home *** CD-ROM | disk | FTP | other *** search
- /* Instruction scheduling pass.
- Copyright (C) 1992, 1993 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@cygnus.com)
- Enhanced by, and currently maintained by, Jim Wilson (wilson@cygnus.com)
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /* Instruction scheduling pass.
-
- This pass implements list scheduling within basic blocks. It is
- run after flow analysis, but before register allocation. The
- scheduler works as follows:
-
- We compute insn priorities based on data dependencies. Flow
- analysis only creates a fraction of the data-dependencies we must
- observe: namely, only those dependencies which the combiner can be
- expected to use. For this pass, we must therefore create the
- remaining dependencies we need to observe: register dependencies,
- memory dependencies, dependencies to keep function calls in order,
- and the dependence between a conditional branch and the setting of
- condition codes are all dealt with here.
-
- The scheduler first traverses the data flow graph, starting with
- the last instruction, and proceeding to the first, assigning
- values to insn_priority as it goes. This sorts the instructions
- topologically by data dependence.
-
- Once priorities have been established, we order the insns using
- list scheduling. This works as follows: starting with a list of
- all the ready insns, and sorted according to priority number, we
- schedule the insn from the end of the list by placing its
- predecessors in the list according to their priority order. We
- consider this insn scheduled by setting the pointer to the "end" of
- the list to point to the previous insn. When an insn has no
- predecessors, we either queue it until sufficient time has elapsed
- or add it to the ready list. As the instructions are scheduled or
- when stalls are introduced, the queue advances and dumps insns into
- the ready list. When all insns down to the lowest priority have
- been scheduled, the critical path of the basic block has been made
- as short as possible. The remaining insns are then scheduled in
- remaining slots.
-
- Function unit conflicts are resolved during reverse list scheduling
- by tracking the time when each insn is committed to the schedule
- and from that, the time the function units it uses must be free.
- As insns on the ready list are considered for scheduling, those
- that would result in a blockage of the already committed insns are
- queued until no blockage will result. Among the remaining insns on
- the ready list to be considered, the first one with the largest
- potential for causing a subsequent blockage is chosen.
-
- The following list shows the order in which we want to break ties
- among insns in the ready list:
-
- 1. choose insn with lowest conflict cost, ties broken by
- 2. choose insn with the longest path to end of bb, ties broken by
- 3. choose insn that kills the most registers, ties broken by
- 4. choose insn that conflicts with the most ready insns, or finally
- 5. choose insn with lowest UID.
-
- Memory references complicate matters. Only if we can be certain
- that memory references are not part of the data dependency graph
- (via true, anti, or output dependence), can we move operations past
- memory references. To first approximation, reads can be done
- independently, while writes introduce dependencies. Better
- approximations will yield fewer dependencies.
-
- Dependencies set up by memory references are treated in exactly the
- same way as other dependencies, by using LOG_LINKS.
-
- Having optimized the critical path, we may have also unduly
- extended the lifetimes of some registers. If an operation requires
- that constants be loaded into registers, it is certainly desirable
- to load those constants as early as necessary, but no earlier.
- I.e., it will not do to load up a bunch of registers at the
- beginning of a basic block only to use them at the end, if they
- could be loaded later, since this may result in excessive register
- utilization.
-
- Note that since branches are never in basic blocks, but only end
- basic blocks, this pass will not do any branch scheduling. But
- that is ok, since we can use GNU's delayed branch scheduling
- pass to take care of this case.
-
- Also note that no further optimizations based on algebraic identities
- are performed, so this pass would be a good one to perform instruction
- splitting, such as breaking up a multiply instruction into shifts
- and adds where that is profitable.
-
- Given the memory aliasing analysis that this pass should perform,
- it should be possible to remove redundant stores to memory, and to
- load values from registers instead of hitting memory.
-
- This pass must update information that subsequent passes expect to be
- correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
- reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
- basic_block_end.
-
- The information in the line number notes is carefully retained by this
- pass. All other NOTE insns are grouped in their same relative order at
- the beginning of basic blocks that have been scheduled. */
-
- #include <stdio.h>
- #include "config.h"
- #include "rtl.h"
- #include "basic-block.h"
- #include "regs.h"
- #include "hard-reg-set.h"
- #include "flags.h"
- #include "insn-config.h"
- #include "insn-attr.h"
-
- #ifdef INSN_SCHEDULING
- /* Arrays set up by scheduling for the same respective purposes as
- similar-named arrays set up by flow analysis. We work with these
- arrays during the scheduling pass so we can compare values against
- unscheduled code.
-
- Values of these arrays are copied at the end of this pass into the
- arrays set up by flow analysis. */
- static short *sched_reg_n_deaths;
- static int *sched_reg_n_calls_crossed;
- static int *sched_reg_live_length;
-
- /* Element N is the next insn that sets (hard or pseudo) register
- N within the current basic block; or zero, if there is no
- such insn. Needed for new registers which may be introduced
- by splitting insns. */
- static rtx *reg_last_uses;
- static rtx *reg_last_sets;
-
- /* Vector indexed by INSN_UID giving the original ordering of the insns. */
- static int *insn_luid;
- #define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
-
- /* Vector indexed by INSN_UID giving each instruction a priority. */
- static int *insn_priority;
- #define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
-
- static short *insn_costs;
- #define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
-
- /* Vector indexed by INSN_UID giving an encoding of the function units
- used. */
- static short *insn_units;
- #define INSN_UNIT(INSN) insn_units[INSN_UID (INSN)]
-
- /* Vector indexed by INSN_UID giving an encoding of the blockage range
- function. The unit and the range are encoded. */
- static unsigned int *insn_blockage;
- #define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
- #define UNIT_BITS 5
- #define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
- #define ENCODE_BLOCKAGE(U,R) \
- ((((U) << UNIT_BITS) << BLOCKAGE_BITS \
- | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
- | MAX_BLOCKAGE_COST (R))
- #define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
- #define BLOCKAGE_RANGE(B) \
- (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
- | (B) & BLOCKAGE_MASK)
-
- /* Encodings of the `<name>_unit_blockage_range' function. */
- #define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
- #define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
-
- #define DONE_PRIORITY -1
- #define MAX_PRIORITY 0x7fffffff
- #define TAIL_PRIORITY 0x7ffffffe
- #define LAUNCH_PRIORITY 0x7f000001
- #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
- #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
-
- /* Vector indexed by INSN_UID giving number of insns referring to this insn. */
- static int *insn_ref_count;
- #define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
-
- /* Vector indexed by INSN_UID giving line-number note in effect for each
- insn. For line-number notes, this indicates whether the note may be
- reused. */
- static rtx *line_note;
- #define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
-
- /* Vector indexed by basic block number giving the starting line-number
- for each basic block. */
- static rtx *line_note_head;
-
- /* List of important notes we must keep around. This is a pointer to the
- last element in the list. */
- static rtx note_list;
-
- /* Regsets telling whether a given register is live or dead before the last
- scheduled insn. Must scan the instructions once before scheduling to
- determine what registers are live or dead at the end of the block. */
- static regset bb_dead_regs;
- static regset bb_live_regs;
-
- /* Regset telling whether a given register is live after the insn currently
- being scheduled. Before processing an insn, this is equal to bb_live_regs
- above. This is used so that we can find registers that are newly born/dead
- after processing an insn. */
- static regset old_live_regs;
-
- /* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
- during the initial scan and reused later. If there are not exactly as
- many REG_DEAD notes in the post scheduled code as there were in the
- prescheduled code then we trigger an abort because this indicates a bug. */
- static rtx dead_notes;
-
- /* Queues, etc. */
-
- /* An instruction is ready to be scheduled when all insns following it
- have already been scheduled. It is important to ensure that all
- insns which use its result will not be executed until its result
- has been computed. An insn is maintained in one of four structures:
-
- (P) the "Pending" set of insns which cannot be scheduled until
- their dependencies have been satisfied.
- (Q) the "Queued" set of insns that can be scheduled when sufficient
- time has passed.
- (R) the "Ready" list of unscheduled, uncommitted insns.
- (S) the "Scheduled" list of insns.
-
- Initially, all insns are either "Pending" or "Ready" depending on
- whether their dependencies are satisfied.
-
- Insns move from the "Ready" list to the "Scheduled" list as they
- are committed to the schedule. As this occurs, the insns in the
- "Pending" list have their dependencies satisfied and move to either
- the "Ready" list or the "Queued" set depending on whether
- sufficient time has passed to make them ready. As time passes,
- insns move from the "Queued" set to the "Ready" list. Insns may
- move from the "Ready" list to the "Queued" set if they are blocked
- due to a function unit conflict.
-
- The "Pending" list (P) are the insns in the LOG_LINKS of the unscheduled
- insns, i.e., those that are ready, queued, and pending.
- The "Queued" set (Q) is implemented by the variable `insn_queue'.
- The "Ready" list (R) is implemented by the variables `ready' and
- `n_ready'.
- The "Scheduled" list (S) is the new insn chain built by this pass.
-
- The transition (R->S) is implemented in the scheduling loop in
- `schedule_block' when the best insn to schedule is chosen.
- The transition (R->Q) is implemented in `schedule_select' when an
- insn is found to to have a function unit conflict with the already
- committed insns.
- The transitions (P->R and P->Q) are implemented in `schedule_insn' as
- insns move from the ready list to the scheduled list.
- The transition (Q->R) is implemented at the top of the scheduling
- loop in `schedule_block' as time passes or stalls are introduced. */
-
- /* Implement a circular buffer to delay instructions until sufficient
- time has passed. INSN_QUEUE_SIZE is a power of two larger than
- MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
- longest time an isnsn may be queued. */
- static rtx insn_queue[INSN_QUEUE_SIZE];
- static int q_ptr = 0;
- static int q_size = 0;
- #define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
- #define NEXT_Q_AFTER(X,C) (((X)+C) & (INSN_QUEUE_SIZE-1))
-
- /* Vector indexed by INSN_UID giving the minimum clock tick at which
- the insn becomes ready. This is used to note timing constraints for
- insns in the pending list. */
- static int *insn_tick;
- #define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])
-
- /* Data structure for keeping track of register information
- during that register's life. */
-
- struct sometimes
- {
- short offset; short bit;
- short live_length; short calls_crossed;
- };
-
- /* Forward declarations. */
- static rtx canon_rtx PROTO((rtx));
- static int rtx_equal_for_memref_p PROTO((rtx, rtx));
- static rtx find_symbolic_term PROTO((rtx));
- static int memrefs_conflict_p PROTO((int, rtx, int, rtx,
- HOST_WIDE_INT));
- static void add_dependence PROTO((rtx, rtx, enum reg_note));
- static void remove_dependence PROTO((rtx, rtx));
- static rtx find_insn_list PROTO((rtx, rtx));
- static int insn_unit PROTO((rtx));
- static unsigned int blockage_range PROTO((int, rtx));
- static void clear_units PROTO((void));
- static void prepare_unit PROTO((int));
- static int actual_hazard_this_instance PROTO((int, int, rtx, int, int));
- static void schedule_unit PROTO((int, rtx, int));
- static int actual_hazard PROTO((int, rtx, int, int));
- static int potential_hazard PROTO((int, rtx, int));
- static int insn_cost PROTO((rtx, rtx, rtx));
- static int priority PROTO((rtx));
- static void free_pending_lists PROTO((void));
- static void add_insn_mem_dependence PROTO((rtx *, rtx *, rtx, rtx));
- static void flush_pending_lists PROTO((rtx));
- static void sched_analyze_1 PROTO((rtx, rtx));
- static void sched_analyze_2 PROTO((rtx, rtx));
- static void sched_analyze_insn PROTO((rtx, rtx));
- static int sched_analyze PROTO((rtx, rtx));
- static void sched_note_set PROTO((int, rtx, int));
- static int rank_for_schedule PROTO((rtx *, rtx *));
- static void swap_sort PROTO((rtx *, int));
- static void queue_insn PROTO((rtx, int));
- static int birthing_insn PROTO((rtx));
- static void adjust_priority PROTO((rtx));
- static int schedule_insn PROTO((rtx, rtx *, int, int));
- static int schedule_select PROTO((rtx *, int, int, FILE *));
- static void create_reg_dead_note PROTO((rtx, rtx));
- static void attach_deaths PROTO((rtx, rtx, int));
- static void attach_deaths_insn PROTO((rtx));
- static rtx unlink_notes PROTO((rtx, rtx));
- static int new_sometimes_live PROTO((struct sometimes *, int, int,
- int));
- static void finish_sometimes_live PROTO((struct sometimes *, int));
- static void schedule_block PROTO((int, FILE *));
- static rtx regno_use_in PROTO((int, rtx));
- static void split_hard_reg_notes PROTO((rtx, rtx, rtx, rtx));
- static void new_insn_dead_notes PROTO((rtx, rtx, rtx, rtx));
- static void update_n_sets PROTO((rtx, int));
- static void update_flow_info PROTO((rtx, rtx, rtx, rtx));
-
- /* Main entry point of this file. */
- void schedule_insns PROTO((FILE *));
-
- #endif /* INSN_SCHEDULING */
-
- #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
-
- /* Vector indexed by N giving the initial (unchanging) value known
- for pseudo-register N. */
- static rtx *reg_known_value;
-
- /* Vector recording for each reg_known_value whether it is due to a
- REG_EQUIV note. Future passes (viz., reload) may replace the
- pseudo with the equivalent expression and so we account for the
- dependences that would be introduced if that happens. */
- /* ??? This is a problem only on the Convex. The REG_EQUIV notes created in
- assign_parms mention the arg pointer, and there are explicit insns in the
- RTL that modify the arg pointer. Thus we must ensure that such insns don't
- get scheduled across each other because that would invalidate the REG_EQUIV
- notes. One could argue that the REG_EQUIV notes are wrong, but solving
- the problem in the scheduler will likely give better code, so we do it
- here. */
- static char *reg_known_equiv_p;
-
- /* Indicates number of valid entries in reg_known_value. */
- static int reg_known_value_size;
-
- static rtx
- canon_rtx (x)
- rtx x;
- {
- if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
- && REGNO (x) <= reg_known_value_size)
- return reg_known_value[REGNO (x)];
- else if (GET_CODE (x) == PLUS)
- {
- rtx x0 = canon_rtx (XEXP (x, 0));
- rtx x1 = canon_rtx (XEXP (x, 1));
-
- if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
- {
- /* We can tolerate LO_SUMs being offset here; these
- rtl are used for nothing other than comparisons. */
- if (GET_CODE (x0) == CONST_INT)
- return plus_constant_for_output (x1, INTVAL (x0));
- else if (GET_CODE (x1) == CONST_INT)
- return plus_constant_for_output (x0, INTVAL (x1));
- return gen_rtx (PLUS, GET_MODE (x), x0, x1);
- }
- }
- return x;
- }
-
- /* Set up all info needed to perform alias analysis on memory references. */
-
- void
- init_alias_analysis ()
- {
- int maxreg = max_reg_num ();
- rtx insn;
- rtx note;
- rtx set;
-
- reg_known_value_size = maxreg;
-
- reg_known_value
- = (rtx *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx))
- - FIRST_PSEUDO_REGISTER;
- bzero (reg_known_value+FIRST_PSEUDO_REGISTER,
- (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (rtx));
-
- reg_known_equiv_p
- = (char *) oballoc ((maxreg-FIRST_PSEUDO_REGISTER) * sizeof (char))
- - FIRST_PSEUDO_REGISTER;
- bzero (reg_known_equiv_p+FIRST_PSEUDO_REGISTER,
- (maxreg-FIRST_PSEUDO_REGISTER) * sizeof (char));
-
- /* Fill in the entries with known constant values. */
- for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
- if ((set = single_set (insn)) != 0
- && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
- && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
- && reg_n_sets[REGNO (SET_DEST (set))] == 1)
- || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
- && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
- {
- int regno = REGNO (SET_DEST (set));
- reg_known_value[regno] = XEXP (note, 0);
- reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
- }
-
- /* Fill in the remaining entries. */
- while (--maxreg >= FIRST_PSEUDO_REGISTER)
- if (reg_known_value[maxreg] == 0)
- reg_known_value[maxreg] = regno_reg_rtx[maxreg];
- }
-
- /* Return 1 if X and Y are identical-looking rtx's.
