home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for DEC Alpha.
- Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
- Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "\
- -Dunix -D__osf__ -D__alpha -D__alpha__ -D_LONGLONG -DSYSTYPE_BSD \
- -D_SYSTYPE_BSD -Asystem(unix) -Asystem(xpg4) -Acpu(alpha) -Amachine(alpha)"
-
- /* Write out the correct language type definition for the header files.
- Unless we have assembler language, write out the symbols for C. */
- #define CPP_SPEC "\
- %{!.S: -D__LANGUAGE_C__ -D__LANGUAGE_C %{!ansi:-DLANGUAGE_C}} \
- %{.S: -D__LANGUAGE_ASSEMBLY__ -D__LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
- %{.cc: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
- %{.cxx: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
- %{.C: -D__LANGUAGE_C_PLUS_PLUS__ -D__LANGUAGE_C_PLUS_PLUS -D__cplusplus} \
- %{.m: -D__LANGUAGE_OBJECTIVE_C__ -D__LANGUAGE_OBJECTIVE_C}"
-
- /* Set the spec to use for signed char. The default tests the above macro
- but DEC's compiler can't handle the conditional in a "constant"
- operand. */
-
- #define SIGNED_CHAR_SPEC "%{funsigned-char:-D__CHAR_UNSIGNED__}"
-
- /* No point in running CPP on our assembler output. */
- #define ASM_SPEC "-nocpp"
-
- /* Right now Alpha OSF/1 doesn't seem to have debugging libraries. */
-
- #define LIB_SPEC "%{p:-lprof1} %{pg:-lprof2} -lc"
-
- /* Pass "-G 8" to ld because Alpha's CC does. Pass -O3 if we are optimizing,
- -O1 if we are not. Pass -non_shared or -call_shared as appropriate. */
- #define LINK_SPEC \
- "-G 8 %{O*:-O3} %{!O*:-O1} %{static:-non_shared} %{!static:-call_shared}"
-
- #define STARTFILE_SPEC \
- "%{pg:mcrt0.o%s}%{!pg:%{p:mcrt0.o%s}%{!p:crt0.o%s}}"
-
- /* Print subsidiary information on the compiler version in use. */
- #define TARGET_VERSION
-
- /* Define the location for the startup file on OSF/1 for Alpha. */
-
- #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* This means that floating-point support exists in the target implementation
- of the Alpha architecture. This is usually the default. */
-
- #define TARGET_FP (target_flags & 1)
-
- /* This means that floating-point registers are allowed to be used. Note
- that Alpha implementations without FP operations are required to
- provide the FP registers. */
-
- #define TARGET_FPREGS (target_flags & 2)
-
- /* This means that gas is used to process the assembler file. */
-
- #define MASK_GAS 4
- #define TARGET_GAS (target_flags & MASK_GAS)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { {"no-soft-float", 1}, \
- {"soft-float", -1}, \
- {"fp-regs", 2}, \
- {"no-fp-regs", -3}, \
- {"alpha-as", -MASK_GAS}, \
- {"gas", MASK_GAS}, \
- {"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
-
- #define TARGET_DEFAULT 3
-
- #ifndef TARGET_CPU_DEFAULT
- #define TARGET_CPU_DEFAULT 0
- #endif
-
- /* Define this macro to change register usage conditional on target flags.
-
- On the Alpha, we use this to disable the floating-point registers when
- they don't exist. */
-
- #define CONDITIONAL_REGISTER_USAGE \
- if (! TARGET_FPREGS) \
- for (i = 32; i < 63; i++) \
- fixed_regs[i] = call_used_regs[i] = 1;
-
- /* Show we can debug even without a frame pointer. */
- #define CAN_DEBUG_WITHOUT_FP
-
- /* target machine storage layout */
-
- /* Define to enable software floating point emulation. */
- #define REAL_ARITHMETIC
-
- /* Define the size of `int'. The default is the same as the word size. */
- #define INT_TYPE_SIZE 32
-
- /* Define the size of `long long'. The default is the twice the word size. */
- #define LONG_LONG_TYPE_SIZE 64
-
- /* The two floating-point formats we support are S-floating, which is
- 4 bytes, and T-floating, which is 8 bytes. `float' is S and `double'
- and `long double' are T. */
-
- #define FLOAT_TYPE_SIZE 32
- #define DOUBLE_TYPE_SIZE 64
- #define LONG_DOUBLE_TYPE_SIZE 64
-
- #define WCHAR_TYPE "short unsigned int"
- #define WCHAR_TYPE_SIZE 16
-
- /* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type.
-
- For Alpha, we always store objects in a full register. 32-bit objects
- are always sign-extended, but smaller objects retain their signedness. */
-
- #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
- { \
- if ((MODE) == SImode) \
- (UNSIGNEDP) = 0; \
- (MODE) = DImode; \
- }
-
- /* Define this if function arguments should also be promoted using the above
- procedure. */
-
- #define PROMOTE_FUNCTION_ARGS
-
- /* Likewise, if the function return value is promoted. */
-
- #define PROMOTE_FUNCTION_RETURN
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
-
- There are no such instructions on the Alpha, but the documentation
- is little endian. */
- #define BITS_BIG_ENDIAN 0
-
- /* Define this if most significant byte of a word is the lowest numbered.
- This is false on the Alpha. */
- #define BYTES_BIG_ENDIAN 0
-
- /* Define this if most significant word of a multiword number is lowest
- numbered.
-
- For Alpha we can decide arbitrarily since there are no machine instructions
- for them. Might as well be consistent with bytes. */
- #define WORDS_BIG_ENDIAN 0
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 64
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 8
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 64
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 64
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 64
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 64
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 64
-
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
-
- /* A bitfield declared as `int' forces `int' alignment for the struct. */
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* Align loop starts for optimal branching.
-
- ??? Kludge this and the next macro for the moment by not doing anything if
- we don't optimize and also if we are writing ECOFF symbols to work around
- a bug in DEC's assembler. */
-
- #define ASM_OUTPUT_LOOP_ALIGN(FILE) \
- if (optimize > 0 && write_symbols != SDB_DEBUG) \
- ASM_OUTPUT_ALIGN (FILE, 5)
-
- /* This is how to align an instruction for optimal branching.
