home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for Acorn RISC Machine.
- Copyright (C) 1991, 1993, 1994 Free Software Foundation, Inc.
- Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
- and Martin Simmons (@harleqn.co.uk).
- More major hacks by Richard Earnshaw (rwe11@cl.cam.ac.uk)
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /* Sometimes the directive `riscos' is checked. This does not imply that this
- tm file can be used unchanged to build a GCC for RISC OS.
- (Since in fact, it can't.) */
-
- extern void output_func_prologue ();
- extern void output_func_epilogue ();
- extern char *output_add_immediate ();
- extern char *output_call ();
- extern char *output_call_mem ();
- extern char *output_move_double ();
- extern char *output_mov_double_fpu_from_arm ();
- extern char *output_mov_double_arm_from_fpu ();
- extern char *output_mov_long_double_fpu_from_arm ();
- extern char *output_mov_long_double_arm_from_fpu ();
- extern char *output_mov_long_double_arm_from_arm ();
- extern char *output_mov_immediate ();
- extern char *output_multi_immediate ();
- extern char *output_return_instruction ();
- extern char *output_load_symbol ();
- extern char *fp_immediate_constant ();
- extern struct rtx_def *gen_compare_reg ();
- extern struct rtx_def *arm_gen_store_multiple ();
- extern struct rtx_def *arm_gen_load_multiple ();
-
- extern char *arm_condition_codes[];
-
- /* This is needed by the tail-calling peepholes */
- extern int frame_pointer_needed;
-
-
- #ifndef CPP_PREDEFINES
- #define CPP_PREDEFINES "-Darm -Acpu(arm) -Amachine(arm)"
- #endif
-
- #ifndef CPP_SPEC
- #define CPP_SPEC "%{m6:-D__arm6__}"
- #endif
-
- /* Run-time Target Specification. */
- #ifndef TARGET_VERSION
- #define TARGET_VERSION \
- fputs (" (ARM/generic)", stderr);
- #endif
-
- /* Run-time compilation parameters selecting different hardware subsets.
- On the ARM, misuse it in a different way. */
- extern int target_flags;
-
- /* Nonzero if the function prologue (and epilogue) should obey
- the ARM Procedure Call Standard. */
- #define TARGET_APCS (target_flags & 1)
-
- /* Nonzero if the function prologue should output the function name to enable
- the post mortem debugger to print a backtrace (very useful on RISCOS,
- unused on RISCiX). Specifying this flag also enables -mapcs.
- XXX Must still be implemented in the prologue. */
- #define TARGET_POKE_FUNCTION_NAME (target_flags & 2)
-
- /* Nonzero if floating point instructions are emulated by the FPE, in which
- case instruction scheduling becomes very uninteresting. */
- #define TARGET_FPE (target_flags & 4)
-
- /* Nonzero if destined for an ARM6xx. Takes out bits that assume restoration
- of condition flags when returning from a branch & link (ie. a function) */
- #define TARGET_6 (target_flags & 8)
-
- /* ARM_EXTRA_TARGET_SWITCHES is used in riscix.h to define some options which
- are passed to the preprocessor and the assembler post-processor. They
- aren't needed in the main pass of the compiler, but if we don't define
- them in target switches cc1 complains about them. For the sake of
- argument lets allocate bit 31 of target flags for such options. */
-
- #ifndef ARM_EXTRA_TARGET_SWITCHES
- #define ARM_EXTRA_TARGET_SWITCHES
- #endif
-
- #define TARGET_SWITCHES \
- { \
- {"apcs", 1}, \
- {"poke-function-name", 2}, \
- {"fpe", 4}, \
- {"6", 8}, \
- {"2", -8}, \
- {"3", -8}, \
- ARM_EXTRA_TARGET_SWITCHES \
- {"", TARGET_DEFAULT } \
- }
-
- /* Which processor we are running on. Currently this is only used to
- get the condition code clobbering attribute right when we are running on
- an arm 6 */
-
- enum processor_type
- {
- PROCESSOR_ARM2,
- PROCESSOR_ARM3,
- PROCESSOR_ARM6
- };
-
- /* Recast the cpu class to be the cpu attribute. */
-
- /* Recast the cpu class to be the cpu attribute. */
- #define arm_cpu_attr ((enum attr_cpu)arm_cpu)
-
- extern enum processor_type arm_cpu;
-
- /* What sort of floating point unit do we have? Hardware or software. */
- enum floating_point_type
- {
- FP_HARD,
- FP_SOFT
- };
-
- /* Recast the floating point class to be the floating point attribute. */
- #define arm_fpu_attr ((enum attr_fpu) arm_fpu)
-
- extern enum floating_point_type arm_fpu;
-
- #define TARGET_DEFAULT 0
-
- #define TARGET_MEM_FUNCTIONS 1
-
- /* OVERRIDE_OPTIONS takes care of the following:
- - if -mpoke-function-name, then -mapcs.