-
- We use the data in reg_known_value above to see if two registers with
- different numbers are, in fact, equivalent. */
-
- static int
- rtx_equal_for_memref_p (x, y)
- rtx x, y;
- {
- register int i;
- register int j;
- register enum rtx_code code;
- register char *fmt;
-
- if (x == 0 && y == 0)
- return 1;
- if (x == 0 || y == 0)
- return 0;
- x = canon_rtx (x);
- y = canon_rtx (y);
-
- if (x == y)
- return 1;
-
- code = GET_CODE (x);
- /* Rtx's of different codes cannot be equal. */
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
- (REG:SI x) and (REG:HI x) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* REG, LABEL_REF, and SYMBOL_REF can be compared nonrecursively. */
-
- if (code == REG)
- return REGNO (x) == REGNO (y);
- if (code == LABEL_REF)
- return XEXP (x, 0) == XEXP (y, 0);
- if (code == SYMBOL_REF)
- return XSTR (x, 0) == XSTR (y, 0);
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'w':
- if (XWINT (x, i) != XWINT (y, i))
- return 0;
- break;
-
- case 'n':
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'V':
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_equal_for_memref_p (XVECEXP (x, i, j), XVECEXP (y, i, j)) == 0)
- return 0;
- break;
-
- case 'e':
- if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
- return 0;
- break;
-
- case 'S':
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- case 'u':
- /* These are just backpointers, so they don't matter. */
- break;
-
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- abort ();
- }
- }
- return 1;
- }
-
- /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
- X and return it, or return 0 if none found. */
-
- static rtx
- find_symbolic_term (x)
- rtx x;
- {
- register int i;
- register enum rtx_code code;
- register char *fmt;
-
- code = GET_CODE (x);
- if (code == SYMBOL_REF || code == LABEL_REF)
- return x;
- if (GET_RTX_CLASS (code) == 'o')
- return 0;
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- rtx t;
-
- if (fmt[i] == 'e')
- {
- t = find_symbolic_term (XEXP (x, i));
- if (t != 0)
- return t;
- }
- else if (fmt[i] == 'E')
- break;
- }
- return 0;
- }
-
- /* Return nonzero if X and Y (memory addresses) could reference the
- same location in memory. C is an offset accumulator. When
- C is nonzero, we are testing aliases between X and Y + C.
- XSIZE is the size in bytes of the X reference,
- similarly YSIZE is the size in bytes for Y.
-
- If XSIZE or YSIZE is zero, we do not know the amount of memory being
- referenced (the reference was BLKmode), so make the most pessimistic
- assumptions.
-
- We recognize the following cases of non-conflicting memory:
-
- (1) addresses involving the frame pointer cannot conflict
- with addresses involving static variables.
- (2) static variables with different addresses cannot conflict.
-
- Nice to notice that varying addresses cannot conflict with fp if no
- local variables had their addresses taken, but that's too hard now. */
-
- /* ??? In Fortran, references to a array parameter can never conflict with
- another array parameter. */
-
- static int
- memrefs_conflict_p (xsize, x, ysize, y, c)
- rtx x, y;
- int xsize, ysize;
- HOST_WIDE_INT c;
- {
- if (GET_CODE (x) == HIGH)
- x = XEXP (x, 0);
- else if (GET_CODE (x) == LO_SUM)
- x = XEXP (x, 1);
- else
- x = canon_rtx (x);
- if (GET_CODE (y) == HIGH)
- y = XEXP (y, 0);
- else if (GET_CODE (y) == LO_SUM)
- y = XEXP (y, 1);
- else
- y = canon_rtx (y);
-
- if (rtx_equal_for_memref_p (x, y))
- return (xsize == 0 || ysize == 0 ||
- (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
-
- if (y == frame_pointer_rtx || y == hard_frame_pointer_rtx
- || y == stack_pointer_rtx)
- {
- rtx t = y;
- int tsize = ysize;
- y = x; ysize = xsize;
- x = t; xsize = tsize;
- }
-
- if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
- || x == stack_pointer_rtx)
- {
- rtx y1;
-
- if (CONSTANT_P (y))
- return 0;
-
- if (GET_CODE (y) == PLUS
- && canon_rtx (XEXP (y, 0)) == x
- && (y1 = canon_rtx (XEXP (y, 1)))
- && GET_CODE (y1) == CONST_INT)
- {
- c += INTVAL (y1);
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
- }
-
- if (GET_CODE (y) == PLUS
- && (y1 = canon_rtx (XEXP (y, 0)))
- && CONSTANT_P (y1))
- return 0;
-
- return 1;
- }
-
- if (GET_CODE (x) == PLUS)
- {
- /* The fact that X is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (rtx_equal_for_memref_p (x1, y1))
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- if (rtx_equal_for_memref_p (x0, y0))
- return memrefs_conflict_p (xsize, x1, ysize, y1, c);
- if (GET_CODE (x1) == CONST_INT)
- if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x0, ysize, y0,
- c - INTVAL (x1) + INTVAL (y1));
- else
- return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
- else if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
-
- /* Handle case where we cannot understand iteration operators,
- but we notice that the base addresses are distinct objects. */
- x = find_symbolic_term (x);
- if (x == 0)
- return 1;
- y = find_symbolic_term (y);
- if (y == 0)
- return 1;
- return rtx_equal_for_memref_p (x, y);
- }
- else if (GET_CODE (x1) == CONST_INT)
- return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
- }
- else if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (GET_CODE (y1) == CONST_INT)
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
- else
- return 1;
- }
-
- if (GET_CODE (x) == GET_CODE (y))
- switch (GET_CODE (x))
- {
- case MULT:
- {
- /* Handle cases where we expect the second operands to be the
- same, and check only whether the first operand would conflict
- or not. */
- rtx x0, y0;
- rtx x1 = canon_rtx (XEXP (x, 1));
- rtx y1 = canon_rtx (XEXP (y, 1));
- if (! rtx_equal_for_memref_p (x1, y1))
- return 1;
- x0 = canon_rtx (XEXP (x, 0));
- y0 = canon_rtx (XEXP (y, 0));
- if (rtx_equal_for_memref_p (x0, y0))
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
-
- /* Can't properly adjust our sizes. */
- if (GET_CODE (x1) != CONST_INT)
- return 1;
- xsize /= INTVAL (x1);
- ysize /= INTVAL (x1);
- c /= INTVAL (x1);
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- }
- }
-
- if (CONSTANT_P (x))
- {
- if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
- {
- c += (INTVAL (y) - INTVAL (x));
- return (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
- }
-
- if (GET_CODE (x) == CONST)
- {
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, canon_rtx (XEXP (y, 0)), c);
- else
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, y, c);
- }
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, x, ysize,
- canon_rtx (XEXP (y, 0)), c);
-
- if (CONSTANT_P (y))
- return (rtx_equal_for_memref_p (x, y)
- && (xsize == 0 || ysize == 0
- || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0)));
-
- return 1;
- }
- return 1;
- }
-
- /* Functions to compute memory dependencies.
-
- Since we process the insns in execution order, we can build tables
- to keep track of what registers are fixed (and not aliased), what registers
- are varying in known ways, and what registers are varying in unknown
- ways.
-
- If both memory references are volatile, then there must always be a
- dependence between the two references, since their order can not be
- changed. A volatile and non-volatile reference can be interchanged
- though.
-
- A MEM_IN_STRUCT reference at a non-QImode varying address can never
- conflict with a non-MEM_IN_STRUCT reference at a fixed address. We must
- allow QImode aliasing because the ANSI C standard allows character
- pointers to alias anything. We are assuming that characters are
- always QImode here. */
-
- /* Read dependence: X is read after read in MEM takes place. There can
- only be a dependence here if both reads are volatile. */
-
- int
- read_dependence (mem, x)
- rtx mem;
- rtx x;
- {
- return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
- }
-
- /* True dependence: X is read after store in MEM takes place. */
-
- int
- true_dependence (mem, x)
- rtx mem;
- rtx x;
- {
- /* If X is an unchanging read, then it can't possibly conflict with any
- non-unchanging store. It may conflict with an unchanging write though,
- because there may be a single store to this address to initialize it.
- Just fall through to the code below to resolve the case where we have
- both an unchanging read and an unchanging write. This won't handle all
- cases optimally, but the possible performance loss should be
- negligible. */
- if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
- return 0;
-
- return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
- SIZE_FOR_MODE (x), XEXP (x, 0), 0)
- && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
- && GET_MODE (mem) != QImode
- && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
- && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
- && GET_MODE (x) != QImode
- && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
- }
-
- /* Anti dependence: X is written after read in MEM takes place. */
-
- int
- anti_dependence (mem, x)
- rtx mem;
- rtx x;
- {
- /* If MEM is an unchanging read, then it can't possibly conflict with
- the store to X, because there is at most one store to MEM, and it must
- have occured somewhere before MEM. */
- if (RTX_UNCHANGING_P (mem))
- return 0;
-
- return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
- SIZE_FOR_MODE (x), XEXP (x, 0), 0)
- && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
- && GET_MODE (mem) != QImode
- && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
- && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
- && GET_MODE (x) != QImode
- && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
- }
-
- /* Output dependence: X is written after store in MEM takes place. */
-
- int
- output_dependence (mem, x)
- rtx mem;
- rtx x;
- {
- return ((MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- || (memrefs_conflict_p (SIZE_FOR_MODE (mem), XEXP (mem, 0),
- SIZE_FOR_MODE (x), XEXP (x, 0), 0)
- && ! (MEM_IN_STRUCT_P (mem) && rtx_addr_varies_p (mem)
- && GET_MODE (mem) != QImode
- && ! MEM_IN_STRUCT_P (x) && ! rtx_addr_varies_p (x))
- && ! (MEM_IN_STRUCT_P (x) && rtx_addr_varies_p (x)
- && GET_MODE (x) != QImode
- && ! MEM_IN_STRUCT_P (mem) && ! rtx_addr_varies_p (mem))));
- }
-
- /* Helper functions for instruction scheduling. */
-
- /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
- LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
- of dependence that this link represents. */
-
- static void
- add_dependence (insn, elem, dep_type)
- rtx insn;
- rtx elem;
- enum reg_note dep_type;
- {
- rtx link, next;
-
- /* Don't depend an insn on itself. */
- if (insn == elem)
- return;
-
- /* If elem is part of a sequence that must be scheduled together, then
- make the dependence point to the last insn of the sequence.
- When HAVE_cc0, it is possible for NOTEs to exist between users and
- setters of the condition codes, so we must skip past notes here.
- Otherwise, NOTEs are impossible here. */
-
- next = NEXT_INSN (elem);
-
- #ifdef HAVE_cc0
- while (next && GET_CODE (next) == NOTE)
- next = NEXT_INSN (next);
- #endif
-
- if (next && SCHED_GROUP_P (next))
- {
- /* Notes will never intervene here though, so don't bother checking
- for them. */
- /* We must reject CODE_LABELs, so that we don't get confused by one
- that has LABEL_PRESERVE_P set, which is represented by the same
- bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
- SCHED_GROUP_P. */
- while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next))
- && GET_CODE (NEXT_INSN (next)) != CODE_LABEL)
- next = NEXT_INSN (next);
-
- /* Again, don't depend an insn on itself. */
- if (insn == next)
- return;
-
- /* Make the dependence to NEXT, the last insn of the group, instead
- of the original ELEM. */
- elem = next;
- }
-
- /* Check that we don't already have this dependence. */
- for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
- if (XEXP (link, 0) == elem)
- {
- /* If this is a more restrictive type of dependence than the existing
- one, then change the existing dependence to this type. */
- if ((int) dep_type < (int) REG_NOTE_KIND (link))
- PUT_REG_NOTE_KIND (link, dep_type);
- return;
- }
- /* Might want to check one level of transitivity to save conses. */
-
- link = rtx_alloc (INSN_LIST);
- /* Insn dependency, not data dependency. */
- PUT_REG_NOTE_KIND (link, dep_type);
- XEXP (link, 0) = elem;
- XEXP (link, 1) = LOG_LINKS (insn);
- LOG_LINKS (insn) = link;
- }
-
- /* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
- of INSN. Abort if not found. */
-
- static void
- remove_dependence (insn, elem)
- rtx insn;
- rtx elem;
- {
- rtx prev, link;
- int found = 0;
-
- for (prev = 0, link = LOG_LINKS (insn); link;
- prev = link, link = XEXP (link, 1))
- {
- if (XEXP (link, 0) == elem)
- {
- if (prev)
- XEXP (prev, 1) = XEXP (link, 1);
- else
- LOG_LINKS (insn) = XEXP (link, 1);
- found = 1;
- }
- }
-
- if (! found)
- abort ();
- return;
- }
-
- #ifndef INSN_SCHEDULING
- void
- schedule_insns (dump_file)
- FILE *dump_file;
- {
- }
- #else
- #ifndef __GNUC__
- #define __inline
- #endif
-
- /* Computation of memory dependencies. */
-
- /* The *_insns and *_mems are paired lists. Each pending memory operation
- will have a pointer to the MEM rtx on one list and a pointer to the
- containing insn on the other list in the same place in the list. */
-
- /* We can't use add_dependence like the old code did, because a single insn
- may have multiple memory accesses, and hence needs to be on the list
- once for each memory access. Add_dependence won't let you add an insn
- to a list more than once. */
-
- /* An INSN_LIST containing all insns with pending read operations. */
- static rtx pending_read_insns;
-
- /* An EXPR_LIST containing all MEM rtx's which are pending reads. */
- static rtx pending_read_mems;
-
- /* An INSN_LIST containing all insns with pending write operations. */
- static rtx pending_write_insns;
-
- /* An EXPR_LIST containing all MEM rtx's which are pending writes. */
- static rtx pending_write_mems;
-
- /* Indicates the combined length of the two pending lists. We must prevent
- these lists from ever growing too large since the number of dependencies
- produced is at least O(N*N), and execution time is at least O(4*N*N), as
- a function of the length of these pending lists. */
-
- static int pending_lists_length;
-
- /* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
-
- static rtx unused_insn_list;
-
- /* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
-
- static rtx unused_expr_list;
-
- /* The last insn upon which all memory references must depend.
- This is an insn which flushed the pending lists, creating a dependency
- between it and all previously pending memory references. This creates
- a barrier (or a checkpoint) which no memory reference is allowed to cross.
-
- This includes all non constant CALL_INSNs. When we do interprocedural
- alias analysis, this restriction can be relaxed.
- This may also be an INSN that writes memory if the pending lists grow
- too large. */
-
- static rtx last_pending_memory_flush;
-
- /* The last function call we have seen. All hard regs, and, of course,
- the last function call, must depend on this. */
-
- static rtx last_function_call;
-
- /* The LOG_LINKS field of this is a list of insns which use a pseudo register
- that does not already cross a call. We create dependencies between each
- of those insn and the next call insn, to ensure that they won't cross a call
- after scheduling is done. */
-
- static rtx sched_before_next_call;
-
- /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
- so that insns independent of the last scheduled insn will be preferred
- over dependent instructions. */
-
- static rtx last_scheduled_insn;
-
- /* Process an insn's memory dependencies. There are four kinds of
- dependencies:
-
- (0) read dependence: read follows read
- (1) true dependence: read follows write
- (2) anti dependence: write follows read
- (3) output dependence: write follows write
-
- We are careful to build only dependencies which actually exist, and
- use transitivity to avoid building too many links. */
-
- /* Return the INSN_LIST containing INSN in LIST, or NULL
- if LIST does not contain INSN. */
-
- __inline static rtx
- find_insn_list (insn, list)
- rtx insn;
- rtx list;
- {
- while (list)
- {
- if (XEXP (list, 0) == insn)
- return list;
- list = XEXP (list, 1);
- }
- return 0;
- }
-
- /* Compute the function units used by INSN. This caches the value
- returned by function_units_used. A function unit is encoded as the
- unit number if the value is non-negative and the compliment of a
- mask if the value is negative. A function unit index is the
- non-negative encoding. */
-
- __inline static int
- insn_unit (insn)
- rtx insn;
- {
- register int unit = INSN_UNIT (insn);
-
- if (unit == 0)
- {
- recog_memoized (insn);
-
- /* A USE insn, or something else we don't need to understand.
- We can't pass these directly to function_units_used because it will
- trigger a fatal error for unrecognizable insns. */
- if (INSN_CODE (insn) < 0)
- unit = -1;
- else
- {
- unit = function_units_used (insn);
- /* Increment non-negative values so we can cache zero. */
- if (unit >= 0) unit++;
- }
- /* We only cache 16 bits of the result, so if the value is out of
- range, don't cache it. */
- if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
- || unit >= 0
- || (~unit & ((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
- INSN_UNIT (insn) = unit;
- }
- return (unit > 0 ? unit - 1 : unit);
- }
-
- /* Compute the blockage range for executing INSN on UNIT. This caches
- the value returned by the blockage_range_function for the unit.