- On Alpha we'll get better performance by aligning on a quadword
- boundary. */
-
- #define ASM_OUTPUT_ALIGN_CODE(FILE) \
- if (optimize > 0 && write_symbols != SDB_DEBUG) \
- ASM_OUTPUT_ALIGN ((FILE), 4)
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 64
-
- /* Make strings word-aligned so strcpy from constants will be faster. */
- #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
- /* Make arrays of chars word-aligned for the same reasons. */
- #define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
- /* Set this non-zero if move instructions will actually fail to work
- when given unaligned data.
-
- Since we get an error message when we do one, call them invalid. */
-
- #define STRICT_ALIGNMENT 1
-
- /* Set this non-zero if unaligned move instructions are extremely slow.
-
- On the Alpha, they trap. */
-
- #define SLOW_UNALIGNED_ACCESS 1
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- We define all 32 integer registers, even though $31 is always zero,
- and all 32 floating-point registers, even though $f31 is also
- always zero. We do not bother defining the FP status register and
- there are no other registers.
-
- Since $31 is always zero, we will use register number 31 as the
- argument pointer. It will never appear in the generated code
- because we will always be eliminating it in favor of the stack
- pointer or hardware frame pointer.
-
- Likewise, we use $f31 for the frame pointer, which will always
- be eliminated in favor of the hardware frame pointer or the
- stack pointer. */
-
- #define FIRST_PSEUDO_REGISTER 64
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator. */
-
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, \
- 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
-
- /* List the order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS.
-
- We allocate in the following order:
- $f1 (nonsaved floating-point register)
- $f10-$f15 (likewise)
- $f22-$f30 (likewise)
- $f21-$f16 (likewise, but input args)
- $f0 (nonsaved, but return value)
- $f2-$f9 (saved floating-point registers)
- $1-$8 (nonsaved integer registers)
- $22-$25 (likewise)
- $28 (likewise)
- $0 (likewise, but return value)
- $21-$16 (likewise, but input args)
- $27 (procedure value)
- $9-$14 (saved integer registers)
- $26 (return PC)
- $15 (frame pointer)
- $29 (global pointer)
- $30, $31, $f31 (stack pointer and always zero/ap & fp) */
-
- #define REG_ALLOC_ORDER \
- {33, \
- 42, 43, 44, 45, 46, 47, \
- 54, 55, 56, 57, 58, 59, 60, 61, 62, \
- 53, 52, 51, 50, 49, 48, \
- 32, \
- 34, 35, 36, 37, 38, 39, 40, 41, \
- 1, 2, 3, 4, 5, 6, 7, 8, \
- 22, 23, 24, 25, \
- 28, \
- 0, \
- 21, 20, 19, 18, 17, 16, \
- 27, \
- 9, 10, 11, 12, 13, 14, \
- 26, \
- 15, \
- 29, \
- 30, 31, 63 }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers. */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On Alpha, the integer registers can hold any mode. The floating-point
- registers can hold 32-bit and 64-bit integers as well, but not 16-bit
- or 8-bit values. If we only allowed the larger integers into FP registers,
- we'd have to say that QImode and SImode aren't tiable, which is a
- pain. So say all registers can hold everything and see how that works. */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
- #define MODES_TIEABLE_P(MODE1, MODE2) 1
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* Alpha pc isn't overloaded on a register that the compiler knows about. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 30
-
- /* Base register for access to local variables of the function. */
- #define HARD_FRAME_POINTER_REGNUM 15
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 31
-
- /* Base register for access to local variables of function. */
- #define FRAME_POINTER_REGNUM 63
-
- /* Register in which static-chain is passed to a function.
-
- For the Alpha, this is based on an example; the calling sequence
- doesn't seem to specify this. */
- #define STATIC_CHAIN_REGNUM 1
-
- /* Register in which address to store a structure value
- arrives in the function. On the Alpha, the address is passed
- as a hidden argument. */
- #define STRUCT_VALUE 0
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
- LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { {0, 0}, {~0, 0x80000000}, {0, 0x7fffffff}, {~0, ~0} }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) >= 32 && (REGNO) <= 62 ? FLOAT_REGS : GENERAL_REGS)
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS NO_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? FLOAT_REGS : NO_REGS)
-
- /* Define this macro to change register usage conditional on target flags. */
- /* #define CONDITIONAL_REGISTER_USAGE */
-
- /* The letters I, J, K, L, M, N, O, and P in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For Alpha:
- `I' is used for the range of constants most insns can contain.
- `J' is the constant zero.
- `K' is used for the constant in an LDA insn.
- `L' is used for the constant in a LDAH insn.
- `M' is used for the constants that can be AND'ed with using a ZAP insn.
- `N' is used for complemented 8-bit constants.
- `O' is used for negated 8-bit constants.
- `P' is used for the constants 1, 2 and 3. */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (unsigned HOST_WIDE_INT) (VALUE) < 0x100 \
- : (C) == 'J' ? (VALUE) == 0 \
- : (C) == 'K' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
- : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
- && (((VALUE)) >> 31 == -1 || (VALUE) >> 31 == 0)) \
- : (C) == 'M' ? zap_mask (VALUE) \
- : (C) == 'N' ? (unsigned HOST_WIDE_INT) (~ (VALUE)) < 0x100 \
- : (C) == 'O' ? (unsigned HOST_WIDE_INT) (- (VALUE)) < 0x100 \
- : (C) == 'P' ? (VALUE) == 1 || (VALUE) == 2 || (VALUE) == 3 \
- : 0)
-
- /* Similar, but for floating or large integer constants, and defining letters
- G and H. Here VALUE is the CONST_DOUBLE rtx itself.
-
- For Alpha, `G' is the floating-point constant zero. `H' is a CONST_DOUBLE
- that is the operand of a ZAP insn. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
- && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
- : (C) == 'H' ? (GET_MODE (VALUE) == VOIDmode \
- && zap_mask (CONST_DOUBLE_LOW (VALUE)) \
- && zap_mask (CONST_DOUBLE_HIGH (VALUE))) \
- : 0)
-
- /* Optional extra constraints for this machine.