- - if doing debugging, then -mapcs; if RISCOS, then -mpoke-function-name.
- - if floating point is done by emulation, forget about instruction
- scheduling. Note that this only saves compilation time; it doesn't
- matter for the final code. */
-
- #define OVERRIDE_OPTIONS \
- { \
- if (write_symbols != NO_DEBUG && flag_omit_frame_pointer) \
- warning ("-g without a frame pointer may not give sensible debugging");\
- if (TARGET_POKE_FUNCTION_NAME) \
- target_flags |= 1; \
- if (TARGET_FPE) \
- flag_schedule_insns = flag_schedule_insns_after_reload = 0; \
- arm_cpu = TARGET_6 ? PROCESSOR_ARM6: PROCESSOR_ARM2; \
- }
-
- /* Target machine storage Layout. */
-
-
- /* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type. */
-
- /* It is far faster to zero extend chars than to sign extend them */
-
- #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < 4) \
- { \
- if (MODE == QImode) \
- UNSIGNEDP = 1; \
- else if (MODE == HImode) \
- UNSIGNEDP = 0; \
- (MODE) = SImode; \
- }
-
- /* Define for XFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined. */
- /* For the ARM:
- I think I have added all the code to make this work. Unfortunately,
- early releases of the floating point emulation code on RISCiX used a
- different format for extended precision numbers. On my RISCiX box there
- is a bug somewhere which causes the machine to lock up when running enquire
- with long doubles. There is the additional aspect that Norcroft C
- treats long doubles as doubles and we ought to remain compatible.
- Perhaps someone with an FPA coprocessor and not running RISCiX would like
- to try this someday. */
- /* #define LONG_DOUBLE_TYPE_SIZE 96 */
-
- /* Disable XFmode patterns in md file */
- #define ENABLE_XF_PATTERNS 0
-
- /* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
- /* See comment above */
- #define REAL_ARITHMETIC
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN 0
-
- /* Define this if most significant byte of a word is the lowest numbered.
- Most ARM processors are run in little endian mode, but it should now be
- possible to build the compiler to support big endian code. (Note: This
- is currently a compiler-build-time option, not a run-time one. */
- #ifndef BYTES_BIG_ENDIAN
- #define BYTES_BIG_ENDIAN 0
- #endif
-
- /* Define this if most significant word of a multiword number is the lowest
- numbered. */
- #define WORDS_BIG_ENDIAN 0
-
- /* Define this if most significant word of doubles is the lowest numbered */
- #define FLOAT_WORDS_BIG_ENDIAN 1
-
- /* Number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- #define BITS_PER_WORD 32
-
- #define UNITS_PER_WORD 4
-
- #define POINTER_SIZE 32
-
- #define PARM_BOUNDARY 32
-
- #define STACK_BOUNDARY 32
-
- #define FUNCTION_BOUNDARY 32
-
- #define EMPTY_FIELD_BOUNDARY 32
-
- #define BIGGEST_ALIGNMENT 32
-
- /* Make strings word-aligned so strcpy from constants will be faster. */
- #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
- /* Every structures size must be a multiple of 32 bits. */
- #define STRUCTURE_SIZE_BOUNDARY 32
-
- /* Non-zero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
- #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
-
- /* Define number of bits in most basic integer type.