- These values are encoded in an int where the upper half gives the
- minimum value and the lower half gives the maximum value. */
-
- __inline static unsigned int
- blockage_range (unit, insn)
- int unit;
- rtx insn;
- {
- unsigned int blockage = INSN_BLOCKAGE (insn);
- unsigned int range;
-
- if (UNIT_BLOCKED (blockage) != unit + 1)
- {
- range = function_units[unit].blockage_range_function (insn);
- /* We only cache the blockage range for one unit and then only if
- the values fit. */
- if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
- INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
- }
- else
- range = BLOCKAGE_RANGE (blockage);
-
- return range;
- }
-
- /* A vector indexed by function unit instance giving the last insn to use
- the unit. The value of the function unit instance index for unit U
- instance I is (U + I * FUNCTION_UNITS_SIZE). */
- static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
-
- /* A vector indexed by function unit instance giving the minimum time when
- the unit will unblock based on the maximum blockage cost. */
- static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
-
- /* A vector indexed by function unit number giving the number of insns
- that remain to use the unit. */
- static int unit_n_insns[FUNCTION_UNITS_SIZE];
-
- /* Reset the function unit state to the null state. */
-
- static void
- clear_units ()
- {
- int unit;
-
- bzero (unit_last_insn, sizeof (unit_last_insn));
- bzero (unit_tick, sizeof (unit_tick));
- bzero (unit_n_insns, sizeof (unit_n_insns));
- }
-
- /* Record an insn as one that will use the units encoded by UNIT. */
-
- __inline static void
- prepare_unit (unit)
- int unit;
- {
- int i;
-
- if (unit >= 0)
- unit_n_insns[unit]++;
- else
- for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
- if ((unit & 1) != 0)
- prepare_unit (i);
- }
-
- /* Return the actual hazard cost of executing INSN on the unit UNIT,
- instance INSTANCE at time CLOCK if the previous actual hazard cost
- was COST. */
-
- __inline static int
- actual_hazard_this_instance (unit, instance, insn, clock, cost)
- int unit, instance, clock, cost;
- rtx insn;
- {
- int i;
- int tick = unit_tick[instance];
-
- if (tick - clock > cost)
- {
- /* The scheduler is operating in reverse, so INSN is the executing
- insn and the unit's last insn is the candidate insn. We want a
- more exact measure of the blockage if we execute INSN at CLOCK
- given when we committed the execution of the unit's last insn.
-
- The blockage value is given by either the unit's max blockage
- constant, blockage range function, or blockage function. Use
- the most exact form for the given unit. */
-
- if (function_units[unit].blockage_range_function)
- {
- if (function_units[unit].blockage_function)
- tick += (function_units[unit].blockage_function
- (insn, unit_last_insn[instance])
- - function_units[unit].max_blockage);
- else
- tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
- - function_units[unit].max_blockage);
- }
- if (tick - clock > cost)
- cost = tick - clock;
- }
- return cost;
- }
-
- /* Record INSN as having begun execution on the units encoded by UNIT at
- time CLOCK. */
-
- __inline static void
- schedule_unit (unit, insn, clock)
- int unit, clock;
- rtx insn;
- {
- int i;
-
- if (unit >= 0)
- {
- int instance = unit;
- #if MAX_MULTIPLICITY > 1
- /* Find the first free instance of the function unit and use that
- one. We assume that one is free. */
- for (i = function_units[unit].multiplicity - 1; i > 0; i--)
- {
- if (! actual_hazard_this_instance (unit, instance, insn, clock, 0))
- break;
- instance += FUNCTION_UNITS_SIZE;
- }
- #endif
- unit_last_insn[instance] = insn;
- unit_tick[instance] = (clock + function_units[unit].max_blockage);
- }
- else
- for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
- if ((unit & 1) != 0)
- schedule_unit (i, insn, clock);
- }
-
- /* Return the actual hazard cost of executing INSN on the units encoded by
- UNIT at time CLOCK if the previous actual hazard cost was COST. */
-
- __inline static int
- actual_hazard (unit, insn, clock, cost)
- int unit, clock, cost;
- rtx insn;
- {
- int i;
-
- if (unit >= 0)
- {
- /* Find the instance of the function unit with the minimum hazard. */
- int instance = unit;
- int best = instance;
- int best_cost = actual_hazard_this_instance (unit, instance, insn,
- clock, cost);
- int this_cost;
-
- #if MAX_MULTIPLICITY > 1
- if (best_cost > cost)
- {
- for (i = function_units[unit].multiplicity - 1; i > 0; i--)
- {
- instance += FUNCTION_UNITS_SIZE;
- this_cost = actual_hazard_this_instance (unit, instance, insn,
- clock, cost);
- if (this_cost < best_cost)
- {
- best = instance;
- best_cost = this_cost;
- if (this_cost <= cost)
- break;
- }
- }
- }
- #endif
- cost = MAX (cost, best_cost);
- }
- else
- for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
- if ((unit & 1) != 0)
- cost = actual_hazard (i, insn, clock, cost);
-
- return cost;
- }
-
- /* Return the potential hazard cost of executing an instruction on the
- units encoded by UNIT if the previous potential hazard cost was COST.
- An insn with a large blockage time is chosen in preference to one
- with a smaller time; an insn that uses a unit that is more likely
- to be used is chosen in preference to one with a unit that is less
- used. We are trying to minimize a subsequent actual hazard. */
-
- __inline static int
- potential_hazard (unit, insn, cost)
- int unit, cost;
- rtx insn;
- {
- int i, ncost;
- unsigned int minb, maxb;
-
- if (unit >= 0)
- {
- minb = maxb = function_units[unit].max_blockage;
- if (maxb > 1)
- {
- if (function_units[unit].blockage_range_function)
- {
- maxb = minb = blockage_range (unit, insn);
- maxb = MAX_BLOCKAGE_COST (maxb);
- minb = MIN_BLOCKAGE_COST (minb);
- }
-
- if (maxb > 1)
- {
- /* Make the number of instructions left dominate. Make the
- minimum delay dominate the maximum delay. If all these
- are the same, use the unit number to add an arbitrary
- ordering. Other terms can be added. */
- ncost = minb * 0x40 + maxb;
- ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
- if (ncost > cost)
- cost = ncost;
- }
- }
- }
- else
- for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
- if ((unit & 1) != 0)
- cost = potential_hazard (i, insn, cost);
-
- return cost;
- }
-
- /* Compute cost of executing INSN given the dependence LINK on the insn USED.
- This is the number of virtual cycles taken between instruction issue and
- instruction results. */
-
- __inline static int
- insn_cost (insn, link, used)
- rtx insn, link, used;
- {
- register int cost = INSN_COST (insn);
-
- if (cost == 0)
- {
- recog_memoized (insn);
-
- /* A USE insn, or something else we don't need to understand.
- We can't pass these directly to result_ready_cost because it will
- trigger a fatal error for unrecognizable insns. */
- if (INSN_CODE (insn) < 0)
- {
- INSN_COST (insn) = 1;
- return 1;
- }
- else
- {
- cost = result_ready_cost (insn);
-
- if (cost < 1)
- cost = 1;
-
- INSN_COST (insn) = cost;
- }
- }
-
- /* A USE insn should never require the value used to be computed. This
- allows the computation of a function's result and parameter values to
- overlap the return and call. */
- recog_memoized (used);
- if (INSN_CODE (used) < 0)
- LINK_COST_FREE (link) = 1;
-
- /* If some dependencies vary the cost, compute the adjustment. Most
- commonly, the adjustment is complete: either the cost is ignored
- (in the case of an output- or anti-dependence), or the cost is
- unchanged. These values are cached in the link as LINK_COST_FREE
- and LINK_COST_ZERO. */
-
- if (LINK_COST_FREE (link))
- cost = 1;
- #ifdef ADJUST_COST
- else if (! LINK_COST_ZERO (link))
- {
- int ncost = cost;
-
- ADJUST_COST (used, link, insn, ncost);
- if (ncost <= 1)
- LINK_COST_FREE (link) = ncost = 1;
- if (cost == ncost)
- LINK_COST_ZERO (link) = 1;
- cost = ncost;
- }
- #endif
- return cost;
- }
-
- /* Compute the priority number for INSN. */
-
- static int
- priority (insn)
- rtx insn;
- {
- if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- int prev_priority;
- int max_priority;
- int this_priority = INSN_PRIORITY (insn);
- rtx prev;
-
- if (this_priority > 0)
- return this_priority;
-
- max_priority = 1;
-
- /* Nonzero if these insns must be scheduled together. */
- if (SCHED_GROUP_P (insn))
- {
- prev = insn;
- while (SCHED_GROUP_P (prev))
- {
- prev = PREV_INSN (prev);
- INSN_REF_COUNT (prev) += 1;
- }
- }
-
- for (prev = LOG_LINKS (insn); prev; prev = XEXP (prev, 1))
- {
- rtx x = XEXP (prev, 0);
-
- /* A dependence pointing to a note is always obsolete, because
- sched_analyze_insn will have created any necessary new dependences
- which replace it. Notes can be created when instructions are
- deleted by insn splitting, or by register allocation. */
- if (GET_CODE (x) == NOTE)
- {
- remove_dependence (insn, x);
- continue;
- }
-
- /* Clear the link cost adjustment bits. */
- LINK_COST_FREE (prev) = 0;
- #ifdef ADJUST_COST
- LINK_COST_ZERO (prev) = 0;
- #endif
-
- /* This priority calculation was chosen because it results in the
- least instruction movement, and does not hurt the performance
- of the resulting code compared to the old algorithm.
- This makes the sched algorithm more stable, which results
- in better code, because there is less register pressure,
- cross jumping is more likely to work, and debugging is easier.
-
- When all instructions have a latency of 1, there is no need to
- move any instructions. Subtracting one here ensures that in such
- cases all instructions will end up with a priority of one, and
- hence no scheduling will be done.
-
- The original code did not subtract the one, and added the
- insn_cost of the current instruction to its priority (e.g.
- move the insn_cost call down to the end). */
-
- if (REG_NOTE_KIND (prev) == 0)
- /* Data dependence. */
- prev_priority = priority (x) + insn_cost (x, prev, insn) - 1;
- else
- /* Anti or output dependence. Don't add the latency of this
- insn's result, because it isn't being used. */
- prev_priority = priority (x);
-
- if (prev_priority > max_priority)
- max_priority = prev_priority;
- INSN_REF_COUNT (x) += 1;
- }
-
- prepare_unit (insn_unit (insn));
- INSN_PRIORITY (insn) = max_priority;
- return INSN_PRIORITY (insn);
- }
- return 0;
- }
-
- /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
- them to the unused_*_list variables, so that they can be reused. */
-
- static void
- free_pending_lists ()
- {
- register rtx link, prev_link;
-
- if (pending_read_insns)
- {
- prev_link = pending_read_insns;
- link = XEXP (prev_link, 1);
-
- while (link)
- {
- prev_link = link;
- link = XEXP (link, 1);
- }
-
- XEXP (prev_link, 1) = unused_insn_list;
- unused_insn_list = pending_read_insns;
- pending_read_insns = 0;
- }
-
- if (pending_write_insns)
- {
- prev_link = pending_write_insns;
- link = XEXP (prev_link, 1);
-
- while (link)
- {
- prev_link = link;
- link = XEXP (link, 1);
- }
-
- XEXP (prev_link, 1) = unused_insn_list;
- unused_insn_list = pending_write_insns;
- pending_write_insns = 0;
- }
-
- if (pending_read_mems)
- {
- prev_link = pending_read_mems;
- link = XEXP (prev_link, 1);
-
- while (link)
- {
- prev_link = link;
- link = XEXP (link, 1);
- }
-
- XEXP (prev_link, 1) = unused_expr_list;
- unused_expr_list = pending_read_mems;
- pending_read_mems = 0;
- }
-
- if (pending_write_mems)
- {
- prev_link = pending_write_mems;
- link = XEXP (prev_link, 1);
-
- while (link)
- {
- prev_link = link;
- link = XEXP (link, 1);
- }
-
- XEXP (prev_link, 1) = unused_expr_list;
- unused_expr_list = pending_write_mems;
- pending_write_mems = 0;
- }
- }
-
- /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
- The MEM is a memory reference contained within INSN, which we are saving
- so that we can do memory aliasing on it. */
-
- static void
- add_insn_mem_dependence (insn_list, mem_list, insn, mem)
- rtx *insn_list, *mem_list, insn, mem;
- {
- register rtx link;
-
- if (unused_insn_list)
- {
- link = unused_insn_list;
- unused_insn_list = XEXP (link, 1);
- }
- else
- link = rtx_alloc (INSN_LIST);
- XEXP (link, 0) = insn;
- XEXP (link, 1) = *insn_list;
- *insn_list = link;
-
- if (unused_expr_list)
- {
- link = unused_expr_list;
- unused_expr_list = XEXP (link, 1);
- }
- else
- link = rtx_alloc (EXPR_LIST);
- XEXP (link, 0) = mem;
- XEXP (link, 1) = *mem_list;
- *mem_list = link;
-
- pending_lists_length++;
- }
-
- /* Make a dependency between every memory reference on the pending lists
- and INSN, thus flushing the pending lists. */
-
- static void
- flush_pending_lists (insn)
- rtx insn;
- {
- rtx link;
-
- while (pending_read_insns)
- {
- add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
-
- link = pending_read_insns;
- pending_read_insns = XEXP (pending_read_insns, 1);
- XEXP (link, 1) = unused_insn_list;
- unused_insn_list = link;
-
- link = pending_read_mems;
- pending_read_mems = XEXP (pending_read_mems, 1);
- XEXP (link, 1) = unused_expr_list;
- unused_expr_list = link;
- }
- while (pending_write_insns)
- {
- add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
-
- link = pending_write_insns;
- pending_write_insns = XEXP (pending_write_insns, 1);
- XEXP (link, 1) = unused_insn_list;
- unused_insn_list = link;
-
- link = pending_write_mems;
- pending_write_mems = XEXP (pending_write_mems, 1);
- XEXP (link, 1) = unused_expr_list;
- unused_expr_list = link;
- }
- pending_lists_length = 0;
-
- if (last_pending_memory_flush)
- add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
-
- last_pending_memory_flush = insn;
- }
-
- /* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
- by the write to the destination of X, and reads of everything mentioned. */
-
- static void
- sched_analyze_1 (x, insn)
- rtx x;
- rtx insn;
- {
- register int regno;
- register rtx dest = SET_DEST (x);
-
- if (dest == 0)
- return;
-
- while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
- {
- if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
- {
- /* The second and third arguments are values read by this insn. */
- sched_analyze_2 (XEXP (dest, 1), insn);
- sched_analyze_2 (XEXP (dest, 2), insn);
- }
- dest = SUBREG_REG (dest);
- }
-
- if (GET_CODE (dest) == REG)
- {
- register int offset, bit, i;
-
- regno = REGNO (dest);
-
- /* A hard reg in a wide mode may really be multiple registers.