-
- For the Alpha, `Q' means that this is a memory operand but not a
- reference to an unaligned location. */
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) != AND \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
-
- On the Alpha, all constants except zero go into a floating-point
- register via memory. */
-
- #define PREFERRED_RELOAD_CLASS(X, CLASS) \
- (CONSTANT_P (X) && (X) != const0_rtx && (X) != CONST0_RTX (GET_MODE (X)) \
- ? ((CLASS) == FLOAT_REGS ? NO_REGS : GENERAL_REGS) \
- : (CLASS))
-
- /* Loading and storing HImode or QImode values to and from memory
- usually requires a scratch register. The exceptions are loading
- QImode and HImode from an aligned address to a general register.
- We also cannot load an unaligned address into an FP register. */
-
- #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
- (((GET_CODE (IN) == MEM \
- || (GET_CODE (IN) == REG && REGNO (IN) >= FIRST_PSEUDO_REGISTER) \
- || (GET_CODE (IN) == SUBREG \
- && (GET_CODE (SUBREG_REG (IN)) == MEM \
- || (GET_CODE (SUBREG_REG (IN)) == REG \
- && REGNO (SUBREG_REG (IN)) >= FIRST_PSEUDO_REGISTER)))) \
- && (((CLASS) == FLOAT_REGS \
- && ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
- || (((MODE) == QImode || (MODE) == HImode) \
- && unaligned_memory_operand (IN, MODE)))) \
- ? GENERAL_REGS \
- : ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
- && GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
- : NO_REGS)
-
- #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,OUT) \
- (((GET_CODE (OUT) == MEM \
- || (GET_CODE (OUT) == REG && REGNO (OUT) >= FIRST_PSEUDO_REGISTER) \
- || (GET_CODE (OUT) == SUBREG \
- && (GET_CODE (SUBREG_REG (OUT)) == MEM \
- || (GET_CODE (SUBREG_REG (OUT)) == REG \
- && REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
- && (((MODE) == HImode || (MODE) == QImode \
- || ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
- ? GENERAL_REGS \
- : ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
- && GET_CODE (XEXP (OUT, 0)) == AND) ? GENERAL_REGS \
- : NO_REGS)
-
- /* If we are copying between general and FP registers, we need a memory
- location. */
-
- #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
-
- /* Specify the mode to be used for memory when a secondary memory
- location is needed. If MODE is floating-point, use it. Otherwise,
- widen to a word like the default. This is needed because we always
- store integers in FP registers in quadword format. This whole
- area is very tricky! */
- #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
- (GET_MODE_CLASS (MODE) == MODE_FLOAT ? (MODE) \
- : mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
-
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Define the cost of moving between registers of various classes. Moving
- between FLOAT_REGS and anything else except float regs is expensive.
- In fact, we make it quite expensive because we really don't want to
- do these moves unless it is clearly worth it. Optimizations may
- reduce the impact of not being able to allocate a pseudo to a
- hard register. */
-
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (((CLASS1) == FLOAT_REGS) == ((CLASS2) == FLOAT_REGS) ? 2 : 20)
-
- /* A C expressions returning the cost of moving data of MODE from a register to
- or from memory.
-
- On the Alpha, bump this up a bit. */
-
- #define MEMORY_MOVE_COST(MODE) 6
-
- /* Provide the cost of a branch. Exact meaning under development. */
- #define BRANCH_COST 5
-
- /* Adjust the cost of dependencies. */
-
- #define ADJUST_COST(INSN,LINK,DEP,COST) \
- (COST) = alpha_adjust_cost (INSN, LINK, DEP, COST)
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- /* #define FRAME_GROWS_DOWNWARD */
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On Alpha, don't define this because there are no push insns. */
- /* #define PUSH_ROUNDING(BYTES) */
-
- /* Define this if the maximum size of all the outgoing args is to be
- accumulated and pushed during the prologue. The amount can be
- found in the variable current_function_outgoing_args_size. */
- #define ACCUMULATE_OUTGOING_ARGS
-
- /* Offset of first parameter from the argument pointer register value. */
-
- #define FIRST_PARM_OFFSET(FNDECL) 0
-
- /* Definitions for register eliminations.
-
- We have two registers that can be eliminated on the Alpha. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer. */
-
- /* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
-
- #define ELIMINABLE_REGS \
- {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
-
- /* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- All eliminations are valid since the cases where FP can't be
- eliminated are already handled. */
-
- #define CAN_ELIMINATE(FROM, TO) 1
-
- /* Round up to a multiple of 16 bytes. */
- #define ALPHA_ROUND(X) (((X) + 15) & ~ 15)
-
- /* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
- #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- { if ((FROM) == FRAME_POINTER_REGNUM) \
- (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
- + alpha_sa_size ()); \
- else if ((FROM) == ARG_POINTER_REGNUM) \
- (OFFSET) = (ALPHA_ROUND (current_function_outgoing_args_size) \
- + alpha_sa_size () \
- + ALPHA_ROUND (get_frame_size ())); \
- }
-
- /* Define this if stack space is still allocated for a parameter passed
- in a register. */
- /* #define REG_PARM_STACK_SPACE */
-
- /* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0.
-
- On Alpha the value is found in $0 for integer functions and
- $f0 for floating-point functions. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, \
- ((TREE_CODE (VALTYPE) == INTEGER_TYPE \
- || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
- || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
- || TREE_CODE (VALTYPE) == CHAR_TYPE \
- || TREE_CODE (VALTYPE) == POINTER_TYPE \
- || TREE_CODE (VALTYPE) == OFFSET_TYPE) \
- && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
- ? word_mode : TYPE_MODE (VALTYPE), \
- TARGET_FPREGS && TREE_CODE (VALTYPE) == REAL_TYPE ? 32 : 0)
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, \
- TARGET_FPREGS && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 0)
-
- /* The definition of this macro implies that there are cases where
- a scalar value cannot be returned in registers.
-
- For the Alpha, any structure or union type is returned in memory, as
- are integers whose size is larger than 64 bits. */
-
- #define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE (TYPE) == BLKmode \
- || (TREE_CODE (TYPE) == INTEGER_TYPE && TYPE_PRECISION (TYPE) > 64))
-
- /* 1 if N is a possible register number for a function value
- as seen by the caller. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 32)
-
- /* 1 if N is a possible register number for function argument passing.
- On Alpha, these are $16-$21 and $f16-$f21. */
-
- #define FUNCTION_ARG_REGNO_P(N) \
- (((N) >= 16 && (N) <= 21) || ((N) >= 16 + 32 && (N) <= 21 + 32))
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On Alpha, this is a single integer, which is a number of words
- of arguments scanned so far.