- (If undefined, default is BITS_PER_WORD). */
- /* #define INT_TYPE_SIZE */
-
- /* Standard register usage. */
-
- /* Register allocation in ARM Procedure Call Standard (as used on RISCiX):
- (S - saved over call).
-
- r0 * argument word/integer result
- r1-r3 argument word
-
- r4-r8 S register variable
- r9 S (rfp) register variable (real frame pointer)
-
- r10 F S (sl) stack limit (not currently used)
- r11 F S (fp) argument pointer
- r12 (ip) temp workspace
- r13 F S (sp) lower end of current stack frame
- r14 (lr) link address/workspace
- r15 F (pc) program counter
-
- f0 floating point result
- f1-f3 floating point scratch
-
- f4-f7 S floating point variable
-
- cc This is NOT a real register, but is used internally
- to represent things that use or set the condition
- codes.
- sfp This isn't either. It is used during rtl generation
- since the offset between the frame pointer and the
- auto's isn't known until after register allocation.
- afp Nor this, we only need this because of non-local
- goto. Without it fp appears to be used and the
- elimination code won't get rid of sfp. It tracks
- fp exactly at all times.
-
- *: See CONDITIONAL_REGISTER_USAGE */
-
- /* The stack backtrace structure is as follows:
- fp points to here: | save code pointer | [fp]
- | return link value | [fp, #-4]
- | return sp value | [fp, #-8]
- | return fp value | [fp, #-12]
- [| saved r10 value |]
- [| saved r9 value |]
- [| saved r8 value |]
- [| saved r7 value |]
- [| saved r6 value |]
- [| saved r5 value |]
- [| saved r4 value |]
- [| saved r3 value |]
- [| saved r2 value |]
- [| saved r1 value |]
- [| saved r0 value |]
- [| saved f7 value |] three words
- [| saved f6 value |] three words
- [| saved f5 value |] three words
- [| saved f4 value |] three words
- r0-r3 are not normally saved in a C function. */
-
- /* The number of hard registers is 16 ARM + 8 FPU + 1 CC + 1 SFP. */
- #define FIRST_PSEUDO_REGISTER 27
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator. */
- #define FIXED_REGISTERS \
- { \
- 0,0,0,0,0,0,0,0, \
- 0,0,1,1,0,1,0,1, \
- 0,0,0,0,0,0,0,0, \
- 1,1,1 \
- }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like.
- The CC is not preserved over function calls on the ARM 6, so it is
- easier to assume this for all. SFP is preserved, since FP is. */
- #define CALL_USED_REGISTERS \
- { \
- 1,1,1,1,0,0,0,0, \
- 0,0,1,1,1,1,1,1, \
- 1,1,1,1,0,0,0,0, \
- 1,1,1 \
- }
-
- /* If doing stupid life analysis, avoid a bug causing a return value r0 to be
- trampled. This effectively reduces the number of available registers by 1.
- XXX It is a hack, I know.
- XXX Is this still needed? */
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- if (obey_regdecls) \
- fixed_regs[0] = 1; \
- }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the ARM regs are UNITS_PER_WORD bits wide; FPU regs can hold any FP
- mode. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- (((REGNO) >= 16 && REGNO != FRAME_POINTER_REGNUM \
- && (REGNO) != ARG_POINTER_REGNUM) ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- This is TRUE for ARM regs since they can hold anything, and TRUE for FPU
- regs holding FP. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((GET_MODE_CLASS (MODE) == MODE_CC) ? (REGNO == CC_REGNUM) : \
- ((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
- || REGNO == ARG_POINTER_REGNUM \
- || GET_MODE_CLASS (MODE) == MODE_FLOAT))
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* Define this if the program counter is overloaded on a register. */
- #define PC_REGNUM 15
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 13
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 25
-
- /* Define this to be where the real frame pointer is if it is not possible to
- work out the offset between the frame pointer and the automatic variables
- until after register allocation has taken place. FRAME_POINTER_REGNUM
- should point to a special register that we will make sure is eliminated. */
- #define HARD_FRAME_POINTER_REGNUM 11
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms may be accessed
- via the stack pointer) in functions that seem suitable.