- If so, mark all of them just like the first. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
- while (--i >= 0)
- {
- rtx u;
-
- for (u = reg_last_uses[regno+i]; u; u = XEXP (u, 1))
- add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
- reg_last_uses[regno + i] = 0;
- if (reg_last_sets[regno + i])
- add_dependence (insn, reg_last_sets[regno + i],
- REG_DEP_OUTPUT);
- reg_last_sets[regno + i] = insn;
- if ((call_used_regs[i] || global_regs[i])
- && last_function_call)
- /* Function calls clobber all call_used regs. */
- add_dependence (insn, last_function_call, REG_DEP_ANTI);
- }
- }
- else
- {
- rtx u;
-
- for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
- add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
- reg_last_uses[regno] = 0;
- if (reg_last_sets[regno])
- add_dependence (insn, reg_last_sets[regno], REG_DEP_OUTPUT);
- reg_last_sets[regno] = insn;
-
- /* Pseudos that are REG_EQUIV to something may be replaced
- by that during reloading. We need only add dependencies for
- the address in the REG_EQUIV note. */
- if (! reload_completed
- && reg_known_equiv_p[regno]
- && GET_CODE (reg_known_value[regno]) == MEM)
- sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
-
- /* Don't let it cross a call after scheduling if it doesn't
- already cross one. */
- if (reg_n_calls_crossed[regno] == 0 && last_function_call)
- add_dependence (insn, last_function_call, REG_DEP_ANTI);
- }
- }
- else if (GET_CODE (dest) == MEM)
- {
- /* Writing memory. */
-
- if (pending_lists_length > 32)
- {
- /* Flush all pending reads and writes to prevent the pending lists
- from getting any larger. Insn scheduling runs too slowly when
- these lists get long. The number 32 was chosen because it
- seems like a reasonable number. When compiling GCC with itself,
- this flush occurs 8 times for sparc, and 10 times for m88k using
- the number 32. */
- flush_pending_lists (insn);
- }
- else
- {
- rtx pending, pending_mem;
-
- pending = pending_read_insns;
- pending_mem = pending_read_mems;
- while (pending)
- {
- /* If a dependency already exists, don't create a new one. */
- if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
- if (anti_dependence (XEXP (pending_mem, 0), dest))
- add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
-
- pending = XEXP (pending, 1);
- pending_mem = XEXP (pending_mem, 1);
- }
-
- pending = pending_write_insns;
- pending_mem = pending_write_mems;
- while (pending)
- {
- /* If a dependency already exists, don't create a new one. */
- if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
- if (output_dependence (XEXP (pending_mem, 0), dest))
- add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
-
- pending = XEXP (pending, 1);
- pending_mem = XEXP (pending_mem, 1);
- }
-
- if (last_pending_memory_flush)
- add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
-
- add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
- insn, dest);
- }
- sched_analyze_2 (XEXP (dest, 0), insn);
- }
-
- /* Analyze reads. */
- if (GET_CODE (x) == SET)
- sched_analyze_2 (SET_SRC (x), insn);
- }
-
- /* Analyze the uses of memory and registers in rtx X in INSN. */
-
- static void
- sched_analyze_2 (x, insn)
- rtx x;
- rtx insn;
- {
- register int i;
- register int j;
- register enum rtx_code code;
- register char *fmt;
-
- if (x == 0)
- return;
-
- code = GET_CODE (x);
-
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- case SYMBOL_REF:
- case CONST:
- case LABEL_REF:
- /* Ignore constants. Note that we must handle CONST_DOUBLE here
- because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
- this does not mean that this insn is using cc0. */
- return;
-
- #ifdef HAVE_cc0
- case CC0:
- {
- rtx link, prev;
-
- /* There may be a note before this insn now, but all notes will
- be removed before we actually try to schedule the insns, so
- it won't cause a problem later. We must avoid it here though. */
-
- /* User of CC0 depends on immediately preceding insn. */
- SCHED_GROUP_P (insn) = 1;
-
- /* Make a copy of all dependencies on the immediately previous insn,
- and add to this insn. This is so that all the dependencies will
- apply to the group. Remove an explicit dependence on this insn
- as SCHED_GROUP_P now represents it. */
-
- prev = PREV_INSN (insn);
- while (GET_CODE (prev) == NOTE)
- prev = PREV_INSN (prev);
-
- if (find_insn_list (prev, LOG_LINKS (insn)))
- remove_dependence (insn, prev);
-
- for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
- add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
-
- return;
- }
- #endif
-
- case REG:
- {
- int regno = REGNO (x);
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int i;
-
- i = HARD_REGNO_NREGS (regno, GET_MODE (x));
- while (--i >= 0)
- {
- reg_last_uses[regno + i]
- = gen_rtx (INSN_LIST, VOIDmode,
- insn, reg_last_uses[regno + i]);
- if (reg_last_sets[regno + i])
- add_dependence (insn, reg_last_sets[regno + i], 0);
- if ((call_used_regs[regno + i] || global_regs[regno + i])
- && last_function_call)
- /* Function calls clobber all call_used regs. */
- add_dependence (insn, last_function_call, REG_DEP_ANTI);
- }
- }
- else
- {
- reg_last_uses[regno]
- = gen_rtx (INSN_LIST, VOIDmode, insn, reg_last_uses[regno]);
- if (reg_last_sets[regno])
- add_dependence (insn, reg_last_sets[regno], 0);
-
- /* Pseudos that are REG_EQUIV to something may be replaced
- by that during reloading. We need only add dependencies for
- the address in the REG_EQUIV note. */
- if (! reload_completed
- && reg_known_equiv_p[regno]
- && GET_CODE (reg_known_value[regno]) == MEM)
- sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
-
- /* If the register does not already cross any calls, then add this
- insn to the sched_before_next_call list so that it will still
- not cross calls after scheduling. */
- if (reg_n_calls_crossed[regno] == 0)
- add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
- }
- return;
- }
-
- case MEM:
- {
- /* Reading memory. */
-
- rtx pending, pending_mem;
-
- pending = pending_read_insns;
- pending_mem = pending_read_mems;
- while (pending)
- {
- /* If a dependency already exists, don't create a new one. */
- if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
- if (read_dependence (XEXP (pending_mem, 0), x))
- add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
-
- pending = XEXP (pending, 1);
- pending_mem = XEXP (pending_mem, 1);
- }
-
- pending = pending_write_insns;
- pending_mem = pending_write_mems;
- while (pending)
- {
- /* If a dependency already exists, don't create a new one. */
- if (! find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
- if (true_dependence (XEXP (pending_mem, 0), x))
- add_dependence (insn, XEXP (pending, 0), 0);
-
- pending = XEXP (pending, 1);
- pending_mem = XEXP (pending_mem, 1);
- }
- if (last_pending_memory_flush)
- add_dependence (insn, last_pending_memory_flush, REG_DEP_ANTI);
-
- /* Always add these dependencies to pending_reads, since
- this insn may be followed by a write. */
- add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
- insn, x);
-
- /* Take advantage of tail recursion here. */
- sched_analyze_2 (XEXP (x, 0), insn);
- return;
- }
-
- case ASM_OPERANDS:
- case ASM_INPUT:
- case UNSPEC_VOLATILE:
- case TRAP_IF:
- {
- rtx u;
-
- /* Traditional and volatile asm instructions must be considered to use
- and clobber all hard registers, all pseudo-registers and all of
- memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
-
- Consider for instance a volatile asm that changes the fpu rounding
- mode. An insn should not be moved across this even if it only uses
- pseudo-regs because it might give an incorrectly rounded result. */
- if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
- {
- int max_reg = max_reg_num ();
- for (i = 0; i < max_reg; i++)
- {
- for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
- add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
- reg_last_uses[i] = 0;
- if (reg_last_sets[i])
- add_dependence (insn, reg_last_sets[i], 0);
- reg_last_sets[i] = insn;
- }
-
- flush_pending_lists (insn);
- }
-
- /* For all ASM_OPERANDS, we must traverse the vector of input operands.
- We can not just fall through here since then we would be confused
- by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
- traditional asms unlike their normal usage. */
-
- if (code == ASM_OPERANDS)
- {
- for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
- sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
- return;
- }
- break;
- }
-
- case PRE_DEC:
- case POST_DEC:
- case PRE_INC:
- case POST_INC:
- /* These both read and modify the result. We must handle them as writes
- to get proper dependencies for following instructions. We must handle
- them as reads to get proper dependencies from this to previous
- instructions. Thus we need to pass them to both sched_analyze_1
- and sched_analyze_2. We must call sched_analyze_2 first in order
- to get the proper antecedent for the read. */
- sched_analyze_2 (XEXP (x, 0), insn);
- sched_analyze_1 (x, insn);
- return;
- }
-
- /* Other cases: walk the insn. */
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- sched_analyze_2 (XEXP (x, i), insn);
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- sched_analyze_2 (XVECEXP (x, i, j), insn);
- }
- }
-
- /* Analyze an INSN with pattern X to find all dependencies. */
-
- static void
- sched_analyze_insn (x, insn)
- rtx x, insn;
- {
- register RTX_CODE code = GET_CODE (x);
- rtx link;
-
- if (code == SET || code == CLOBBER)
- sched_analyze_1 (x, insn);
- else if (code == PARALLEL)
- {
- register int i;
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- {
- code = GET_CODE (XVECEXP (x, 0, i));
- if (code == SET || code == CLOBBER)
- sched_analyze_1 (XVECEXP (x, 0, i), insn);
- else
- sched_analyze_2 (XVECEXP (x, 0, i), insn);
- }
- }
- else
- sched_analyze_2 (x, insn);
-
- /* Handle function calls and function returns created by the epilogue
- threading code. */
- if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
- {
- rtx dep_insn;
- rtx prev_dep_insn;
-
- /* When scheduling instructions, we make sure calls don't lose their
- accompanying USE insns by depending them one on another in order.
-
- Also, we must do the same thing for returns created by the epilogue
- threading code. Note this code works only in this special case,
- because other passes make no guarantee that they will never emit
- an instruction between a USE and a RETURN. There is such a guarantee
- for USE instructions immediately before a call. */
-
- prev_dep_insn = insn;
- dep_insn = PREV_INSN (insn);
- while (GET_CODE (dep_insn) == INSN
- && GET_CODE (PATTERN (dep_insn)) == USE)
- {
- SCHED_GROUP_P (prev_dep_insn) = 1;
-
- /* Make a copy of all dependencies on dep_insn, and add to insn.
- This is so that all of the dependencies will apply to the
- group. */
-
- for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
- add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
-
- prev_dep_insn = dep_insn;
- dep_insn = PREV_INSN (dep_insn);
- }
- }
- }
-
- /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
- for every dependency. */
-
- static int
- sched_analyze (head, tail)
- rtx head, tail;
- {
- register rtx insn;
- register int n_insns = 0;
- register rtx u;
- register int luid = 0;
-
- for (insn = head; ; insn = NEXT_INSN (insn))
- {
- INSN_LUID (insn) = luid++;
-
- if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
- {
- sched_analyze_insn (PATTERN (insn), insn);
- n_insns += 1;
- }
- else if (GET_CODE (insn) == CALL_INSN)
- {
- rtx dest = 0;
- rtx x;
- register int i;
-
- /* Any instruction using a hard register which may get clobbered
- by a call needs to be marked as dependent on this call.
- This prevents a use of a hard return reg from being moved
- past a void call (i.e. it does not explicitly set the hard
- return reg). */
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i] || global_regs[i])
- {
- for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
- add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
- reg_last_uses[i] = 0;
- if (reg_last_sets[i])
- add_dependence (insn, reg_last_sets[i], REG_DEP_ANTI);
- reg_last_sets[i] = insn;
- /* Insn, being a CALL_INSN, magically depends on
- `last_function_call' already. */
- }
-
- /* For each insn which shouldn't cross a call, add a dependence
- between that insn and this call insn. */
- x = LOG_LINKS (sched_before_next_call);
- while (x)
- {
- add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
- x = XEXP (x, 1);
- }
- LOG_LINKS (sched_before_next_call) = 0;
-
- sched_analyze_insn (PATTERN (insn), insn);
-
- /* We don't need to flush memory for a function call which does
- not involve memory. */
- if (! CONST_CALL_P (insn))
- {
- /* In the absence of interprocedural alias analysis,
- we must flush all pending reads and writes, and
- start new dependencies starting from here. */
- flush_pending_lists (insn);
- }
-
- /* Depend this function call (actually, the user of this
- function call) on all hard register clobberage. */
- last_function_call = insn;
- n_insns += 1;
- }
-
- if (insn == tail)
- return n_insns;
- }
- }
-
- /* Called when we see a set of a register. If death is true, then we are
- scanning backwards. Mark that register as unborn. If nobody says
- otherwise, that is how things will remain. If death is false, then we
- are scanning forwards. Mark that register as being born. */
-
- static void
- sched_note_set (b, x, death)
- int b;
- rtx x;
- int death;
- {
- register int regno, j;
- register rtx reg = SET_DEST (x);
- int subreg_p = 0;
-
- if (reg == 0)
- return;
-
- while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
- || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
- {
- /* Must treat modification of just one hardware register of a multi-reg
- value or just a byte field of a register exactly the same way that
- mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
- does not kill the entire register. */
- if (GET_CODE (reg) != SUBREG
- || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
- subreg_p = 1;
-
- reg = SUBREG_REG (reg);
- }
-
- if (GET_CODE (reg) != REG)
- return;
-
- /* Global registers are always live, so the code below does not apply
- to them. */
-
- regno = REGNO (reg);
- if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
- {
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
-
- if (death)
- {
- /* If we only set part of the register, then this set does not
- kill it. */
- if (subreg_p)
- return;
-
- /* Try killing this register. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
- while (--j >= 0)
- {
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
- }
- else
- {
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
- }
- else
- {
- /* Make the register live again. */
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
- while (--j >= 0)
- {
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
-
- bb_live_regs[offset] |= bit;
- bb_dead_regs[offset] &= ~bit;
- }
- }
- else
- {
- bb_live_regs[offset] |= bit;
- bb_dead_regs[offset] &= ~bit;
- }
- }
- }
- }
-
- /* Macros and functions for keeping the priority queue sorted, and
- dealing with queueing and unqueueing of instructions. */
-
- #define SCHED_SORT(READY, NEW_READY, OLD_READY) \
- do { if ((NEW_READY) - (OLD_READY) == 1) \
- swap_sort (READY, NEW_READY); \
- else if ((NEW_READY) - (OLD_READY) > 1) \
- qsort (READY, NEW_READY, sizeof (rtx), rank_for_schedule); } \
- while (0)
-
- /* Returns a positive value if y is preferred; returns a negative value if
- x is preferred. Should never return 0, since that will make the sort
- unstable. */
-
- static int
- rank_for_schedule (x, y)
- rtx *x, *y;
- {
- rtx tmp = *y;
- rtx tmp2 = *x;
- rtx link;
- int tmp_class, tmp2_class;
- int value;
-
- /* Choose the instruction with the highest priority, if different. */
- if (value = INSN_PRIORITY (tmp) - INSN_PRIORITY (tmp2))
- return value;
-
- if (last_scheduled_insn)
- {
- /* Classify the instructions into three classes:
- 1) Data dependent on last schedule insn.
- 2) Anti/Output dependent on last scheduled insn.
- 3) Independent of last scheduled insn, or has latency of one.