- Thus 6 or more means all following args should go on the stack. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) (CUM) = 0
-
- /* Define intermediate macro to compute the size (in registers) of an argument
- for the Alpha. */
-
- #define ALPHA_ARG_SIZE(MODE, TYPE, NAMED) \
- ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
- : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- if (MUST_PASS_IN_STACK (MODE, TYPE)) \
- (CUM) = 6; \
- else \
- (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
-
- /* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On Alpha the first 6 words of args are normally in registers
- and the rest are pushed. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((CUM) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
- ? gen_rtx(REG, (MODE), \
- (CUM) + 16 + ((TARGET_FPREGS \
- && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
- * 32)) \
- : 0)
-
- /* Specify the padding direction of arguments.
-
- On the Alpha, we must pad upwards in order to be able to pass args in
- registers. */
-
- #define FUNCTION_ARG_PADDING(MODE, TYPE) upward
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((CUM) < 6 && 6 < (CUM) + ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
- ? 6 - (CUM) : 0)
-
- /* Perform any needed actions needed for a function that is receiving a
- variable number of arguments.
-
- CUM is as above.
-
- MODE and TYPE are the mode and type of the current parameter.
-
- PRETEND_SIZE is a variable that should be set to the amount of stack
- that must be pushed by the prolog to pretend that our caller pushed
- it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed.
-
- On the Alpha, we allocate space for all 12 arg registers, but only
- push those that are remaining.
-
- However, if NO registers need to be saved, don't allocate any space.
- This is not only because we won't need the space, but because AP includes
- the current_pretend_args_size and we don't want to mess up any
- ap-relative addresses already made.
-
- If we are not to use the floating-point registers, save the integer
- registers where we would put the floating-point registers. This is
- not the most efficient way to implement varargs with just one register
- class, but it isn't worth doing anything more efficient in this rare
- case. */
-
-
- #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
- { if ((CUM) < 6) \
- { \
- if (! (NO_RTL)) \
- { \
- move_block_from_reg \
- (16 + CUM, \
- gen_rtx (MEM, BLKmode, \
- plus_constant (virtual_incoming_args_rtx, \
- ((CUM) + 6)* UNITS_PER_WORD)), \
- 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
- move_block_from_reg \
- (16 + (TARGET_FPREGS ? 32 : 0) + CUM, \
- gen_rtx (MEM, BLKmode, \
- plus_constant (virtual_incoming_args_rtx, \
- (CUM) * UNITS_PER_WORD)), \
- 6 - (CUM), (6 - (CUM)) * UNITS_PER_WORD); \
- } \
- PRETEND_SIZE = 12 * UNITS_PER_WORD; \
- } \
- }
-
- /* Generate necessary RTL for __builtin_saveregs().
- ARGLIST is the argument list; see expr.c. */
- extern struct rtx_def *alpha_builtin_saveregs ();
- #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) alpha_builtin_saveregs (ARGLIST)
-
- /* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
- extern struct rtx_def *alpha_compare_op0, *alpha_compare_op1;
- extern int alpha_compare_fp_p;
-
- /* This macro produces the initial definition of a function name. On the
- Alpha, we need to save the function name for the prologue and epilogue. */
-
- extern char *alpha_function_name;
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
- { \
- alpha_function_name = NAME; \
- }
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. Profiling for gprof does not
- require LABELNO so we don't reference it at all. This does,
- however, mean that -p won't work. But OSF/1 doesn't support the
- traditional prof anyways, so there is no good reason to be
- backwards compatible. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- do { \
- fputs ("\tlda $27,_mcount\n", (FILE)); \
- fputs ("\tjsr $27,($27),_mcount\n", (FILE)); \
- fputs ("\tldgp $29,0($26)\n", (FILE)); \
- } while (0);
-
-
- /* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done.
- This assumes that __bb_init_func doesn't garble a1-a5. */
-
- #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- do { \
- ASM_OUTPUT_REG_PUSH (FILE, 16); \
- fputs ("\tlda $16,$PBX32\n", (FILE)); \
- fputs ("\tldq $26,0($16)\n", (FILE)); \
- fputs ("\tbne $26,1f\n", (FILE)); \
- fputs ("\tlda $27,__bb_init_func\n", (FILE)); \
- fputs ("\tjsr $26,($27),__bb_init_func\n", (FILE)); \
- fputs ("\tldgp $29,0($26)\n", (FILE)); \
- fputs ("1:\n", (FILE)); \
- ASM_OUTPUT_REG_POP (FILE, 16); \
- } while (0);
-
- /* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
- #define BLOCK_PROFILER(FILE, BLOCKNO) \
- do { \
- int blockn = (BLOCKNO); \
- fputs ("\tsubq $30,16,$30\n", (FILE)); \
- fputs ("\tstq $0,0($30)\n", (FILE)); \
- fputs ("\tstq $1,8($30)\n", (FILE)); \
- fputs ("\tlda $0,$PBX34\n", (FILE)); \
- fprintf ((FILE), "\tldq $1,%d($0)\n", 8*blockn); \
- fputs ("\taddq $1,1,$1\n", (FILE)); \
- fprintf ((FILE), "\tstq $1,%d($0)\n", 8*blockn); \
- fputs ("\tldq $0,0($30)\n", (FILE)); \
- fputs ("\tldq $1,8($30)\n", (FILE)); \
- fputs ("\taddq $30,16,$30\n", (FILE)); \
- } while (0)
-
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
-
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- The trampoline should set the static chain pointer to value placed
- into the trampoline and should branch to the specified routine.