- If we have to have a frame pointer we might as well make use of it.
- APCS says that the frame pointer does not need to be pushed in leaf
- functions. */
- #define FRAME_POINTER_REQUIRED \
- (current_function_has_nonlocal_label || (TARGET_APCS && !leaf_function_p ()))
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 26
-
- /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
- as an invisible last argument (possible since varargs don't exist in
- Pascal), so the following is not true. */
- #define STATIC_CHAIN_REGNUM 8
-
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 0
-
- /* Internal, so that we don't need to refer to a raw number */
- #define CC_REGNUM 24
-
- /* The order in which register should be allocated. It is good to use ip
- since no saving is required (though calls clobber it) and it never contains
- function parameters. It is quite good to use lr since other calls may
- clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
- least likely to contain a function parameter; in addition results are
- returned in r0.
- */
- #define REG_ALLOC_ORDER \
- { \
- 3, 2, 1, 0, 12, 14, 4, 5, \
- 6, 7, 8, 10, 9, 11, 13, 15, \
- 16, 17, 18, 19, 20, 21, 22, 23, \
- 24, 25 \
- }
-
- /* Register and constant classes. */
-
- /* Register classes: all ARM regs or all FPU regs---simple! */
- enum reg_class
- {
- NO_REGS,
- FPU_REGS,
- GENERAL_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
- };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
- #define REG_CLASS_NAMES \
- { \
- "NO_REGS", \
- "FPU_REGS", \
- "GENERAL_REGS", \
- "ALL_REGS", \
- }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
- #define REG_CLASS_CONTENTS \
- { \
- 0x0000000, /* NO_REGS */ \
- 0x0FF0000, /* FPU_REGS */ \
- 0x200FFFF, /* GENERAL_REGS */ \
- 0x2FFFFFF /* ALL_REGS */ \
- }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
- #define REGNO_REG_CLASS(REGNO) \
- (((REGNO) < 16 || REGNO == FRAME_POINTER_REGNUM \
- || REGNO == ARG_POINTER_REGNUM) \
- ? GENERAL_REGS : (REGNO) == CC_REGNUM \
- ? NO_REGS : FPU_REGS)
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine description.
- We only need constraint `f' for FPU_REGS (`r' == GENERAL_REGS). */
- #define REG_CLASS_FROM_LETTER(C) \
- ((C)=='f' ? FPU_REGS : NO_REGS)
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
- I: immediate arithmetic operand (i.e. 8 bits shifted as required).
- J: valid indexing constants.
- K: ~value ok in rhs argument of data operand.
- L: -value ok in rhs argument of data operand.
- M: 0..32, or a power of 2 (for shifts, or mult done by shift). */
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? const_ok_for_arm (VALUE) : \
- (C) == 'J' ? ((VALUE) < 4096 && (VALUE) > -4096) : \
- (C) == 'K' ? (const_ok_for_arm (~(VALUE))) : \
- (C) == 'L' ? (const_ok_for_arm (-(VALUE))) : \
- (C) == 'M' ? (((VALUE >= 0 && VALUE <= 32)) \
- || (((VALUE) & ((VALUE) - 1)) == 0)) \
- : 0)
-
- /* For the ARM, `Q' means that this is a memory operand that is just
- an offset from a register.
- `S' means any symbol that has the SYMBOL_REF_FLAG set or a CONSTANT_POOL
- address. This means that the symbol is in the text segment and can be
- accessed without using a load. */
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
- : (C) == 'R' ? (GET_CODE (OP) == MEM \
- && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
- && CONSTANT_POOL_ADDRESS_P (XEXP (OP, 0))) \
- : (C) == 'S' ? (optimize > 0 && CONSTANT_ADDRESS_P (OP)) : 0)
-
- /* Constant letter 'G' for the FPU immediate constants.