- Choose the insn from the highest numbered class if different. */
- link = find_insn_list (tmp, LOG_LINKS (last_scheduled_insn));
- if (link == 0 || insn_cost (tmp, link, last_scheduled_insn) == 1)
- tmp_class = 3;
- else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
- tmp_class = 1;
- else
- tmp_class = 2;
-
- link = find_insn_list (tmp2, LOG_LINKS (last_scheduled_insn));
- if (link == 0 || insn_cost (tmp2, link, last_scheduled_insn) == 1)
- tmp2_class = 3;
- else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
- tmp2_class = 1;
- else
- tmp2_class = 2;
-
- if (value = tmp_class - tmp2_class)
- return value;
- }
-
- /* If insns are equally good, sort by INSN_LUID (original insn order),
- so that we make the sort stable. This minimizes instruction movement,
- thus minimizing sched's effect on debugging and cross-jumping. */
- return INSN_LUID (tmp) - INSN_LUID (tmp2);
- }
-
- /* Resort the array A in which only element at index N may be out of order. */
-
- __inline static void
- swap_sort (a, n)
- rtx *a;
- int n;
- {
- rtx insn = a[n-1];
- int i = n-2;
-
- while (i >= 0 && rank_for_schedule (a+i, &insn) >= 0)
- {
- a[i+1] = a[i];
- i -= 1;
- }
- a[i+1] = insn;
- }
-
- static int max_priority;
-
- /* Add INSN to the insn queue so that it fires at least N_CYCLES
- before the currently executing insn. */
-
- __inline static void
- queue_insn (insn, n_cycles)
- rtx insn;
- int n_cycles;
- {
- int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
- NEXT_INSN (insn) = insn_queue[next_q];
- insn_queue[next_q] = insn;
- q_size += 1;
- }
-
- /* Return nonzero if PAT is the pattern of an insn which makes a
- register live. */
-
- __inline static int
- birthing_insn_p (pat)
- rtx pat;
- {
- int j;
-
- if (reload_completed == 1)
- return 0;
-
- if (GET_CODE (pat) == SET
- && GET_CODE (SET_DEST (pat)) == REG)
- {
- rtx dest = SET_DEST (pat);
- int i = REGNO (dest);
- int offset = i / REGSET_ELT_BITS;
- REGSET_ELT_TYPE bit = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
-
- /* It would be more accurate to use refers_to_regno_p or
- reg_mentioned_p to determine when the dest is not live before this
- insn. */
-
- if (bb_live_regs[offset] & bit)
- return (reg_n_sets[i] == 1);
-
- return 0;
- }
- if (GET_CODE (pat) == PARALLEL)
- {
- for (j = 0; j < XVECLEN (pat, 0); j++)
- if (birthing_insn_p (XVECEXP (pat, 0, j)))
- return 1;
- }
- return 0;
- }
-
- /* PREV is an insn that is ready to execute. Adjust its priority if that
- will help shorten register lifetimes. */
-
- __inline static void
- adjust_priority (prev)
- rtx prev;
- {
- /* Trying to shorten register lives after reload has completed
- is useless and wrong. It gives inaccurate schedules. */
- if (reload_completed == 0)
- {
- rtx note;
- int n_deaths = 0;
-
- /* ??? This code has no effect, because REG_DEAD notes are removed
- before we ever get here. */
- for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
- if (REG_NOTE_KIND (note) == REG_DEAD)
- n_deaths += 1;
-
- /* Defer scheduling insns which kill registers, since that
- shortens register lives. Prefer scheduling insns which
- make registers live for the same reason. */
- switch (n_deaths)
- {
- default:
- INSN_PRIORITY (prev) >>= 3;
- break;
- case 3:
- INSN_PRIORITY (prev) >>= 2;
- break;
- case 2:
- case 1:
- INSN_PRIORITY (prev) >>= 1;
- break;
- case 0:
- if (birthing_insn_p (PATTERN (prev)))
- {
- int max = max_priority;
-
- if (max > INSN_PRIORITY (prev))
- INSN_PRIORITY (prev) = max;
- }
- break;
- }
- }
- }
-
- /* INSN is the "currently executing insn". Launch each insn which was
- waiting on INSN (in the backwards dataflow sense). READY is a
- vector of insns which are ready to fire. N_READY is the number of
- elements in READY. CLOCK is the current virtual cycle. */
-
- static int
- schedule_insn (insn, ready, n_ready, clock)
- rtx insn;
- rtx *ready;
- int n_ready;
- int clock;
- {
- rtx link;
- int new_ready = n_ready;
-
- if (MAX_BLOCKAGE > 1)
- schedule_unit (insn_unit (insn), insn, clock);
-
- if (LOG_LINKS (insn) == 0)
- return n_ready;
-
- /* This is used by the function adjust_priority above. */
- if (n_ready > 0)
- max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
- else
- max_priority = INSN_PRIORITY (insn);
-
- for (link = LOG_LINKS (insn); link != 0; link = XEXP (link, 1))
- {
- rtx prev = XEXP (link, 0);
- int cost = insn_cost (prev, link, insn);
-
- if ((INSN_REF_COUNT (prev) -= 1) != 0)
- {
- /* We satisfied one requirement to fire PREV. Record the earliest
- time when PREV can fire. No need to do this if the cost is 1,
- because PREV can fire no sooner than the next cycle. */
- if (cost > 1)
- INSN_TICK (prev) = MAX (INSN_TICK (prev), clock + cost);
- }
- else
- {
- /* We satisfied the last requirement to fire PREV. Ensure that all
- timing requirements are satisfied. */
- if (INSN_TICK (prev) - clock > cost)
- cost = INSN_TICK (prev) - clock;
-
- /* Adjust the priority of PREV and either put it on the ready
- list or queue it. */
- adjust_priority (prev);
- if (cost <= 1)
- ready[new_ready++] = prev;
- else
- queue_insn (prev, cost);
- }
- }
-
- return new_ready;
- }
-
- /* Given N_READY insns in the ready list READY at time CLOCK, queue
- those that are blocked due to function unit hazards and rearrange
- the remaining ones to minimize subsequent function unit hazards. */
-
- static int
- schedule_select (ready, n_ready, clock, file)
- rtx *ready;
- int n_ready, clock;
- FILE *file;
- {
- int pri = INSN_PRIORITY (ready[0]);
- int i, j, k, q, cost, best_cost, best_insn = 0, new_ready = n_ready;
- rtx insn;
-
- /* Work down the ready list in groups of instructions with the same
- priority value. Queue insns in the group that are blocked and
- select among those that remain for the one with the largest
- potential hazard. */
- for (i = 0; i < n_ready; i = j)
- {
- int opri = pri;
- for (j = i + 1; j < n_ready; j++)
- if ((pri = INSN_PRIORITY (ready[j])) != opri)
- break;
-
- /* Queue insns in the group that are blocked. */
- for (k = i, q = 0; k < j; k++)
- {
- insn = ready[k];
- if ((cost = actual_hazard (insn_unit (insn), insn, clock, 0)) != 0)
- {
- q++;
- ready[k] = 0;
- queue_insn (insn, cost);
- if (file)
- fprintf (file, "\n;; blocking insn %d for %d cycles",
- INSN_UID (insn), cost);
- }
- }
- new_ready -= q;
-
- /* Check the next group if all insns were queued. */
- if (j - i - q == 0)
- continue;
-
- /* If more than one remains, select the first one with the largest
- potential hazard. */
- else if (j - i - q > 1)
- {
- best_cost = -1;
- for (k = i; k < j; k++)
- {
- if ((insn = ready[k]) == 0)
- continue;
- if ((cost = potential_hazard (insn_unit (insn), insn, 0))
- > best_cost)
- {
- best_cost = cost;
- best_insn = k;
- }
- }
- }
- /* We have found a suitable insn to schedule. */
- break;
- }
-
- /* Move the best insn to be front of the ready list. */
- if (best_insn != 0)
- {
- if (file)
- {
- fprintf (file, ", now");
- for (i = 0; i < n_ready; i++)
- if (ready[i])
- fprintf (file, " %d", INSN_UID (ready[i]));
- fprintf (file, "\n;; insn %d has a greater potential hazard",
- INSN_UID (ready[best_insn]));
- }
- for (i = best_insn; i > 0; i--)
- {
- insn = ready[i-1];
- ready[i-1] = ready[i];
- ready[i] = insn;
- }
- }
-
- /* Compact the ready list. */
- if (new_ready < n_ready)
- for (i = j = 0; i < n_ready; i++)
- if (ready[i])
- ready[j++] = ready[i];
-
- return new_ready;
- }
-
- /* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
- dead_notes list. */
-
- static void
- create_reg_dead_note (reg, insn)
- rtx reg, insn;
- {
- rtx link, backlink;
-
- /* The number of registers killed after scheduling must be the same as the
- number of registers killed before scheduling. The number of REG_DEAD
- notes may not be conserved, i.e. two SImode hard register REG_DEAD notes
- might become one DImode hard register REG_DEAD note, but the number of
- registers killed will be conserved.
-
- We carefully remove REG_DEAD notes from the dead_notes list, so that
- there will be none left at the end. If we run out early, then there
- is a bug somewhere in flow, combine and/or sched. */
-
- if (dead_notes == 0)
- {
- #if 1
- abort ();
- #else
- link = rtx_alloc (EXPR_LIST);
- PUT_REG_NOTE_KIND (link, REG_DEAD);
- #endif
- }
- else
- {
- /* Number of regs killed by REG. */
- int regs_killed = (REGNO (reg) >= FIRST_PSEUDO_REGISTER ? 1
- : HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
- /* Number of regs killed by REG_DEAD notes taken off the list. */
- int reg_note_regs;
-
- link = dead_notes;
- reg_note_regs = (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
- : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
- GET_MODE (XEXP (link, 0))));
- while (reg_note_regs < regs_killed)
- {
- link = XEXP (link, 1);
- reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
- : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
- GET_MODE (XEXP (link, 0))));
- }
- dead_notes = XEXP (link, 1);
-
- /* If we took too many regs kills off, put the extra ones back. */
- while (reg_note_regs > regs_killed)
- {
- rtx temp_reg, temp_link;
-
- temp_reg = gen_rtx (REG, word_mode, 0);
- temp_link = rtx_alloc (EXPR_LIST);
- PUT_REG_NOTE_KIND (temp_link, REG_DEAD);
- XEXP (temp_link, 0) = temp_reg;
- XEXP (temp_link, 1) = dead_notes;
- dead_notes = temp_link;
- reg_note_regs--;
- }
- }
-
- XEXP (link, 0) = reg;
- XEXP (link, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = link;
- }
-
- /* Subroutine on attach_deaths_insn--handles the recursive search
- through INSN. If SET_P is true, then x is being modified by the insn. */
-
- static void
- attach_deaths (x, insn, set_p)
- rtx x;
- rtx insn;
- int set_p;
- {
- register int i;
- register int j;
- register enum rtx_code code;
- register char *fmt;
-
- if (x == 0)
- return;
-
- code = GET_CODE (x);
-
- switch (code)
- {
- case CONST_INT:
- case CONST_DOUBLE:
- case LABEL_REF:
- case SYMBOL_REF:
- case CONST:
- case CODE_LABEL:
- case PC:
- case CC0:
- /* Get rid of the easy cases first. */
- return;
-
- case REG:
- {
- /* If the register dies in this insn, queue that note, and mark
- this register as needing to die. */
- /* This code is very similar to mark_used_1 (if set_p is false)
- and mark_set_1 (if set_p is true) in flow.c. */
-
- register int regno = REGNO (x);
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
- REGSET_ELT_TYPE all_needed = (old_live_regs[offset] & bit);
- REGSET_ELT_TYPE some_needed = (old_live_regs[offset] & bit);
-
- if (set_p)
- return;
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int n;
-
- n = HARD_REGNO_NREGS (regno, GET_MODE (x));
- while (--n > 0)
- {
- some_needed |= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1
- << ((regno + n) % REGSET_ELT_BITS)));
- all_needed &= (old_live_regs[(regno + n) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1
- << ((regno + n) % REGSET_ELT_BITS)));
- }
- }
-
- /* If it wasn't live before we started, then add a REG_DEAD note.
- We must check the previous lifetime info not the current info,
- because we may have to execute this code several times, e.g.
- once for a clobber (which doesn't add a note) and later
- for a use (which does add a note).
-
- Always make the register live. We must do this even if it was
- live before, because this may be an insn which sets and uses
- the same register, in which case the register has already been
- killed, so we must make it live again.
-
- Global registers are always live, and should never have a REG_DEAD
- note added for them, so none of the code below applies to them. */
-
- if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
- {
- /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
- STACK_POINTER_REGNUM, since these are always considered to be
- live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
- if (regno != FRAME_POINTER_REGNUM
- #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && ! (regno == HARD_FRAME_POINTER_REGNUM)
- #endif
- #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
- && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
- #endif
- && regno != STACK_POINTER_REGNUM)
- {
- if (! all_needed && ! dead_or_set_p (insn, x))
- {
- /* If none of the words in X is needed, make a REG_DEAD
- note. Otherwise, we must make partial REG_DEAD
- notes. */
- if (! some_needed)
- create_reg_dead_note (x, insn);
- else
- {
- int i;
-
- /* Don't make a REG_DEAD note for a part of a
- register that is set in the insn. */
- for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
- i >= 0; i--)
- if ((old_live_regs[(regno + i) / REGSET_ELT_BITS]
- & ((REGSET_ELT_TYPE) 1
- << ((regno +i) % REGSET_ELT_BITS))) == 0
- && ! dead_or_set_regno_p (insn, regno + i))
- create_reg_dead_note (gen_rtx (REG, word_mode,
- regno + i),
- insn);
- }
- }
- }
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
- while (--j >= 0)
- {
- offset = (regno + j) / REGSET_ELT_BITS;
- bit
- = (REGSET_ELT_TYPE) 1 << ((regno + j) % REGSET_ELT_BITS);
-
- bb_dead_regs[offset] &= ~bit;
- bb_live_regs[offset] |= bit;
- }
- }
- else
- {
- bb_dead_regs[offset] &= ~bit;
- bb_live_regs[offset] |= bit;
- }
- }
- return;
- }
-
- case MEM:
- /* Handle tail-recursive case. */
- attach_deaths (XEXP (x, 0), insn, 0);
- return;
-
- case SUBREG:
- case STRICT_LOW_PART:
- /* These two cases preserve the value of SET_P, so handle them
- separately. */
- attach_deaths (XEXP (x, 0), insn, set_p);
- return;
-
- case ZERO_EXTRACT:
- case SIGN_EXTRACT:
- /* This case preserves the value of SET_P for the first operand, but
- clears it for the other two. */
- attach_deaths (XEXP (x, 0), insn, set_p);
- attach_deaths (XEXP (x, 1), insn, 0);
- attach_deaths (XEXP (x, 2), insn, 0);
- return;
-
- default:
- /* Other cases: walk the insn. */
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- attach_deaths (XEXP (x, i), insn, 0);
- else if (fmt[i] == 'E')
- for (j = 0; j < XVECLEN (x, i); j++)
- attach_deaths (XVECEXP (x, i, j), insn, 0);
- }
- }
- }
-
- /* After INSN has executed, add register death notes for each register
- that is dead after INSN. */
-
- static void
- attach_deaths_insn (insn)
- rtx insn;
- {
- rtx x = PATTERN (insn);
- register RTX_CODE code = GET_CODE (x);
-
- if (code == SET)
- {
- attach_deaths (SET_SRC (x), insn, 0);
-
- /* A register might die here even if it is the destination, e.g.
- it is the target of a volatile read and is otherwise unused.
- Hence we must always call attach_deaths for the SET_DEST. */
- attach_deaths (SET_DEST (x), insn, 1);
- }
- else if (code == PARALLEL)
- {
- register int i;
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- {
- code = GET_CODE (XVECEXP (x, 0, i));
- if (code == SET)
- {
- attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
-
- attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
- }
- /* Flow does not add REG_DEAD notes to registers that die in
- clobbers, so we can't either. */
- else if (code != CLOBBER)
- attach_deaths (XVECEXP (x, 0, i), insn, 0);
- }
- }
- /* Flow does not add REG_DEAD notes to registers that die in
- clobbers, so we can't either. */
- else if (code != CLOBBER)
- attach_deaths (x, insn, 0);
- }
-
- /* Delete notes beginning with INSN and maybe put them in the chain
- of notes ended by NOTE_LIST.
- Returns the insn following the notes. */
-
- static rtx
- unlink_notes (insn, tail)
- rtx insn, tail;
- {
- rtx prev = PREV_INSN (insn);
-
- while (insn != tail && GET_CODE (insn) == NOTE)
- {
- rtx next = NEXT_INSN (insn);
- /* Delete the note from its current position. */
- if (prev)
- NEXT_INSN (prev) = next;
- if (next)
- PREV_INSN (next) = prev;
-
- if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
- /* Record line-number notes so they can be reused. */
- LINE_NOTE (insn) = insn;
- else
- {
- /* Insert the note at the end of the notes list. */
- PREV_INSN (insn) = note_list;
- if (note_list)
- NEXT_INSN (note_list) = insn;
- note_list = insn;
- }
-
- insn = next;
- }
- return insn;
- }
-
- /* Constructor for `sometimes' data structure. */
-
- static int
- new_sometimes_live (regs_sometimes_live, offset, bit, sometimes_max)
- struct sometimes *regs_sometimes_live;
- int offset, bit;
- int sometimes_max;
- {
- register struct sometimes *p;
- register int regno = offset * REGSET_ELT_BITS + bit;
- int i;
-
- /* There should never be a register greater than max_regno here. If there
- is, it means that a define_split has created a new pseudo reg. This
- is not allowed, since there will not be flow info available for any
- new register, so catch the error here. */
- if (regno >= max_regno)
- abort ();
-
- p = ®s_sometimes_live[sometimes_max];
- p->offset = offset;
- p->bit = bit;
- p->live_length = 0;
- p->calls_crossed = 0;
- sometimes_max++;
- return sometimes_max;
- }
-
- /* Count lengths of all regs we are currently tracking,
- and find new registers no longer live. */
-
- static void
- finish_sometimes_live (regs_sometimes_live, sometimes_max)
- struct sometimes *regs_sometimes_live;
- int sometimes_max;
- {
- int i;
-
- for (i = 0; i < sometimes_max; i++)
- {
- register struct sometimes *p = ®s_sometimes_live[i];
- int regno;
-
- regno = p->offset * REGSET_ELT_BITS + p->bit;
-
- sched_reg_live_length[regno] += p->live_length;
- sched_reg_n_calls_crossed[regno] += p->calls_crossed;
- }
- }
-
- /* Use modified list scheduling to rearrange insns in basic block
- B. FILE, if nonzero, is where we dump interesting output about
- this pass. */
-
- static void
- schedule_block (b, file)
- int b;
- FILE *file;
- {
- rtx insn, last;
- rtx last_note = 0;
- rtx *ready, link;
- int i, j, n_ready = 0, new_ready, n_insns = 0;
- int sched_n_insns = 0;
- int clock;
- #define NEED_NOTHING 0
- #define NEED_HEAD 1
- #define NEED_TAIL 2
- int new_needs;
-
- /* HEAD and TAIL delimit the region being scheduled. */
- rtx head = basic_block_head[b];
- rtx tail = basic_block_end[b];
- /* PREV_HEAD and NEXT_TAIL are the boundaries of the insns
- being scheduled. When the insns have been ordered,
- these insns delimit where the new insns are to be
- spliced back into the insn chain. */
- rtx next_tail;
- rtx prev_head;
-
- /* Keep life information accurate. */
- register struct sometimes *regs_sometimes_live;
- int sometimes_max;
-
- if (file)
- fprintf (file, ";;\t -- basic block number %d from %d to %d --\n",
- b, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
-
- i = max_reg_num ();
- reg_last_uses = (rtx *) alloca (i * sizeof (rtx));
- bzero (reg_last_uses, i * sizeof (rtx));
- reg_last_sets = (rtx *) alloca (i * sizeof (rtx));
- bzero (reg_last_sets, i * sizeof (rtx));
- clear_units ();
-
- /* Remove certain insns at the beginning from scheduling,
- by advancing HEAD. */
-
- /* At the start of a function, before reload has run, don't delay getting
- parameters from hard registers into pseudo registers. */
- if (reload_completed == 0 && b == 0)
- {
- while (head != tail
- && GET_CODE (head) == NOTE
- && NOTE_LINE_NUMBER (head) != NOTE_INSN_FUNCTION_BEG)
- head = NEXT_INSN (head);
- while (head != tail
- && GET_CODE (head) == INSN
- && GET_CODE (PATTERN (head)) == SET)
- {
- rtx src = SET_SRC (PATTERN (head));
- while (GET_CODE (src) == SUBREG
- || GET_CODE (src) == SIGN_EXTEND
- || GET_CODE (src) == ZERO_EXTEND
- || GET_CODE (src) == SIGN_EXTRACT
- || GET_CODE (src) == ZERO_EXTRACT)
- src = XEXP (src, 0);
- if (GET_CODE (src) != REG
- || REGNO (src) >= FIRST_PSEUDO_REGISTER)
- break;
- /* Keep this insn from ever being scheduled. */
- INSN_REF_COUNT (head) = 1;
- head = NEXT_INSN (head);
- }
- }
-
- /* Don't include any notes or labels at the beginning of the
- basic block, or notes at the ends of basic blocks. */
- while (head != tail)
- {
- if (GET_CODE (head) == NOTE)
- head = NEXT_INSN (head);
- else if (GET_CODE (tail) == NOTE)
- tail = PREV_INSN (tail);
- else if (GET_CODE (head) == CODE_LABEL)
- head = NEXT_INSN (head);
- else break;
- }
- /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
- to schedule this block. */
- if (head == tail
- && (GET_CODE (head) == NOTE || GET_CODE (head) == CODE_LABEL))
- return;
-
- #if 0
- /* This short-cut doesn't work. It does not count call insns crossed by
- registers in reg_sometimes_live. It does not mark these registers as
- dead if they die in this block. It does not mark these registers live
- (or create new reg_sometimes_live entries if necessary) if they are born
- in this block.