- Note that $27 has been set to the address of the trampoline, so we can
- use it for addressability of the two data items. Trampolines are always
- aligned to FUNCTION_BOUNDARY, which is 64 bits. */
-
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- fprintf (FILE, "\tldq $1,24($27)\n"); \
- fprintf (FILE, "\tldq $27,16($27)\n"); \
- fprintf (FILE, "\tjmp $31,($27),0\n"); \
- fprintf (FILE, "\tnop\n"); \
- fprintf (FILE, "\t.quad 0,0\n"); \
- }
-
- /* Section in which to place the trampoline. On Alpha, instructions
- may only be placed in a text segment. */
-
- #define TRAMPOLINE_SECTION text_section
-
- /* Length in units of the trampoline for entering a nested function. */
-
- #define TRAMPOLINE_SIZE 32
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. We assume
- here that a function will be called many more times than its address
- is taken (e.g., it might be passed to qsort), so we take the trouble
- to initialize the "hint" field in the JMP insn. Note that the hint
- field is PC (new) + 4 * bits 13:0. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- rtx _temp, _temp1, _addr; \
- \
- _addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
- emit_move_insn (gen_rtx (MEM, Pmode, _addr), (FNADDR)); \
- _addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
- emit_move_insn (gen_rtx (MEM, Pmode, _addr), (CXT)); \
- \
- _temp = force_operand (plus_constant ((TRAMP), 12), NULL_RTX); \
- _temp = expand_binop (DImode, sub_optab, (FNADDR), _temp, _temp, 1, \
- OPTAB_WIDEN); \
- _temp = expand_shift (RSHIFT_EXPR, Pmode, _temp, \
- build_int_2 (2, 0), NULL_RTX, 1); \
- _temp = expand_and (gen_lowpart (SImode, _temp), \
- GEN_INT (0x3fff), 0); \
- \
- _addr = memory_address (SImode, plus_constant ((TRAMP), 8)); \
- _temp1 = force_reg (SImode, gen_rtx (MEM, SImode, _addr)); \
- _temp1 = expand_and (_temp1, GEN_INT (0xffffc000), NULL_RTX); \
- _temp1 = expand_binop (SImode, ior_optab, _temp1, _temp, _temp1, 1, \
- OPTAB_WIDEN); \
- \
- emit_move_insn (gen_rtx (MEM, SImode, _addr), _temp1); \
- \
- emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \
- "__enable_execute_stack"), \
- 0, VOIDmode, 1,_addr, Pmode); \
- \
- emit_insn (gen_rtx (UNSPEC_VOLATILE, VOIDmode, \
- gen_rtvec (1, const0_rtx), 0)); \
- }
-
- /* Attempt to turn on access permissions for the stack. */
-
- #define TRANSFER_FROM_TRAMPOLINE \
- \
- void \
- __enable_execute_stack (addr) \
- void *addr; \
- { \
- long size = getpagesize (); \
- long mask = ~(size-1); \
- char *page = (char *) (((long) addr) & mask); \
- char *end = (char *) ((((long) (addr + TRAMPOLINE_SIZE)) & mask) + size); \
- \
- /* 7 is PROT_READ | PROT_WRITE | PROT_EXEC */ \
- if (mprotect (page, end - page, 7) < 0) \
- perror ("mprotect of trampoline code"); \
- }
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) 0
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32 \
- || (REGNO) == 63 || reg_renumber[REGNO] == 63)
-
- /* Maximum number of registers that can appear in a valid memory address. */
- #define MAX_REGS_PER_ADDRESS 1
-
- /* Recognize any constant value that is a valid address. For the Alpha,
- there are only constants none since we want to use LDA to load any
- symbolic addresses into registers. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == CONST_INT \
- && (unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
-
- /* Include all constant integers and constant doubles, but not
- floating-point, except for floating-point zero. */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
- || (X) == CONST0_RTX (GET_MODE (X)))
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) 0
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) < 32 || REGNO (X) == 63 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- For Alpha, we have either a constant address or the sum of a register
- and a constant address, or just a register. For DImode, any of those
- forms can be surrounded with an AND that clear the low-order three bits;
- this is an "unaligned" access.
-
- We also allow a SYMBOL_REF that is the name of the current function as
- valid address. This is for CALL_INSNs. It cannot be used in any other
- context.
-
- First define the basic valid address. */
-
- #define GO_IF_LEGITIMATE_SIMPLE_ADDRESS(MODE, X, ADDR) \
- { if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \
- goto ADDR; \
- if (CONSTANT_ADDRESS_P (X)) \
- goto ADDR; \
- if (GET_CODE (X) == PLUS \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- goto ADDR; \
- }
-
- /* Now accept the simple address, or, for DImode only, an AND of a simple
- address that turns off the low three bits. */
-
- extern char *current_function_name;
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, X, ADDR); \
- if ((MODE) == DImode \
- && GET_CODE (X) == AND \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && INTVAL (XEXP (X, 1)) == -8) \
- GO_IF_LEGITIMATE_SIMPLE_ADDRESS (MODE, XEXP (X, 0), ADDR); \
- if ((MODE) == Pmode && GET_CODE (X) == SYMBOL_REF \
- && ! strcmp (XSTR (X, 0), current_function_name)) \
- goto ADDR; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the Alpha, there are three cases we handle:
-
- (1) If the address is (plus reg const_int) and the CONST_INT is not a
- valid offset, compute the high part of the constant and add it to the
- register. Then our address is (plus temp low-part-const).
- (2) If the address is (const (plus FOO const_int)), find the low-order
- part of the CONST_INT. Then load FOO plus any high-order part of the
- CONST_INT into a register. Our address is (plus reg low-part-const).
- This is done to reduce the number of GOT entries.
- (3) If we have a (plus reg const), emit the load as in (2), then add
- the two registers, and finally generate (plus reg low-part-const) as
- our address. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ! CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
- HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
- HOST_WIDE_INT highpart = val - lowpart; \
- rtx high = GEN_INT (highpart); \
- rtx temp = expand_binop (Pmode, add_optab, XEXP (x, 0), \
- high, NULL_RTX, 1, OPTAB_LIB_WIDEN); \
- \
- (X) = plus_constant (temp, lowpart); \
- goto WIN; \
- } \
- else if (GET_CODE (X) == CONST \
- && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
- HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
- HOST_WIDE_INT highpart = val - lowpart; \
- rtx high = XEXP (XEXP (X, 0), 0); \
- \
- if (highpart) \
- high = plus_constant (high, highpart); \
- \
- (X) = plus_constant (force_reg (Pmode, high), lowpart); \
- goto WIN; \
- } \
- else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == CONST \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (XEXP (X, 1), 0), 1)) == CONST_INT) \
- { \
- HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 1), 0), 1)); \
- HOST_WIDE_INT lowpart = (val & 0xffff) - 2 * (val & 0x8000); \
- HOST_WIDE_INT highpart = val - lowpart; \
- rtx high = XEXP (XEXP (XEXP (X, 1), 0), 0); \
- \
- if (highpart) \
- high = plus_constant (high, highpart); \
- \
- high = expand_binop (Pmode, add_optab, XEXP (X, 0), \
- force_reg (Pmode, high), \
- high, 1, OPTAB_LIB_WIDEN); \
- (X) = plus_constant (high, lowpart); \
- goto WIN; \
- } \
- }
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the Alpha this is true only for the unaligned modes. We can
- simplify this test since we know that the address must be valid. */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { if (GET_CODE (ADDR) == AND) goto LABEL; }
-
- /* Compute the cost of an address. For the Alpha, all valid addresses are
- the same cost. */
-
- #define ADDRESS_COST(X) 0
-
- /* Define this if some processing needs to be done immediately before
- emitting code for an insn. */
-
- /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE SImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* This flag, if defined, says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one.