- 'H' means the same constant negated. */
- #define CONST_DOUBLE_OK_FOR_LETTER_P(X,C) \
- ((C) == 'G' ? const_double_rtx_ok_for_fpu (X) \
- : (C) == 'H' ? neg_const_double_rtx_ok_for_fpu (X) : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
- #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
-
- /* Return the register class of a scratch register needed to copy IN into
- or out of a register in CLASS in MODE. If it can be done directly,
- NO_REGS is returned. */
- #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
- (((MODE) == DFmode && (CLASS) == GENERAL_REGS \
- && true_regnum (X) == -1) ? GENERAL_REGS \
- : ((MODE) == HImode && true_regnum (X) == -1) ? GENERAL_REGS : NO_REGS)
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS.
- ARM regs are UNITS_PER_WORD bits while FPU regs can hold any FP mode */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FPU_REGS ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Moves between FPU_REGS and GENERAL_REGS are two memory insns. */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- ((((CLASS1) == FPU_REGS && (CLASS2) != FPU_REGS) \
- || ((CLASS2) == FPU_REGS && (CLASS1) != FPU_REGS)) \
- ? 20 : 2)
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD 1
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD 1
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by. */
- #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 4
-
- /* Value is the number of byte of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the ARM, the caller does not pop any of its arguments that were passed
- on the stack. */
- #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- (GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT \
- ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
- : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
- #define LIBCALL_VALUE(MODE) \
- (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- ? gen_rtx (REG, MODE, 16) \
- : gen_rtx (REG, MODE, 0))
-
- /* 1 if N is a possible register number for a function value.
- On the ARM, only r0 and f0 can return results. */
- #define FUNCTION_VALUE_REGNO_P(REGNO) \
- ((REGNO) == 0 || (REGNO) == 16)
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On the ARM, normally the first 16 bytes are passed in registers r0-r3; all
- other arguments are passed on the stack. If (NAMED == 0) (which happens
- only in assign_parms, since SETUP_INCOMING_VARARGS is defined), say it is
- passed in the stack (function_prologue will indeed make it pass in the
- stack if necessary). */
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((NAMED) \
- ? ((CUM) >= 16 ? 0 : gen_rtx (REG, MODE, (CUM) / 4)) \
- : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((CUM) < 16 && 16 < (CUM) + ((MODE) != BLKmode \
- ? GET_MODE_SIZE (MODE) \
- : int_size_in_bytes (TYPE)) \
- ? 4 - (CUM) / 4 : 0)
-
- /* A C type for declaring a variable that is used as the first argument of
- `FUNCTION_ARG' and other related values. For some target machines, the
- type `int' suffices and can hold the number of bytes of argument so far.
-
- On the ARM, this is the number of bytes of arguments scanned so far. */
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
- On the ARM, the offset starts at 0. */
- #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
- ((CUM) = (((FNTYPE) && aggregate_value_p (TREE_TYPE ((FNTYPE)))) ? 4 : 0))
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- (CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3) \
-
- /* 1 if N is a possible register number for function argument passing.
- On the ARM, r0-r3 are used to pass args. */
- #define FUNCTION_ARG_REGNO_P(REGNO) \
- ((REGNO) >= 0 && (REGNO) <= 3)
-
- /* Perform any actions needed for a function that is receiving a variable
- number of arguments. CUM is as above. MODE and TYPE are the mode and type
- of the current parameter. PRETEND_SIZE is a variable that should be set to
- the amount of stack that must be pushed by the prolog to pretend that our
- caller pushed it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed.
-
- On the ARM, PRETEND_SIZE is set in order to have the prologue push the last
- named arg and all anonymous args onto the stack.