-
- The easy solution is to just always schedule a block. This block only
- has one insn, so this won't slow down this pass by much. */
-
- if (head == tail)
- return;
- #endif
-
- /* Now HEAD through TAIL are the insns actually to be rearranged;
- Let PREV_HEAD and NEXT_TAIL enclose them. */
- prev_head = PREV_INSN (head);
- next_tail = NEXT_INSN (tail);
-
- /* Initialize basic block data structures. */
- dead_notes = 0;
- pending_read_insns = 0;
- pending_read_mems = 0;
- pending_write_insns = 0;
- pending_write_mems = 0;
- pending_lists_length = 0;
- last_pending_memory_flush = 0;
- last_function_call = 0;
- last_scheduled_insn = 0;
-
- LOG_LINKS (sched_before_next_call) = 0;
-
- n_insns += sched_analyze (head, tail);
- if (n_insns == 0)
- {
- free_pending_lists ();
- return;
- }
-
- /* Allocate vector to hold insns to be rearranged (except those
- insns which are controlled by an insn with SCHED_GROUP_P set).
- All these insns are included between ORIG_HEAD and ORIG_TAIL,
- as those variables ultimately are set up. */
- ready = (rtx *) alloca ((n_insns+1) * sizeof (rtx));
-
- /* TAIL is now the last of the insns to be rearranged.
- Put those insns into the READY vector. */
- insn = tail;
-
- /* For all branches, calls, uses, and cc0 setters, force them to remain
- in order at the end of the block by adding dependencies and giving
- the last a high priority. There may be notes present, and prev_head
- may also be a note.
-
- Branches must obviously remain at the end. Calls should remain at the
- end since moving them results in worse register allocation. Uses remain
- at the end to ensure proper register allocation. cc0 setters remaim
- at the end because they can't be moved away from their cc0 user. */
- last = 0;
- while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
- || (GET_CODE (insn) == INSN
- && (GET_CODE (PATTERN (insn)) == USE
- #ifdef HAVE_cc0
- || sets_cc0_p (PATTERN (insn))
- #endif
- ))
- || GET_CODE (insn) == NOTE)
- {
- if (GET_CODE (insn) != NOTE)
- {
- priority (insn);
- if (last == 0)
- {
- ready[n_ready++] = insn;
- INSN_PRIORITY (insn) = TAIL_PRIORITY - i;
- INSN_REF_COUNT (insn) = 0;
- }
- else if (! find_insn_list (insn, LOG_LINKS (last)))
- {
- add_dependence (last, insn, REG_DEP_ANTI);
- INSN_REF_COUNT (insn)++;
- }
- last = insn;
-
- /* Skip over insns that are part of a group. */
- while (SCHED_GROUP_P (insn))
- {
- insn = prev_nonnote_insn (insn);
- priority (insn);
- }
- }
-
- insn = PREV_INSN (insn);
- /* Don't overrun the bounds of the basic block. */
- if (insn == prev_head)
- break;
- }
-
- /* Assign priorities to instructions. Also check whether they
- are in priority order already. If so then I will be nonnegative.
- We use this shortcut only before reloading. */
- #if 0
- i = reload_completed ? DONE_PRIORITY : MAX_PRIORITY;
- #endif
-
- for (; insn != prev_head; insn = PREV_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- priority (insn);
- if (INSN_REF_COUNT (insn) == 0)
- {
- if (last == 0)
- ready[n_ready++] = insn;
- else
- {
- /* Make this dependent on the last of the instructions
- that must remain in order at the end of the block. */
- add_dependence (last, insn, REG_DEP_ANTI);
- INSN_REF_COUNT (insn) = 1;
- }
- }
- if (SCHED_GROUP_P (insn))
- {
- while (SCHED_GROUP_P (insn))
- {
- insn = PREV_INSN (insn);
- while (GET_CODE (insn) == NOTE)
- insn = PREV_INSN (insn);
- priority (insn);
- }
- continue;
- }
- #if 0
- if (i < 0)
- continue;
- if (INSN_PRIORITY (insn) < i)
- i = INSN_PRIORITY (insn);
- else if (INSN_PRIORITY (insn) > i)
- i = DONE_PRIORITY;
- #endif
- }
- }
-
- #if 0
- /* This short-cut doesn't work. It does not count call insns crossed by
- registers in reg_sometimes_live. It does not mark these registers as
- dead if they die in this block. It does not mark these registers live
- (or create new reg_sometimes_live entries if necessary) if they are born
- in this block.
-
- The easy solution is to just always schedule a block. These blocks tend
- to be very short, so this doesn't slow down this pass by much. */
-
- /* If existing order is good, don't bother to reorder. */
- if (i != DONE_PRIORITY)
- {
- if (file)
- fprintf (file, ";; already scheduled\n");
-
- if (reload_completed == 0)
- {
- for (i = 0; i < sometimes_max; i++)
- regs_sometimes_live[i].live_length += n_insns;
-
- finish_sometimes_live (regs_sometimes_live, sometimes_max);
- }
- free_pending_lists ();
- return;
- }
- #endif
-
- /* Scan all the insns to be scheduled, removing NOTE insns
- and register death notes.
- Line number NOTE insns end up in NOTE_LIST.
- Register death notes end up in DEAD_NOTES.
-
- Recreate the register life information for the end of this basic
- block. */
-
- if (reload_completed == 0)
- {
- bcopy (basic_block_live_at_start[b], bb_live_regs, regset_bytes);
- bzero (bb_dead_regs, regset_bytes);
-
- if (b == 0)
- {
- /* This is the first block in the function. There may be insns
- before head that we can't schedule. We still need to examine
- them though for accurate register lifetime analysis. */
-
- /* We don't want to remove any REG_DEAD notes as the code below
- does. */
-
- for (insn = basic_block_head[b]; insn != head;
- insn = NEXT_INSN (insn))
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- /* See if the register gets born here. */
- /* We must check for registers being born before we check for
- registers dying. It is possible for a register to be born
- and die in the same insn, e.g. reading from a volatile
- memory location into an otherwise unused register. Such
- a register must be marked as dead after this insn. */
- if (GET_CODE (PATTERN (insn)) == SET
- || GET_CODE (PATTERN (insn)) == CLOBBER)
- sched_note_set (b, PATTERN (insn), 0);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- int j;
- for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
- || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
- sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
-
- /* ??? This code is obsolete and should be deleted. It
- is harmless though, so we will leave it in for now. */
- for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
- sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
- }
-
- for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
- {
- if ((REG_NOTE_KIND (link) == REG_DEAD
- || REG_NOTE_KIND (link) == REG_UNUSED)
- /* Verify that the REG_NOTE has a legal value. */
- && GET_CODE (XEXP (link, 0)) == REG)
- {
- register int regno = REGNO (XEXP (link, 0));
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int j = HARD_REGNO_NREGS (regno,
- GET_MODE (XEXP (link, 0)));
- while (--j >= 0)
- {
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = ((REGSET_ELT_TYPE) 1
- << ((regno + j) % REGSET_ELT_BITS));
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
- }
- else
- {
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
- }
- }
- }
- }
- }
-
- /* If debugging information is being produced, keep track of the line
- number notes for each insn. */
- if (write_symbols != NO_DEBUG)
- {
- /* We must use the true line number for the first insn in the block
- that was computed and saved at the start of this pass. We can't
- use the current line number, because scheduling of the previous
- block may have changed the current line number. */
- rtx line = line_note_head[b];
-
- for (insn = basic_block_head[b];
- insn != next_tail;
- insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
- line = insn;
- else
- LINE_NOTE (insn) = line;
- }
-
- for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
- {
- rtx prev, next, link;
-
- /* Farm out notes. This is needed to keep the debugger from
- getting completely deranged. */
- if (GET_CODE (insn) == NOTE)
- {
- prev = insn;
- insn = unlink_notes (insn, next_tail);
- if (prev == tail)
- abort ();
- if (prev == head)
- abort ();
- if (insn == next_tail)
- abort ();
- }
-
- if (reload_completed == 0
- && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
- {
- /* See if the register gets born here. */
- /* We must check for registers being born before we check for
- registers dying. It is possible for a register to be born and
- die in the same insn, e.g. reading from a volatile memory
- location into an otherwise unused register. Such a register
- must be marked as dead after this insn. */
- if (GET_CODE (PATTERN (insn)) == SET
- || GET_CODE (PATTERN (insn)) == CLOBBER)
- sched_note_set (b, PATTERN (insn), 0);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- int j;
- for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
- || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
- sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
-
- /* ??? This code is obsolete and should be deleted. It
- is harmless though, so we will leave it in for now. */
- for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
- sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
- }
-
- /* Need to know what registers this insn kills. */
- for (prev = 0, link = REG_NOTES (insn); link; link = next)
- {
- int regno;
-
- next = XEXP (link, 1);
- if ((REG_NOTE_KIND (link) == REG_DEAD
- || REG_NOTE_KIND (link) == REG_UNUSED)
- /* Verify that the REG_NOTE has a legal value. */
- && GET_CODE (XEXP (link, 0)) == REG)
- {
- register int regno = REGNO (XEXP (link, 0));
- register int offset = regno / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
-
- /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
- alone. */
- if (REG_NOTE_KIND (link) == REG_DEAD)
- {
- if (prev)
- XEXP (prev, 1) = next;
- else
- REG_NOTES (insn) = next;
- XEXP (link, 1) = dead_notes;
- dead_notes = link;
- }
- else
- prev = link;
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- int j = HARD_REGNO_NREGS (regno,
- GET_MODE (XEXP (link, 0)));
- while (--j >= 0)
- {
- offset = (regno + j) / REGSET_ELT_BITS;
- bit = ((REGSET_ELT_TYPE) 1
- << ((regno + j) % REGSET_ELT_BITS));
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
- }
- else
- {
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
- }
- else
- prev = link;
- }
- }
- }
-
- if (reload_completed == 0)
- {
- /* Keep track of register lives. */
- old_live_regs = (regset) alloca (regset_bytes);
- regs_sometimes_live
- = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
- sometimes_max = 0;
-
- /* Start with registers live at end. */
- for (j = 0; j < regset_size; j++)
- {
- REGSET_ELT_TYPE live = bb_live_regs[j];
- old_live_regs[j] = live;
- if (live)
- {
- register int bit;
- for (bit = 0; bit < REGSET_ELT_BITS; bit++)
- if (live & ((REGSET_ELT_TYPE) 1 << bit))
- sometimes_max = new_sometimes_live (regs_sometimes_live, j,
- bit, sometimes_max);
- }
- }
- }
-
- SCHED_SORT (ready, n_ready, 1);
-
- if (file)
- {
- fprintf (file, ";; ready list initially:\n;; ");
- for (i = 0; i < n_ready; i++)
- fprintf (file, "%d ", INSN_UID (ready[i]));
- fprintf (file, "\n\n");
-
- for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
- if (INSN_PRIORITY (insn) > 0)
- fprintf (file, ";; insn[%4d]: priority = %4d, ref_count = %4d\n",
- INSN_UID (insn), INSN_PRIORITY (insn),
- INSN_REF_COUNT (insn));
- }
-
- /* Now HEAD and TAIL are going to become disconnected
- entirely from the insn chain. */
- tail = 0;
-
- /* Q_SIZE will always be zero here. */
- q_ptr = 0; clock = 0;
- bzero (insn_queue, sizeof (insn_queue));
-
- /* Now, perform list scheduling. */
-
- /* Where we start inserting insns is after TAIL. */
- last = next_tail;
-
- new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
- ? NEED_HEAD : NEED_NOTHING);
- if (PREV_INSN (next_tail) == basic_block_end[b])
- new_needs |= NEED_TAIL;
-
- new_ready = n_ready;
- while (sched_n_insns < n_insns)
- {
- q_ptr = NEXT_Q (q_ptr); clock++;
-
- /* Add all pending insns that can be scheduled without stalls to the
- ready list. */
- for (insn = insn_queue[q_ptr]; insn; insn = NEXT_INSN (insn))
- {
- if (file)
- fprintf (file, ";; launching %d before %d with no stalls at T-%d\n",
- INSN_UID (insn), INSN_UID (last), clock);
- ready[new_ready++] = insn;
- q_size -= 1;
- }
- insn_queue[q_ptr] = 0;
-
- /* If there are no ready insns, stall until one is ready and add all
- of the pending insns at that point to the ready list. */
- if (new_ready == 0)
- {
- register int stalls;
-
- for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
- if (insn = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])
- {
- for (; insn; insn = NEXT_INSN (insn))
- {
- if (file)
- fprintf (file, ";; launching %d before %d with %d stalls at T-%d\n",
- INSN_UID (insn), INSN_UID (last), stalls, clock);
- ready[new_ready++] = insn;
- q_size -= 1;
- }
- insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
- break;
- }
-
- q_ptr = NEXT_Q_AFTER (q_ptr, stalls); clock += stalls;
- }
-
- /* There should be some instructions waiting to fire. */
- if (new_ready == 0)
- abort ();
-
- if (file)
- {
- fprintf (file, ";; ready list at T-%d:", clock);
- for (i = 0; i < new_ready; i++)
- fprintf (file, " %d (%x)",
- INSN_UID (ready[i]), INSN_PRIORITY (ready[i]));
- }
-
- /* Sort the ready list and choose the best insn to schedule. Select
- which insn should issue in this cycle and queue those that are
- blocked by function unit hazards.