-
- We actually lie a bit here as overflow conditions are different. But
- they aren't being checked anyway. */
-
- #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
-
- /* Max number of bytes we can move to or from memory
- in one reasonably fast instruction. */
-
- #define MOVE_MAX 8
-
- /* Largest number of bytes of an object that can be placed in a register.
- On the Alpha we have plenty of registers, so use TImode. */
- #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
-
- /* Nonzero if access to memory by bytes is no faster than for words.
- Also non-zero if doing byte operations (specifically shifts) in registers
- is undesirable.
-
- On the Alpha, we want to not use the byte operation and instead use
- masking operations to access fields; these will save instructions. */
-
- #define SLOW_BYTE_ACCESS 1
-
- /* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
- #define WORD_REGISTER_OPERATIONS
-
- /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
- #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
-
- /* Define if loading short immediate values into registers sign extends. */
- #define SHORT_IMMEDIATES_SIGN_EXTEND
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* Define the value returned by a floating-point comparison instruction. */
-
- #define FLOAT_STORE_FLAG_VALUE 0.5
-
- /* Canonicalize a comparison from one we don't have to one we do have. */
-
- #define CANONICALIZE_COMPARISON(CODE,OP0,OP1) \
- do { \
- if (((CODE) == GE || (CODE) == GT || (CODE) == GEU || (CODE) == GTU) \
- && (GET_CODE (OP1) == REG || (OP1) == const0_rtx)) \
- { \
- rtx tem = (OP0); \
- (OP0) = (OP1); \
- (OP1) = tem; \
- (CODE) = swap_condition (CODE); \
- } \
- if (((CODE) == LT || (CODE) == LTU) \
- && GET_CODE (OP1) == CONST_INT && INTVAL (OP1) == 256) \
- { \
- (CODE) = (CODE) == LT ? LE : LEU; \
- (OP1) = GEN_INT (255); \
- } \
- } while (0)
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode DImode
-
- /* Mode of a function address in a call instruction (for indexing purposes). */
-
- #define FUNCTION_MODE Pmode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap.
-
- We define this on the Alpha so that gen_call and gen_call_value
- get to see the SYMBOL_REF (for the hint field of the jsr). It will
- then copy it into a register, thus actually letting the address be
- cse'ed. */
-
- #define NO_FUNCTION_CSE
-
- /* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits. */
- #define SHIFT_COUNT_TRUNCATED 1
-
- /* Use atexit for static constructors/destructors, instead of defining
- our own exit function. */
- #define HAVE_ATEXIT
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch.
-
- If this is an 8-bit constant, return zero since it can be used
- nearly anywhere with no cost. If it is a valid operand for an
- ADD or AND, likewise return 0 if we know it will be used in that
- context. Otherwise, return 2 since it might be used there later.
- All other constants take at least two insns. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL (RTX) >= 0 && INTVAL (RTX) < 256) \
- return 0; \
- case CONST_DOUBLE: \
- if (((OUTER_CODE) == PLUS && add_operand (RTX, VOIDmode)) \
- || ((OUTER_CODE) == AND && and_operand (RTX, VOIDmode))) \
- return 0; \
- else if (add_operand (RTX, VOIDmode) || and_operand (RTX, VOIDmode)) \
- return 2; \
- else \
- return COSTS_N_INSNS (2); \
- case CONST: \
- case SYMBOL_REF: \
- case LABEL_REF: \
- return COSTS_N_INSNS (3);
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. */
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case PLUS: \
- case MINUS: \
- if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
- return COSTS_N_INSNS (6); \
- else if (GET_CODE (XEXP (X, 0)) == MULT \
- && const48_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
- return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
- + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
- break; \
- case MULT: \
- if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
- return COSTS_N_INSNS (6); \
- return COSTS_N_INSNS (23); \
- case ASHIFT: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && INTVAL (XEXP (X, 1)) <= 3) \
- break; \
- /* ... fall through ... */ \
- case ASHIFTRT: case LSHIFTRT: case IF_THEN_ELSE: \
- return COSTS_N_INSNS (2); \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- if (GET_MODE (X) == SFmode) \
- return COSTS_N_INSNS (34); \
- else if (GET_MODE (X) == DFmode) \
- return COSTS_N_INSNS (63); \
- else \
- return COSTS_N_INSNS (70); \
- case MEM: \
- return COSTS_N_INSNS (3);
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #define ASM_FILE_START(FILE) \
- { \
- alpha_write_verstamp (FILE); \
- fprintf (FILE, "\t.set noreorder\n"); \
- fprintf (FILE, "\t.set noat\n"); \
- ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
- }
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ""
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ""
-
- #define TEXT_SECTION_ASM_OP ".text"
-
- /* Output before read-only data. */
-
- #define READONLY_DATA_SECTION_ASM_OP ".rdata"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".data"
-
- /* Define an extra section for read-only data, a routine to enter it, and
- indicate that it is for read-only data. */
-
- #define EXTRA_SECTIONS readonly_data
-
- #define EXTRA_SECTION_FUNCTIONS \
- void \
- literal_section () \
- { \
- if (in_section != readonly_data) \
- { \
- fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP); \
- in_section = readonly_data; \
- } \
- } \
-
- #define READONLY_DATA_SECTION literal_section
-
- /* If we are referencing a function that is static or is known to be
- in this file, make the SYMBOL_REF special. We can use this to see
- indicate that we can branch to this function without setting PV or
- restoring GP. */
-
- #define ENCODE_SECTION_INFO(DECL) \
- if (TREE_CODE (DECL) == FUNCTION_DECL \
- && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
- SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", \
- "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
- "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
- "$24", "$25", "$26", "$27", "$28", "$29", "$30", "AP", \
- "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", \
- "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
- "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",\
- "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "FP"}
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "%s", NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- if ((PREFIX)[0] == 'L') \
- fprintf (FILE, "$%s%d:\n", & (PREFIX)[1], NUM + 32); \
- else \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM);
-
- /* This is how to output a label for a jump table. Arguments are the same as
- for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
- passed. */
-
- #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
- { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- if ((PREFIX)[0] == 'L') \
- sprintf (LABEL, "*$%s%d", & (PREFIX)[1], NUM + 32); \
- else \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- { \
- if (REAL_VALUE_ISINF (VALUE) \
- || REAL_VALUE_ISNAN (VALUE) \
- || REAL_VALUE_MINUS_ZERO (VALUE)) \
- { \
- long t[2]; \
- REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
- fprintf (FILE, "\t.quad 0x%lx%08lx\n", \
- t[1] & 0xffffffff, t[0] & 0xffffffff); \
- } \
- else \
- { \
- char str[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
- fprintf (FILE, "\t.t_floating %s\n", str); \
- } \
- }
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- { \
- if (REAL_VALUE_ISINF (VALUE) \
- || REAL_VALUE_ISNAN (VALUE) \
- || REAL_VALUE_MINUS_ZERO (VALUE)) \
- { \
- long t; \
- REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
- fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
- } \
- else \
- { \
- char str[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
- fprintf (FILE, "\t.s_floating %s\n", str); \
- } \
- }
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- fprintf (FILE, "\t.long %d\n", \
- (GET_CODE (VALUE) == CONST_INT \
- ? INTVAL (VALUE) & 0xffffffff : (abort (), 0)))
-
- /* This is how to output an assembler line defining a `long' constant. */
-
- #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.quad "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- fprintf (FILE, "\t.word %d\n", \
- (GET_CODE (VALUE) == CONST_INT \
- ? INTVAL (VALUE) & 0xffff : (abort (), 0)))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- fprintf (FILE, "\t.byte %d\n", \
- (GET_CODE (VALUE) == CONST_INT \
- ? INTVAL (VALUE) & 0xff : (abort (), 0)))
-
- /* We use the default ASCII-output routine, except that we don't write more
- than 50 characters since the assembler doesn't support very long lines. */
-
- #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
- do { \
- FILE *_hide_asm_out_file = (MYFILE); \
- unsigned char *_hide_p = (unsigned char *) (MYSTRING); \
- int _hide_thissize = (MYLENGTH); \
- int _size_so_far = 0; \
- { \
- FILE *asm_out_file = _hide_asm_out_file; \
- unsigned char *p = _hide_p; \
- int thissize = _hide_thissize; \
- int i; \
- fprintf (asm_out_file, "\t.ascii \""); \
- \
- for (i = 0; i < thissize; i++) \
- { \
- register int c = p[i]; \
- \
- if (_size_so_far ++ > 50 && i < thissize - 4) \
- _size_so_far = 0, fprintf (asm_out_file, "\"\n\t.ascii \""); \
- \
- if (c == '\"' || c == '\\') \
- putc ('\\', asm_out_file); \
- if (c >= ' ' && c < 0177) \
- putc (c, asm_out_file); \
- else \
- { \
- fprintf (asm_out_file, "\\%o", c); \
- /* After an octal-escape, if a digit follows, \
- terminate one string constant and start another. \
- The Vax assembler fails to stop reading the escape \
- after three digits, so this is the only way we \
- can get it to parse the data properly. */ \
- if (i < thissize - 1 \
- && p[i + 1] >= '0' && p[i + 1] <= '9') \
- fprintf (asm_out_file, "\"\n\t.ascii \""); \
- } \
- } \
- fprintf (asm_out_file, "\"\n"); \
- } \
- } \
- while (0)
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tsubq $30,8,$30\n\tst%s $%s%d,0($30)\n", \
- (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
- (REGNO) & 31);
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tld%s $%s%d,0($30)\n\taddq $30,8,$30\n", \
- (REGNO) > 32 ? "t" : "q", (REGNO) > 32 ? "f" : "", \
- (REGNO) & 31);
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE) & 0xff)
-
- /* This is how to output an element of a case-vector that is absolute. */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.gprel32 $%d\n", (VALUE) + 32)
-
- /* This is how to output an element of a case-vector that is relative.
- (Alpha does not use such vectors, but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", LOG);
-
- /* This is how to advance the location counter by SIZE bytes. */
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\t.comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
- ( fputs ("\t.lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
- #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
- /* Determine which codes are valid without a following integer. These must
- not be alphabetic. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { rtx addr = (ADDR); \
- int basereg = 31; \
- HOST_WIDE_INT offset = 0; \
- \
- if (GET_CODE (addr) == AND) \
- addr = XEXP (addr, 0); \
- \
- if (GET_CODE (addr) == REG) \
- basereg = REGNO (addr); \
- else if (GET_CODE (addr) == CONST_INT) \
- offset = INTVAL (addr); \
- else if (GET_CODE (addr) == PLUS \
- && GET_CODE (XEXP (addr, 0)) == REG \
- && GET_CODE (XEXP (addr, 1)) == CONST_INT) \
- basereg = REGNO (XEXP (addr, 0)), offset = INTVAL (XEXP (addr, 1)); \
- else \
- abort (); \
- \
- fprintf (FILE, "%d($%d)", offset, basereg); \
- }
- /* Define the codes that are matched by predicates in alpha.c. */
-
- #define PREDICATE_CODES \
- {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_6bit_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_8bit_operand", {SUBREG, REG, CONST_INT}}, \
- {"cint8_operand", {CONST_INT}}, \
- {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
- {"add_operand", {SUBREG, REG, CONST_INT}}, \
- {"sext_add_operand", {SUBREG, REG, CONST_INT}}, \
- {"const48_operand", {CONST_INT}}, \
- {"and_operand", {SUBREG, REG, CONST_INT}}, \
- {"or_operand", {SUBREG, REG, CONST_INT}}, \
- {"mode_mask_operand", {CONST_INT}}, \
- {"mul8_operand", {CONST_INT}}, \
- {"mode_width_operand", {CONST_INT}}, \
- {"reg_or_fp0_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"alpha_comparison_operator", {EQ, LE, LT, LEU, LTU}}, \
- {"signed_comparison_operator", {EQ, NE, LE, LT, GE, GT}}, \
- {"divmod_operator", {DIV, MOD, UDIV, UMOD}}, \
- {"fp0_operand", {CONST_DOUBLE}}, \
- {"current_file_function_operand", {SYMBOL_REF}}, \
- {"input_operand", {SUBREG, REG, MEM, CONST_INT, CONST_DOUBLE, \
- SYMBOL_REF, CONST, LABEL_REF}}, \
- {"aligned_memory_operand", {MEM}}, \
- {"unaligned_memory_operand", {MEM}}, \
- {"any_memory_operand", {MEM}},
-
- /* Tell collect that the object format is ECOFF. */
- #define OBJECT_FORMAT_COFF
- #define EXTENDED_COFF
-
- /* If we use NM, pass -g to it so it only lists globals. */
- #define NM_FLAGS "-pg"
-
- /* Definitions for debugging. */
-
- #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
- #define DBX_DEBUGGING_INFO /* generate embedded stabs */
- #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
-
- #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
- #define PREFERRED_DEBUGGING_TYPE \
- ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
- #endif
-
-
- /* Correct the offset of automatic variables and arguments. Note that
- the Alpha debug format wants all automatic variables and arguments
- to be in terms of two different offsets from the virtual frame pointer,
- which is the stack pointer before any adjustment in the function.