- XXX I know the prologue shouldn't be pushing registers, but it is faster
- that way. */
- #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
- { \
- extern int current_function_anonymous_args; \
- current_function_anonymous_args = 1; \
- if ((CUM) < 16) \
- (PRETEND_SIZE) = 16 - (CUM); \
- }
-
- /* Generate assembly output for the start of a function. */
- #define FUNCTION_PROLOGUE(STREAM, SIZE) \
- output_func_prologue ((STREAM), (SIZE))
-
- /* Call the function profiler with a given profile label. The Acorn compiler
- puts this BEFORE the prolog but gcc pust it afterwards. The ``mov ip,lr''
- seems like a good idea to stick with cc convention. ``prof'' doesn't seem
- to mind about this! */
- #define FUNCTION_PROFILER(STREAM,LABELNO) \
- { \
- fprintf(STREAM, "\tmov\t%sip, %slr\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf(STREAM, "\tbl\tmcount\n"); \
- fprintf(STREAM, "\t.word\tLP%d\n", (LABELNO)); \
- }
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero.
-
- On the ARM, the function epilogue recovers the stack pointer from the
- frame. */
- #define EXIT_IGNORE_STACK 1
-
- /* Generate the assembly code for function exit. */
- #define FUNCTION_EPILOGUE(STREAM, SIZE) \
- output_func_epilogue ((STREAM), (SIZE))
-
- /* Determine if the epilogue should be output as RTL.
- You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
- #define USE_RETURN_INSN use_return_insn ()
-
- /* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- We have two registers that can be eliminated on the ARM. First, the
- arg pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the pseudo frame pointer register can always
- be eliminated; it is replaced with either the stack or the real frame
- pointer. */
-
- #define ELIMINABLE_REGS \
- {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
-
- /* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- All eliminations are permissible. Note that ARG_POINTER_REGNUM and
- HARD_FRAME_POINTER_REGNUM are infact the same thing. If we need a frame
- pointer, we must eliminate FRAME_POINTER_REGNUM into
- HARD_FRAME_POINTER_REGNUM and not into STACK_POINTER_REGNUM. */
- #define CAN_ELIMINATE(FROM, TO) \
- (((TO) == STACK_POINTER_REGNUM && frame_pointer_needed) ? 0 : 1)
-
- /* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
- #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- { \
- int volatile_func = arm_volatile_func (); \
- if ((FROM) == ARG_POINTER_REGNUM && (TO) == HARD_FRAME_POINTER_REGNUM)\
- (OFFSET) = 0; \
- else if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)\
- (OFFSET) = (get_frame_size () + 3 & ~3); \
- else \
- { \
- int regno; \
- int offset = 12; \
- int saved_hard_reg = 0; \
- \
- if (! volatile_func) \
- { \
- for (regno = 0; regno <= 10; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- saved_hard_reg = 1, offset += 4; \
- for (regno = 16; regno <=23; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 12; \
- } \
- if ((FROM) == FRAME_POINTER_REGNUM) \
- (OFFSET) = -offset; \
- else \
- { \
- if (! frame_pointer_needed) \
- offset -= 16; \
- if (! volatile_func && (regs_ever_live[14] || saved_hard_reg)) \
- offset += 4; \
- (OFFSET) = (get_frame_size () + 3 & ~3) + offset; \
- } \
- } \
- }
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- On the ARM, (if r8 is the static chain regnum, and remembering that
- referencing pc adds an offset of 8) the trampoline looks like:
- ldr r8, [pc, #0]
- ldr pc, [pc]
- .word static chain value
- .word function's address */
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- fprintf ((FILE), "\tldr\t%sr8, [%spc, #0]\n", ARM_REG_PREFIX, \
- ARM_REG_PREFIX); \
- fprintf ((FILE), "\tldr\t%spc, [%spc, #0]\n", ARM_REG_PREFIX, \
- ARM_REG_PREFIX); \
- fprintf ((FILE), "\t.word\t0\n"); \
- fprintf ((FILE), "\t.word\t0\n"); \
- }
-
- /* Length in units of the trampoline for entering a nested function. */
- #define TRAMPOLINE_SIZE 16
-
- /* Alignment required for a trampoline in units. */
- #define TRAMPOLINE_ALIGN 4
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
- (CXT)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
- (FNADDR)); \
- }
-
-
- /* Addressing modes, and classification of registers for them. */
-
- #define HAVE_POST_INCREMENT 1
- #define HAVE_PRE_INCREMENT 1
- #define HAVE_POST_DECREMENT 1
- #define HAVE_PRE_DECREMENT 1
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c.