-
- N_READY holds the number of items that were scheduled the last time,
- minus the one instruction scheduled on the last loop iteration; it
- is not modified for any other reason in this loop. */
-
- SCHED_SORT (ready, new_ready, n_ready);
- if (MAX_BLOCKAGE > 1)
- {
- new_ready = schedule_select (ready, new_ready, clock, file);
- if (new_ready == 0)
- {
- if (file)
- fprintf (file, "\n");
- /* We must set n_ready here, to ensure that sorting always
- occurs when we come back to the SCHED_SORT line above. */
- n_ready = 0;
- continue;
- }
- }
- n_ready = new_ready;
- last_scheduled_insn = insn = ready[0];
-
- /* The first insn scheduled becomes the new tail. */
- if (tail == 0)
- tail = insn;
-
- if (file)
- {
- fprintf (file, ", now");
- for (i = 0; i < n_ready; i++)
- fprintf (file, " %d", INSN_UID (ready[i]));
- fprintf (file, "\n");
- }
-
- if (DONE_PRIORITY_P (insn))
- abort ();
-
- if (reload_completed == 0)
- {
- /* Process this insn, and each insn linked to this one which must
- be immediately output after this insn. */
- do
- {
- /* First we kill registers set by this insn, and then we
- make registers used by this insn live. This is the opposite
- order used above because we are traversing the instructions
- backwards. */
-
- /* Strictly speaking, we should scan REG_UNUSED notes and make
- every register mentioned there live, however, we will just
- kill them again immediately below, so there doesn't seem to
- be any reason why we bother to do this. */
-
- /* See if this is the last notice we must take of a register. */
- if (GET_CODE (PATTERN (insn)) == SET
- || GET_CODE (PATTERN (insn)) == CLOBBER)
- sched_note_set (b, PATTERN (insn), 1);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- int j;
- for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
- || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
- sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 1);
- }
-
- /* This code keeps life analysis information up to date. */
- if (GET_CODE (insn) == CALL_INSN)
- {
- register struct sometimes *p;
-
- /* A call kills all call used and global registers, except
- for those mentioned in the call pattern which will be
- made live again later. */
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- if (call_used_regs[i] || global_regs[i])
- {
- register int offset = i / REGSET_ELT_BITS;
- register REGSET_ELT_TYPE bit
- = (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
-
- bb_live_regs[offset] &= ~bit;
- bb_dead_regs[offset] |= bit;
- }
-
- /* Regs live at the time of a call instruction must not
- go in a register clobbered by calls. Record this for
- all regs now live. Note that insns which are born or
- die in a call do not cross a call, so this must be done
- after the killings (above) and before the births
- (below). */
- p = regs_sometimes_live;
- for (i = 0; i < sometimes_max; i++, p++)
- if (bb_live_regs[p->offset]
- & ((REGSET_ELT_TYPE) 1 << p->bit))
- p->calls_crossed += 1;
- }
-
- /* Make every register used live, and add REG_DEAD notes for
- registers which were not live before we started. */
- attach_deaths_insn (insn);
-
- /* Find registers now made live by that instruction. */
- for (i = 0; i < regset_size; i++)
- {
- REGSET_ELT_TYPE diff = bb_live_regs[i] & ~old_live_regs[i];
- if (diff)
- {
- register int bit;
- old_live_regs[i] |= diff;
- for (bit = 0; bit < REGSET_ELT_BITS; bit++)
- if (diff & ((REGSET_ELT_TYPE) 1 << bit))
- sometimes_max
- = new_sometimes_live (regs_sometimes_live, i, bit,
- sometimes_max);
- }
- }
-
- /* Count lengths of all regs we are worrying about now,
- and handle registers no longer live. */
-
- for (i = 0; i < sometimes_max; i++)
- {
- register struct sometimes *p = ®s_sometimes_live[i];
- int regno = p->offset*REGSET_ELT_BITS + p->bit;
-
- p->live_length += 1;
-
- if ((bb_live_regs[p->offset]
- & ((REGSET_ELT_TYPE) 1 << p->bit)) == 0)
- {
- /* This is the end of one of this register's lifetime
- segments. Save the lifetime info collected so far,
- and clear its bit in the old_live_regs entry. */
- sched_reg_live_length[regno] += p->live_length;
- sched_reg_n_calls_crossed[regno] += p->calls_crossed;
- old_live_regs[p->offset]
- &= ~((REGSET_ELT_TYPE) 1 << p->bit);
-
- /* Delete the reg_sometimes_live entry for this reg by
- copying the last entry over top of it. */
- *p = regs_sometimes_live[--sometimes_max];
- /* ...and decrement i so that this newly copied entry
- will be processed. */
- i--;
- }
- }
-
- link = insn;
- insn = PREV_INSN (insn);
- }
- while (SCHED_GROUP_P (link));
-
- /* Set INSN back to the insn we are scheduling now. */
- insn = ready[0];
- }
-
- /* Schedule INSN. Remove it from the ready list. */
- ready += 1;
- n_ready -= 1;
-
- sched_n_insns += 1;
- NEXT_INSN (insn) = last;
- PREV_INSN (last) = insn;
- last = insn;
-
- /* Everything that precedes INSN now either becomes "ready", if
- it can execute immediately before INSN, or "pending", if
- there must be a delay. Give INSN high enough priority that
- at least one (maybe more) reg-killing insns can be launched
- ahead of all others. Mark INSN as scheduled by changing its
- priority to -1. */
- INSN_PRIORITY (insn) = LAUNCH_PRIORITY;
- new_ready = schedule_insn (insn, ready, n_ready, clock);
- INSN_PRIORITY (insn) = DONE_PRIORITY;
-
- /* Schedule all prior insns that must not be moved. */
- if (SCHED_GROUP_P (insn))
- {
- /* Disable these insns from being launched. */
- link = insn;
- while (SCHED_GROUP_P (link))
- {
- /* Disable these insns from being launched by anybody. */
- link = PREV_INSN (link);
- INSN_REF_COUNT (link) = 0;
- }
-
- /* None of these insns can move forward into delay slots. */
- while (SCHED_GROUP_P (insn))
- {
- insn = PREV_INSN (insn);
- new_ready = schedule_insn (insn, ready, new_ready, clock);
- INSN_PRIORITY (insn) = DONE_PRIORITY;
-
- sched_n_insns += 1;
- NEXT_INSN (insn) = last;
- PREV_INSN (last) = insn;
- last = insn;
- }
- }
- }
- if (q_size != 0)
- abort ();
-
- if (reload_completed == 0)
- finish_sometimes_live (regs_sometimes_live, sometimes_max);
-
- /* HEAD is now the first insn in the chain of insns that
- been scheduled by the loop above.
- TAIL is the last of those insns. */
- head = insn;
-
- /* NOTE_LIST is the end of a chain of notes previously found
- among the insns. Insert them at the beginning of the insns. */
- if (note_list != 0)
- {
- rtx note_head = note_list;
- while (PREV_INSN (note_head))
- note_head = PREV_INSN (note_head);
-
- PREV_INSN (head) = note_list;
- NEXT_INSN (note_list) = head;
- head = note_head;
- }
-
- /* There should be no REG_DEAD notes leftover at the end.
- In practice, this can occur as the result of bugs in flow, combine.c,
- and/or sched.c. The values of the REG_DEAD notes remaining are
- meaningless, because dead_notes is just used as a free list. */
- #if 1
- if (dead_notes != 0)
- abort ();
- #endif
-
- if (new_needs & NEED_HEAD)
- basic_block_head[b] = head;
- PREV_INSN (head) = prev_head;
- NEXT_INSN (prev_head) = head;
-
- if (new_needs & NEED_TAIL)
- basic_block_end[b] = tail;
- NEXT_INSN (tail) = next_tail;
- PREV_INSN (next_tail) = tail;
-
- /* Restore the line-number notes of each insn. */
- if (write_symbols != NO_DEBUG)
- {
- rtx line, note, prev, new;
- int notes = 0;
-
- head = basic_block_head[b];
- next_tail = NEXT_INSN (basic_block_end[b]);
-
- /* Determine the current line-number. We want to know the current
- line number of the first insn of the block here, in case it is
- different from the true line number that was saved earlier. If
- different, then we need a line number note before the first insn
- of this block. If it happens to be the same, then we don't want to
- emit another line number note here. */
- for (line = head; line; line = PREV_INSN (line))
- if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
- break;
-
- /* Walk the insns keeping track of the current line-number and inserting
- the line-number notes as needed. */
- for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
- if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
- line = insn;
- /* This used to emit line number notes before every non-deleted note.
- However, this confuses a debugger, because line notes not separated
- by real instructions all end up at the same address. I can find no
- use for line number notes before other notes, so none are emitted. */
- else if (GET_CODE (insn) != NOTE
- && (note = LINE_NOTE (insn)) != 0
- && note != line
- && (line == 0
- || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
- || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
- {
- line = note;
- prev = PREV_INSN (insn);
- if (LINE_NOTE (note))
- {
- /* Re-use the original line-number note. */
- LINE_NOTE (note) = 0;
- PREV_INSN (note) = prev;
- NEXT_INSN (prev) = note;
- PREV_INSN (insn) = note;
- NEXT_INSN (note) = insn;
- }
- else
- {
- notes++;
- new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
- NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
- }
- }
- if (file && notes)
- fprintf (file, ";; added %d line-number notes\n", notes);
- }
-
- if (file)
- {
- fprintf (file, ";; total time = %d\n;; new basic block head = %d\n;; new basic block end = %d\n\n",
- clock, INSN_UID (basic_block_head[b]), INSN_UID (basic_block_end[b]));
- }
-
- /* Yow! We're done! */
- free_pending_lists ();
-
- return;
- }
-
- /* Subroutine of split_hard_reg_notes. Searches X for any reference to
- REGNO, returning the rtx of the reference found if any. Otherwise,
- returns 0. */
-
- static rtx
- regno_use_in (regno, x)
- int regno;
- rtx x;
- {
- register char *fmt;
- int i, j;
- rtx tem;
-
- if (GET_CODE (x) == REG && REGNO (x) == regno)
- return x;
-
- fmt = GET_RTX_FORMAT (GET_CODE (x));
- for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
- {
- if (fmt[i] == 'e')
- {
- if (tem = regno_use_in (regno, XEXP (x, i)))
- return tem;
- }
- else if (fmt[i] == 'E')
- for (j = XVECLEN (x, i) - 1; j >= 0; j--)
- if (tem = regno_use_in (regno , XVECEXP (x, i, j)))
- return tem;
- }
-
- return 0;
- }
-
- /* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
- needed for the hard register mentioned in the note. This can happen
- if the reference to the hard register in the original insn was split into
- several smaller hard register references in the split insns. */
-
- static void
- split_hard_reg_notes (note, first, last, orig_insn)
- rtx note, first, last, orig_insn;
- {
- rtx reg, temp, link;
- int n_regs, i, new_reg;
- rtx insn;
-
- /* Assume that this is a REG_DEAD note. */
- if (REG_NOTE_KIND (note) != REG_DEAD)
- abort ();
-
- reg = XEXP (note, 0);
-
- n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
-
- for (i = 0; i < n_regs; i++)
- {
- new_reg = REGNO (reg) + i;
-
- /* Check for references to new_reg in the split insns. */
- for (insn = last; ; insn = PREV_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && (temp = regno_use_in (new_reg, PATTERN (insn))))
- {
- /* Create a new reg dead note here. */
- link = rtx_alloc (EXPR_LIST);
- PUT_REG_NOTE_KIND (link, REG_DEAD);
- XEXP (link, 0) = temp;
- XEXP (link, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = link;
-
- /* If killed multiple registers here, then add in the excess. */
- i += HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) - 1;
-
- break;
- }
- /* It isn't mentioned anywhere, so no new reg note is needed for
- this register. */
- if (insn == first)
- break;
- }
- }
- }
-
- /* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
- insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
-
- static void
- new_insn_dead_notes (pat, insn, last, orig_insn)
- rtx pat, insn, last, orig_insn;
- {
- rtx dest, tem, set;
-
- /* PAT is either a CLOBBER or a SET here. */
- dest = XEXP (pat, 0);
-
- while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == SIGN_EXTRACT)
- dest = XEXP (dest, 0);
-
- if (GET_CODE (dest) == REG)
- {
- for (tem = last; tem != insn; tem = PREV_INSN (tem))
- {
- if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
- && reg_overlap_mentioned_p (dest, PATTERN (tem))
- && (set = single_set (tem)))
- {
- rtx tem_dest = SET_DEST (set);
-
- while (GET_CODE (tem_dest) == ZERO_EXTRACT
- || GET_CODE (tem_dest) == SUBREG
- || GET_CODE (tem_dest) == STRICT_LOW_PART
- || GET_CODE (tem_dest) == SIGN_EXTRACT)
- tem_dest = XEXP (tem_dest, 0);
-
- if (tem_dest != dest)
- {
- /* Use the same scheme as combine.c, don't put both REG_DEAD
- and REG_UNUSED notes on the same insn. */
- if (! find_regno_note (tem, REG_UNUSED, REGNO (dest))
- && ! find_regno_note (tem, REG_DEAD, REGNO (dest)))
- {
- rtx note = rtx_alloc (EXPR_LIST);
- PUT_REG_NOTE_KIND (note, REG_DEAD);
- XEXP (note, 0) = dest;
- XEXP (note, 1) = REG_NOTES (tem);
- REG_NOTES (tem) = note;
- }
- /* The reg only dies in one insn, the last one that uses
- it. */
- break;
- }
- else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
- /* We found an instruction that both uses the register,
- and sets it, so no new REG_NOTE is needed for this set. */
- break;
- }
- }
- /* If this is a set, it must die somewhere, unless it is the dest of
- the original insn, and hence is live after the original insn. Abort
- if it isn't supposed to be live after the original insn.
-
- If this is a clobber, then just add a REG_UNUSED note. */
- if (tem == insn)
- {
- int live_after_orig_insn = 0;
- rtx pattern = PATTERN (orig_insn);
- int i;
-
- if (GET_CODE (pat) == CLOBBER)
- {
- rtx note = rtx_alloc (EXPR_LIST);
- PUT_REG_NOTE_KIND (note, REG_UNUSED);
- XEXP (note, 0) = dest;
- XEXP (note, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = note;
- return;
- }
-
- /* The original insn could have multiple sets, so search the
- insn for all sets. */
- if (GET_CODE (pattern) == SET)
- {
- if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
- live_after_orig_insn = 1;
- }
- else if (GET_CODE (pattern) == PARALLEL)
- {
- for (i = 0; i < XVECLEN (pattern, 0); i++)
- if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
- && reg_overlap_mentioned_p (dest,
- SET_DEST (XVECEXP (pattern,
- 0, i))))
- live_after_orig_insn = 1;
- }
-
- if (! live_after_orig_insn)
- abort ();
- }
- }
- }
-
- /* Subroutine of update_flow_info. Update the value of reg_n_sets for all
- registers modified by X. INC is -1 if the containing insn is being deleted,
- and is 1 if the containing insn is a newly generated insn. */
-
- static void
- update_n_sets (x, inc)
- rtx x;
- int inc;
- {
- rtx dest = SET_DEST (x);
-
- while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
- dest = SUBREG_REG (dest);
-
- if (GET_CODE (dest) == REG)
- {
- int regno = REGNO (dest);
-
- if (regno < FIRST_PSEUDO_REGISTER)
- {
- register int i;
- int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
-
- for (i = regno; i < endregno; i++)
- reg_n_sets[i] += inc;
- }
- else
- reg_n_sets[regno] += inc;
- }
- }
-
- /* Updates all flow-analysis related quantities (including REG_NOTES) for
- the insns from FIRST to LAST inclusive that were created by splitting
- ORIG_INSN. NOTES are the original REG_NOTES. */
-
- static void
- update_flow_info (notes, first, last, orig_insn)
- rtx notes;
- rtx first, last;
- rtx orig_insn;
- {
- rtx insn, note;
- rtx next;
- rtx orig_dest, temp;
- rtx set;
-
- /* Get and save the destination set by the original insn. */
-
- orig_dest = single_set (orig_insn);
- if (orig_dest)
- orig_dest = SET_DEST (orig_dest);
-
- /* Move REG_NOTES from the original insn to where they now belong. */
-
- for (note = notes; note; note = next)
- {
- next = XEXP (note, 1);
- switch (REG_NOTE_KIND (note))
- {
- case REG_DEAD:
- case REG_UNUSED:
- /* Move these notes from the original insn to the last new insn where
- the register is now set. */
-
- for (insn = last; ; insn = PREV_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
- {
- /* If this note refers to a multiple word hard register, it
- may have been split into several smaller hard register
- references, so handle it specially. */
- temp = XEXP (note, 0);
- if (REG_NOTE_KIND (note) == REG_DEAD
- && GET_CODE (temp) == REG
- && REGNO (temp) < FIRST_PSEUDO_REGISTER
- && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) > 1)
- split_hard_reg_notes (note, first, last, orig_insn);
- else
- {
- XEXP (note, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = note;
- }
-
- /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
- notes. */
- /* ??? This won't handle multiple word registers correctly,
- but should be good enough for now. */
- if (REG_NOTE_KIND (note) == REG_UNUSED
- && ! dead_or_set_p (insn, XEXP (note, 0)))
- PUT_REG_NOTE_KIND (note, REG_DEAD);
-
- /* The reg only dies in one insn, the last one that uses
- it. */
- break;
- }
- /* It must die somewhere, fail it we couldn't find where it died.