- The offset for the argument pointer is fixed for the native compiler,
- it is either zero (for the no arguments case) or large enough to hold
- all argument registers.
- The offset for the auto pointer is the fourth argument to the .frame
- directive (local_offset).
- To stay compatible with the native tools we use the same offsets
- from the virtual frame pointer and adjust the debugger arg/auto offsets
- accordingly. These debugger offsets are set up in output_prolog. */
-
- long alpha_arg_offset;
- long alpha_auto_offset;
- #define DEBUGGER_AUTO_OFFSET(X) \
- ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) + alpha_auto_offset)
- #define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET + alpha_arg_offset)
-
-
- #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
- alpha_output_lineno (STREAM, LINE)
- extern void alpha_output_lineno ();
-
- #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
- alpha_output_filename (STREAM, NAME)
- extern void alpha_output_filename ();
-
-
- /* mips-tfile.c limits us to strings of one page. */
- #define DBX_CONTIN_LENGTH 4000
-
- /* By default, turn on GDB extensions. */
- #define DEFAULT_GDB_EXTENSIONS 1
-
- /* If we are smuggling stabs through the ALPHA ECOFF object
- format, put a comment in front of the .stab<x> operation so
- that the ALPHA assembler does not choke. The mips-tfile program
- will correctly put the stab into the object file. */
-
- #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
- #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
- #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
-
- /* Forward references to tags are allowed. */
- #define SDB_ALLOW_FORWARD_REFERENCES
-
- /* Unknown tags are also allowed. */
- #define SDB_ALLOW_UNKNOWN_REFERENCES
-
- #define PUT_SDB_DEF(a) \
- do { \
- fprintf (asm_out_file, "\t%s.def\t", \
- (TARGET_GAS) ? "" : "#"); \
- ASM_OUTPUT_LABELREF (asm_out_file, a); \
- fputc (';', asm_out_file); \
- } while (0)
-
- #define PUT_SDB_PLAIN_DEF(a) \
- do { \
- fprintf (asm_out_file, "\t%s.def\t.%s;", \
- (TARGET_GAS) ? "" : "#", (a)); \
- } while (0)
-
- #define PUT_SDB_TYPE(a) \
- do { \
- fprintf (asm_out_file, "\t.type\t0x%x;", (a)); \
- } while (0)
-
- /* For block start and end, we create labels, so that
- later we can figure out where the correct offset is.
- The normal .ent/.end serve well enough for functions,
- so those are just commented out. */
-
- extern int sdb_label_count; /* block start/end next label # */
-
- #define PUT_SDB_BLOCK_START(LINE) \
- do { \
- fprintf (asm_out_file, \
- "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
- sdb_label_count, \
- (TARGET_GAS) ? "" : "#", \
- sdb_label_count, \
- (LINE)); \
- sdb_label_count++; \
- } while (0)
-
- #define PUT_SDB_BLOCK_END(LINE) \
- do { \
- fprintf (asm_out_file, \
- "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
- sdb_label_count, \
- (TARGET_GAS) ? "" : "#", \
- sdb_label_count, \
- (LINE)); \
- sdb_label_count++; \
- } while (0)
-
- #define PUT_SDB_FUNCTION_START(LINE)
-
- #define PUT_SDB_FUNCTION_END(LINE)
-
- #define PUT_SDB_EPILOGUE_END(NAME)
-
- /* Specify to run a post-processor, mips-tfile after the assembler
- has run to stuff the ecoff debug information into the object file.
- This is needed because the Alpha assembler provides no way
- of specifying such information in the assembly file. */
-
- #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_GAS) != 0
-
- #define ASM_FINAL_SPEC "\
- %{malpha-as: %{!mno-mips-tfile: \
- \n mips-tfile %{v*: -v} \
- %{K: -I %b.o~} \
- %{!K: %{save-temps: -I %b.o~}} \
- %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
- %{.s:%i} %{!.s:%g.s}}}"
-
- #else
- #define ASM_FINAL_SPEC "\
- %{!mgas: %{!mno-mips-tfile: \
- \n mips-tfile %{v*: -v} \
- %{K: -I %b.o~} \
- %{!K: %{save-temps: -I %b.o~}} \
- %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
- %{.s:%i} %{!.s:%g.s}}}"
-
- #endif
-
- /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
- mips-tdump.c to print them out.
-
- These must match the corresponding definitions in gdb/mipsread.c.
- Unfortunately, gcc and gdb do not currently share any directories. */
-
- #define CODE_MASK 0x8F300
- #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
- #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
- #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
-
- /* Override some mips-tfile definitions. */
-
- #define SHASH_SIZE 511
- #define THASH_SIZE 55
-
- /* Align ecoff symbol tables to avoid OSF1/1.3 nm complaints. */
-
- #define ALIGN_SYMTABLE_OFFSET(OFFSET) (((OFFSET) + 7) & ~7)
-