-
- On the ARM, don't allow the pc to be used. */
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < 15 || (REGNO) == FRAME_POINTER_REGNUM \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (unsigned) reg_renumber[(REGNO)] < 15 \
- || (unsigned) reg_renumber[(REGNO)] == FRAME_POINTER_REGNUM \
- || (unsigned) reg_renumber[(REGNO)] == ARG_POINTER_REGNUM)
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- REGNO_OK_FOR_BASE_P(REGNO)
-
- /* Maximum number of registers that can appear in a valid memory address.
- Shifts in addresses can't be by a register. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
- /* XXX We can address any constant, eventually... */
- #if 0
- #define CONSTANT_ADDRESS_P(X) \
- ( GET_CODE(X) == LABEL_REF \
- || GET_CODE(X) == SYMBOL_REF \
- || GET_CODE(X) == CONST_INT \
- || GET_CODE(X) == CONST )
- #endif
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == SYMBOL_REF \
- && (CONSTANT_POOL_ADDRESS_P (X) \
- || (optimize > 0 && SYMBOL_REF_FLAG (X))))
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
-
- On the ARM, allow any integer (invalid ones are removed later by insn
- patterns), nice doubles and symbol_refs which refer to the function's
- constant pool XXX. */
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) == CONST_INT \
- || (GET_CODE (X) == CONST_DOUBLE \
- && (const_double_rtx_ok_for_fpu (X) \
- || neg_const_double_rtx_ok_for_fpu (X))) \
- || CONSTANT_ADDRESS_P (X))
-
- /* Symbols in the text segment can be accessed without indirecting via the
- constant pool; it may take an extra binary operation, but this is still
- faster than indirecting via memory. Don't do this when not optimizing,
- since we won't be calculating al of the offsets necessary to do this
- simplification. */
-
- #define ENCODE_SECTION_INFO(decl) \
- { \
- if (optimize > 0 && TREE_CONSTANT (decl) \
- && (!flag_writable_strings || TREE_CODE (decl) != STRING_CST)) \
- { \
- rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd' \
- ? TREE_CST_RTL (decl) : DECL_RTL (decl)); \
- SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1; \
- } \
- }
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used. */
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
- || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) \
- REG_OK_FOR_BASE_P(X)
-
- #define REG_OK_FOR_PRE_POST_P(X) \
- (REGNO (X) < 16 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
- || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-
- #define REG_OK_FOR_PRE_POST_P(X) \
- (REGNO (X) < 16 || (unsigned) reg_renumber[REGNO (X)] < 16 \
- || REGNO (X) == FRAME_POINTER_REGNUM || REGNO (X) == ARG_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO (X)] == FRAME_POINTER_REGNUM \
- || (unsigned) reg_renumber[REGNO (X)] == ARG_POINTER_REGNUM)
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
- #define BASE_REGISTER_RTX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
-
- #define INDEX_REGISTER_RTX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
-
- /* A C statement (sans semicolon) to jump to LABEL for legitimate index RTXs
- used by the macro GO_IF_LEGITIMATE_ADDRESS. Floating point indices can
- only be small constants. */
- #define GO_IF_LEGITIMATE_INDEX(MODE, BASE_REGNO, INDEX, LABEL) \
- do \
- { \
- HOST_WIDE_INT range; \
- enum rtx_code code = GET_CODE (INDEX); \
- \
- if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