-
- If this is a REG_UNUSED note, then it must be a temporary
- register that was not needed by this instantiation of the
- pattern, so we can safely ignore it. */
- if (insn == first)
- {
- if (REG_NOTE_KIND (note) != REG_UNUSED)
- abort ();
-
- break;
- }
- }
- break;
-
- case REG_WAS_0:
- /* This note applies to the dest of the original insn. Find the
- first new insn that now has the same dest, and move the note
- there. */
-
- if (! orig_dest)
- abort ();
-
- for (insn = first; ; insn = NEXT_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && (temp = single_set (insn))
- && rtx_equal_p (SET_DEST (temp), orig_dest))
- {
- XEXP (note, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = note;
- /* The reg is only zero before one insn, the first that
- uses it. */
- break;
- }
- /* It must be set somewhere, fail if we couldn't find where it
- was set. */
- if (insn == last)
- abort ();
- }
- break;
-
- case REG_EQUAL:
- case REG_EQUIV:
- /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
- set is meaningless. Just drop the note. */
- if (! orig_dest)
- break;
-
- case REG_NO_CONFLICT:
- /* These notes apply to the dest of the original insn. Find the last
- new insn that now has the same dest, and move the note there. */
-
- if (! orig_dest)
- abort ();
-
- for (insn = last; ; insn = PREV_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && (temp = single_set (insn))
- && rtx_equal_p (SET_DEST (temp), orig_dest))
- {
- XEXP (note, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = note;
- /* Only put this note on one of the new insns. */
- break;
- }
-
- /* The original dest must still be set someplace. Abort if we
- couldn't find it. */
- if (insn == first)
- abort ();
- }
- break;
-
- case REG_LIBCALL:
- /* Move a REG_LIBCALL note to the first insn created, and update
- the corresponding REG_RETVAL note. */
- XEXP (note, 1) = REG_NOTES (first);
- REG_NOTES (first) = note;
-
- insn = XEXP (note, 0);
- note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
- if (note)
- XEXP (note, 0) = first;
- break;
-
- case REG_RETVAL:
- /* Move a REG_RETVAL note to the last insn created, and update
- the corresponding REG_LIBCALL note. */
- XEXP (note, 1) = REG_NOTES (last);
- REG_NOTES (last) = note;
-
- insn = XEXP (note, 0);
- note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
- if (note)
- XEXP (note, 0) = last;
- break;
-
- case REG_NONNEG:
- /* This should be moved to whichever instruction is a JUMP_INSN. */
-
- for (insn = last; ; insn = PREV_INSN (insn))
- {
- if (GET_CODE (insn) == JUMP_INSN)
- {
- XEXP (note, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = note;
- /* Only put this note on one of the new insns. */
- break;
- }
- /* Fail if we couldn't find a JUMP_INSN. */
- if (insn == first)
- abort ();
- }
- break;
-
- case REG_INC:
- /* This should be moved to whichever instruction now has the
- increment operation. */
- abort ();
-
- case REG_LABEL:
- /* Should be moved to the new insn(s) which use the label. */
- for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL,
- XEXP (note, 0), REG_NOTES (insn));
- break;
-
- case REG_CC_SETTER:
- case REG_CC_USER:
- /* These two notes will never appear until after reorg, so we don't
- have to handle them here. */
- default:
- abort ();
- }
- }
-
- /* Each new insn created, except the last, has a new set. If the destination
- is a register, then this reg is now live across several insns, whereas
- previously the dest reg was born and died within the same insn. To
- reflect this, we now need a REG_DEAD note on the insn where this
- dest reg dies.
-
- Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
-
- for (insn = first; insn != last; insn = NEXT_INSN (insn))
- {
- rtx pat;
- int i;
-
- pat = PATTERN (insn);
- if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
- new_insn_dead_notes (pat, insn, last, orig_insn);
- else if (GET_CODE (pat) == PARALLEL)
- {
- for (i = 0; i < XVECLEN (pat, 0); i++)
- if (GET_CODE (XVECEXP (pat, 0, i)) == SET
- || GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
- new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
- }
- }
-
- /* If any insn, except the last, uses the register set by the last insn,
- then we need a new REG_DEAD note on that insn. In this case, there
- would not have been a REG_DEAD note for this register in the original
- insn because it was used and set within one insn.
-
- There is no new REG_DEAD note needed if the last insn uses the register
- that it is setting. */
-
- set = single_set (last);
- if (set)
- {
- rtx dest = SET_DEST (set);
-
- while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
- || GET_CODE (dest) == STRICT_LOW_PART
- || GET_CODE (dest) == SIGN_EXTRACT)
- dest = XEXP (dest, 0);
-
- if (GET_CODE (dest) == REG
- && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
- {
- for (insn = PREV_INSN (last); ; insn = PREV_INSN (insn))
- {
- if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && reg_mentioned_p (dest, PATTERN (insn))
- && (set = single_set (insn)))
- {
- rtx insn_dest = SET_DEST (set);
-
- while (GET_CODE (insn_dest) == ZERO_EXTRACT
- || GET_CODE (insn_dest) == SUBREG
- || GET_CODE (insn_dest) == STRICT_LOW_PART
- || GET_CODE (insn_dest) == SIGN_EXTRACT)
- insn_dest = XEXP (insn_dest, 0);
-
- if (insn_dest != dest)
- {
- note = rtx_alloc (EXPR_LIST);
- PUT_REG_NOTE_KIND (note, REG_DEAD);
- XEXP (note, 0) = dest;
- XEXP (note, 1) = REG_NOTES (insn);
- REG_NOTES (insn) = note;
- /* The reg only dies in one insn, the last one
- that uses it. */
- break;
- }
- }
- if (insn == first)
- break;
- }
- }
- }
-
- /* If the original dest is modifying a multiple register target, and the
- original instruction was split such that the original dest is now set
- by two or more SUBREG sets, then the split insns no longer kill the
- destination of the original insn.
-
- In this case, if there exists an instruction in the same basic block,
- before the split insn, which uses the original dest, and this use is
- killed by the original insn, then we must remove the REG_DEAD note on
- this insn, because it is now superfluous.
-
- This does not apply when a hard register gets split, because the code
- knows how to handle overlapping hard registers properly. */
- if (orig_dest && GET_CODE (orig_dest) == REG)
- {
- int found_orig_dest = 0;
- int found_split_dest = 0;
-
- for (insn = first; ; insn = NEXT_INSN (insn))
- {
- set = single_set (insn);
- if (set)
- {
- if (GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) == REGNO (orig_dest))
- {
- found_orig_dest = 1;
- break;
- }
- else if (GET_CODE (SET_DEST (set)) == SUBREG
- && SUBREG_REG (SET_DEST (set)) == orig_dest)
- {
- found_split_dest = 1;
- break;
- }
- }
-
- if (insn == last)
- break;
- }
-
- if (found_split_dest)
- {
- /* Search backwards from FIRST, looking for the first insn that uses
- the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
- If we find an insn, and it has a REG_DEAD note, then delete the
- note. */
-
- for (insn = first; insn; insn = PREV_INSN (insn))
- {
- if (GET_CODE (insn) == CODE_LABEL
- || GET_CODE (insn) == JUMP_INSN)
- break;
- else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
- && reg_mentioned_p (orig_dest, insn))
- {
- note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
- if (note)
- remove_note (insn, note);
- }
- }
- }
- else if (! found_orig_dest)
- {
- /* This should never happen. */
- abort ();
- }
- }
-
- /* Update reg_n_sets. This is necessary to prevent local alloc from
- converting REG_EQUAL notes to REG_EQUIV when splitting has modified
- a reg from set once to set multiple times. */
-
- {
- rtx x = PATTERN (orig_insn);
- RTX_CODE code = GET_CODE (x);
-
- if (code == SET || code == CLOBBER)
- update_n_sets (x, -1);
- else if (code == PARALLEL)
- {
- int i;
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- {
- code = GET_CODE (XVECEXP (x, 0, i));
- if (code == SET || code == CLOBBER)
- update_n_sets (XVECEXP (x, 0, i), -1);
- }
- }
-
- for (insn = first; ; insn = NEXT_INSN (insn))
- {
- x = PATTERN (insn);
- code = GET_CODE (x);
-
- if (code == SET || code == CLOBBER)
- update_n_sets (x, 1);
- else if (code == PARALLEL)
- {
- int i;
- for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
- {
- code = GET_CODE (XVECEXP (x, 0, i));
- if (code == SET || code == CLOBBER)
- update_n_sets (XVECEXP (x, 0, i), 1);
- }
- }
-
- if (insn == last)
- break;
- }
- }
- }
-
- /* The one entry point in this file. DUMP_FILE is the dump file for
- this pass. */
-
- void
- schedule_insns (dump_file)
- FILE *dump_file;
- {
- int max_uid = MAX_INSNS_PER_SPLIT * (get_max_uid () + 1);
- int i, b;
- rtx insn;
-
- /* Taking care of this degenerate case makes the rest of
- this code simpler. */
- if (n_basic_blocks == 0)
- return;
-
- /* Create an insn here so that we can hang dependencies off of it later. */
- sched_before_next_call
- = gen_rtx (INSN, VOIDmode, 0, NULL_RTX, NULL_RTX,
- NULL_RTX, 0, NULL_RTX, 0);
-
- /* Initialize the unused_*_lists. We can't use the ones left over from
- the previous function, because gcc has freed that memory. We can use
- the ones left over from the first sched pass in the second pass however,
- so only clear them on the first sched pass. The first pass is before
- reload if flag_schedule_insns is set, otherwise it is afterwards. */
-
- if (reload_completed == 0 || ! flag_schedule_insns)
- {
- unused_insn_list = 0;
- unused_expr_list = 0;
- }
-
- /* We create no insns here, only reorder them, so we
- remember how far we can cut back the stack on exit. */
-
- /* Allocate data for this pass. See comments, above,
- for what these vectors do. */
- insn_luid = (int *) alloca (max_uid * sizeof (int));
- insn_priority = (int *) alloca (max_uid * sizeof (int));
- insn_tick = (int *) alloca (max_uid * sizeof (int));
- insn_costs = (short *) alloca (max_uid * sizeof (short));
- insn_units = (short *) alloca (max_uid * sizeof (short));
- insn_blockage = (unsigned int *) alloca (max_uid * sizeof (unsigned int));
- insn_ref_count = (int *) alloca (max_uid * sizeof (int));
-
- if (reload_completed == 0)
- {
- sched_reg_n_deaths = (short *) alloca (max_regno * sizeof (short));
- sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
- sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
- bb_dead_regs = (regset) alloca (regset_bytes);
- bb_live_regs = (regset) alloca (regset_bytes);
- bzero (sched_reg_n_calls_crossed, max_regno * sizeof (int));
- bzero (sched_reg_live_length, max_regno * sizeof (int));
- bcopy (reg_n_deaths, sched_reg_n_deaths, max_regno * sizeof (short));
- init_alias_analysis ();
- }
- else
- {
- sched_reg_n_deaths = 0;
- sched_reg_n_calls_crossed = 0;
- sched_reg_live_length = 0;
- bb_dead_regs = 0;
- bb_live_regs = 0;
- if (! flag_schedule_insns)
- init_alias_analysis ();
- }
-
- if (write_symbols != NO_DEBUG)
- {
- rtx line;
-
- line_note = (rtx *) alloca (max_uid * sizeof (rtx));
- bzero (line_note, max_uid * sizeof (rtx));
- line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
- bzero (line_note_head, n_basic_blocks * sizeof (rtx));
-
- /* Determine the line-number at the start of each basic block.
- This must be computed and saved now, because after a basic block's
- predecessor has been scheduled, it is impossible to accurately
- determine the correct line number for the first insn of the block. */
-
- for (b = 0; b < n_basic_blocks; b++)
- for (line = basic_block_head[b]; line; line = PREV_INSN (line))
- if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
- {
- line_note_head[b] = line;
- break;
- }
- }
-
- bzero (insn_luid, max_uid * sizeof (int));
- bzero (insn_priority, max_uid * sizeof (int));
- bzero (insn_tick, max_uid * sizeof (int));
- bzero (insn_costs, max_uid * sizeof (short));
- bzero (insn_units, max_uid * sizeof (short));
- bzero (insn_blockage, max_uid * sizeof (unsigned int));
- bzero (insn_ref_count, max_uid * sizeof (int));
-
- /* Schedule each basic block, block by block. */
-
- /* ??? Add a NOTE after the last insn of the last basic block. It is not
- known why this is done. */
-
- insn = basic_block_end[n_basic_blocks-1];
- if (NEXT_INSN (insn) == 0
- || (GET_CODE (insn) != NOTE
- && GET_CODE (insn) != CODE_LABEL
- /* Don't emit a NOTE if it would end up between an unconditional
- jump and a BARRIER. */
- && ! (GET_CODE (insn) == JUMP_INSN
- && GET_CODE (NEXT_INSN (insn)) == BARRIER)))
- emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks-1]);
-
- for (b = 0; b < n_basic_blocks; b++)
- {
- rtx insn, next;
- rtx insns;
-
- note_list = 0;
-
- for (insn = basic_block_head[b]; ; insn = next)
- {
- rtx prev;
- rtx set;
-
- /* Can't use `next_real_insn' because that
- might go across CODE_LABELS and short-out basic blocks. */
- next = NEXT_INSN (insn);
- if (GET_CODE (insn) != INSN)
- {
- if (insn == basic_block_end[b])
- break;
-
- continue;
- }
-
- /* Don't split no-op move insns. These should silently disappear
- later in final. Splitting such insns would break the code
- that handles REG_NO_CONFLICT blocks. */
- set = single_set (insn);
- if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
- {
- if (insn == basic_block_end[b])
- break;
-
- /* Nops get in the way while scheduling, so delete them now if
- register allocation has already been done. It is too risky
- to try to do this before register allocation, and there are
- unlikely to be very many nops then anyways. */
- if (reload_completed)
- {
- PUT_CODE (insn, NOTE);
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- NOTE_SOURCE_FILE (insn) = 0;
- }
-
- continue;
- }
-
- /* Split insns here to get max fine-grain parallelism. */
- prev = PREV_INSN (insn);
- if (reload_completed == 0)
- {
- rtx last, first = PREV_INSN (insn);
- rtx notes = REG_NOTES (insn);
-
- last = try_split (PATTERN (insn), insn, 1);
- if (last != insn)
- {
- /* try_split returns the NOTE that INSN became. */
- first = NEXT_INSN (first);
- update_flow_info (notes, first, last, insn);
-
- PUT_CODE (insn, NOTE);
- NOTE_SOURCE_FILE (insn) = 0;
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- if (insn == basic_block_head[b])
- basic_block_head[b] = first;
- if (insn == basic_block_end[b])
- {
- basic_block_end[b] = last;
- break;
- }
- }
- }
-
- if (insn == basic_block_end[b])
- break;
- }
-
- schedule_block (b, dump_file);
-
- #ifdef USE_C_ALLOCA
- alloca (0);
- #endif
- }
-
- /* Reposition the prologue and epilogue notes in case we moved the
- prologue/epilogue insns. */
- if (reload_completed)
- reposition_prologue_and_epilogue_notes (get_insns ());
-
- if (write_symbols != NO_DEBUG)
- {
- rtx line = 0;
- rtx insn = get_insns ();
- int active_insn = 0;
- int notes = 0;
-
- /* Walk the insns deleting redundant line-number notes. Many of these
- are already present. The remainder tend to occur at basic
- block boundaries. */
- for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
- if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
- {
- /* If there are no active insns following, INSN is redundant. */
- if (active_insn == 0)
- {
- notes++;
- NOTE_SOURCE_FILE (insn) = 0;
- NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
- }
- /* If the line number is unchanged, LINE is redundant. */
- else if (line
- && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
- && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
- {
- notes++;
- NOTE_SOURCE_FILE (line) = 0;
- NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
- line = insn;
- }
- else
- line = insn;
- active_insn = 0;
- }
- else if (! ((GET_CODE (insn) == NOTE
- && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
- || (GET_CODE (insn) == INSN
- && (GET_CODE (PATTERN (insn)) == USE
- || GET_CODE (PATTERN (insn)) == CLOBBER))))
- active_insn++;
-
- if (dump_file && notes)
- fprintf (dump_file, ";; deleted %d line-number notes\n", notes);
- }
-
- if (reload_completed == 0)
- {
- int regno;
- for (regno = 0; regno < max_regno; regno++)
- if (sched_reg_live_length[regno])
- {
- if (dump_file)
- {
- if (reg_live_length[regno] > sched_reg_live_length[regno])
- fprintf (dump_file,
- ";; register %d life shortened from %d to %d\n",
- regno, reg_live_length[regno],
- sched_reg_live_length[regno]);
- /* Negative values are special; don't overwrite the current
- reg_live_length value if it is negative. */
- else if (reg_live_length[regno] < sched_reg_live_length[regno]
- && reg_live_length[regno] >= 0)
- fprintf (dump_file,
- ";; register %d life extended from %d to %d\n",
- regno, reg_live_length[regno],
- sched_reg_live_length[regno]);
-
- if (! reg_n_calls_crossed[regno]
- && sched_reg_n_calls_crossed[regno])
- fprintf (dump_file,
- ";; register %d now crosses calls\n", regno);
- else if (reg_n_calls_crossed[regno]
- && ! sched_reg_n_calls_crossed[regno]
- && reg_basic_block[regno] != REG_BLOCK_GLOBAL)
- fprintf (dump_file,
- ";; register %d no longer crosses calls\n", regno);
-
- }
- /* Negative values are special; don't overwrite the current
- reg_live_length value if it is negative. */
- if (reg_live_length[regno] >= 0)
- reg_live_length[regno] = sched_reg_live_length[regno];
-
- /* We can't change the value of reg_n_calls_crossed to zero for
- pseudos which are live in more than one block.
-
- This is because combine might have made an optimization which
- invalidated basic_block_live_at_start and reg_n_calls_crossed,
- but it does not update them. If we update reg_n_calls_crossed
- here, the two variables are now inconsistent, and this might
- confuse the caller-save code into saving a register that doesn't
- need to be saved. This is only a problem when we zero calls
- crossed for a pseudo live in multiple basic blocks.
-
- Alternatively, we could try to correctly update basic block live
- at start here in sched, but that seems complicated. */
- if (sched_reg_n_calls_crossed[regno]
- || reg_basic_block[regno] != REG_BLOCK_GLOBAL)
- reg_n_calls_crossed[regno] = sched_reg_n_calls_crossed[regno];
- }
- }
- }
- #endif /* INSN_SCHEDULING */
-