXTRACT
- || GET_CODE (dest) == STRICT_LOW_PART)
- dest = XEXP (dest, 0);
- if (GET_CODE (dest) == REG)
- {
- register int xregno = REGNO (dest);
- int xnregs;
- if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
- xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
- else
- xnregs = 1;
- if (xregno < regno + nregs
- && xregno + xnregs > regno)
- return 0;
- if (xregno < valueno + valuenregs
- && xregno + xnregs > valueno)
- return 0;
- if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (dest,
- goal))
- return 0;
- }
- else if (goal_mem && GET_CODE (dest) == MEM
- && ! push_operand (dest, GET_MODE (dest)))
- return 0;
- else if (need_stable_sp
- && push_operand (dest, GET_MODE (dest)))
- return 0;
- }
- }
- }
-
- #ifdef AUTO_INC_DEC
- /* If this insn auto-increments or auto-decrements
- either regno or valueno, return 0 now.
- If GOAL is a memory ref and its address is not constant,
- and this insn P increments a register used in GOAL, return 0. */
- {
- register rtx link;
-
- for (link = REG_NOTES (p); link; link = XEXP (link, 1))
- if (REG_NOTE_KIND (link) == REG_INC
- && GET_CODE (XEXP (link, 0)) == REG)
- {
- register int incno = REGNO (XEXP (link, 0));
- if (incno < regno + nregs && incno >= regno)
- return 0;
- if (incno < valueno + valuenregs && incno >= valueno)
- return 0;
- if (goal_mem_addr_varies
- && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
- goal))
- return 0;
- }
- }
- #endif
- }
- }
- }
-
- /* Find a place where INCED appears in an increment or decrement operator
- within X, and return the amount INCED is incremented or decremented by.
- The value is always positive. */
-
- static int
- find_inc_amount (x, inced)
- rtx x, inced;
- {
- register enum rtx_code code = GET_CODE (x);
- register char *fmt;
- register int i;
-
- if (code == MEM)
- {
- register rtx addr = XEXP (x, 0);
- if ((GET_CODE (addr) == PRE_DEC
- || GET_CODE (addr) == POST_DEC
- || GET_CODE (addr) == PRE_INC
- || GET_CODE (addr) == POST_INC)
- && XEXP (addr, 0) == inced)
- return GET_MODE_SIZE (GET_MODE (x));
- }
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- register int tem = find_inc_amount (XEXP (x, i), inced);
- if (tem != 0)
- return tem;
- }
- if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- {
- register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
- if (tem != 0)
- return tem;
- }
- }
- }
-
- return 0;
- }
-
- /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
-
- int
- regno_clobbered_p (regno, insn)
- int regno;
- rtx insn;
- {
- if (GET_CODE (PATTERN (insn)) == CLOBBER
- && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
- return REGNO (XEXP (PATTERN (insn), 0)) == regno;
-
- if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- int i = XVECLEN (PATTERN (insn), 0) - 1;
-
- for (; i >= 0; i--)
- {
- rtx elt = XVECEXP (PATTERN (insn), 0, i);
- if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
- && REGNO (XEXP (elt, 0)) == regno)
- return 1;
- }
- }
-
- return 0;
- }
-