- { \
- if (code == CONST_INT && INTVAL (INDEX) < 1024 \
- && INTVAL (INDEX) > -1024 \
- && (INTVAL (INDEX) & 3) == 0) \
- goto LABEL; \
- } \
- else \
- { \
- if (INDEX_REGISTER_RTX_P (INDEX) && GET_MODE_SIZE (MODE) <= 4) \
- goto LABEL; \
- if (GET_MODE_SIZE (MODE) <= 4 && code == MULT) \
- { \
- rtx xiop0 = XEXP (INDEX, 0); \
- rtx xiop1 = XEXP (INDEX, 1); \
- if (INDEX_REGISTER_RTX_P (xiop0) \
- && power_of_two_operand (xiop1, SImode)) \
- goto LABEL; \
- if (INDEX_REGISTER_RTX_P (xiop1) \
- && power_of_two_operand (xiop0, SImode)) \
- goto LABEL; \
- } \
- if (GET_MODE_SIZE (MODE) <= 4 \
- && (code == LSHIFTRT || code == ASHIFTRT \
- || code == ASHIFT || code == ROTATERT)) \
- { \
- rtx op = XEXP (INDEX, 1); \
- if (INDEX_REGISTER_RTX_P (XEXP (INDEX, 0)) \
- && GET_CODE (op) == CONST_INT && INTVAL (op) > 0 \
- && INTVAL (op) <= 31) \
- goto LABEL; \
- } \
- range = (MODE) == HImode ? 4095 : 4096; \
- if (code == CONST_INT && INTVAL (INDEX) < range \
- && INTVAL (INDEX) > -range) \
- goto LABEL; \
- } \
- } while (0)
-
- /* Jump to LABEL if X is a valid address RTX. This must also take
- REG_OK_STRICT into account when deciding about valid registers, but it uses
- the above macros so we are in luck. Allow REG, REG+REG, REG+INDEX,
- INDEX+REG, REG-INDEX, and non floating SYMBOL_REF to the constant pool.
- Allow REG-only and AUTINC-REG if handling TImode or HImode. Other symbol
- refs must be forced though a static cell to ensure addressability. */
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
- { \
- if (BASE_REGISTER_RTX_P (X)) \
- goto LABEL; \
- else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
- goto LABEL; \
- else if ((MODE) == TImode) \
- ; \
- else if (GET_CODE (X) == PLUS) \
- { \
- rtx xop0 = XEXP(X,0); \
- rtx xop1 = XEXP(X,1); \
- \
- if (BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
- else if (BASE_REGISTER_RTX_P (xop1)) \
- GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
- } \
- else if (GET_CODE (X) == MINUS) \
- { \
- rtx xop0 = XEXP (X,0); \
- rtx xop1 = XEXP (X,1); \
- \
- if (BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX (MODE, -1, xop1, LABEL); \
- } \
- else if (GET_MODE_CLASS (MODE) != MODE_FLOAT \
- && GET_CODE (X) == SYMBOL_REF \
- && CONSTANT_POOL_ADDRESS_P (X)) \
- goto LABEL; \
- else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
- goto LABEL; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- On the ARM, try to convert [REG, #BIGCONST]
- into ADD BASE, REG, #UPPERCONST and [BASE, #VALIDCONST],
- where VALIDCONST == 0 in case of TImode. */
- #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
- { \
- if (GET_CODE (X) == PLUS) \
- { \
- rtx xop0 = XEXP (X, 0); \
- rtx xop1 = XEXP (X, 1); \
- \
- if (CONSTANT_P (xop0) && ! LEGITIMATE_CONSTANT_P (xop0)) \
- xop0 = force_reg (SImode, xop0); \
- if (CONSTANT_P (xop1) && ! LEGITIMATE_CONSTANT_P (xop1)) \
- xop1 = force_reg (SImode, xop1); \
- if (BASE_REGISTER_RTX_P (xop0) && GET_CODE (xop1) == CONST_INT) \
- { \
- HOST_WIDE_INT n, low_n; \
- rtx base_reg, val; \
- n = INTVAL (xop1); \
- \
- if (MODE == DImode) \
- { \
- low_n = n & 0x0f; \
- n &= ~0x0f; \
- if (low_n > 4) \
- { \
- n += 16; \
- low_n -= 16; \
- } \
- } \
- else \
- { \
- low_n = ((MODE) == TImode ? 0 \
- : n >= 0 ? (n & 0xfff) : -((-n) & 0xfff)); \
- n -= low_n; \
- } \
- base_reg = gen_reg_rtx (SImode); \
- val = force_operand (gen_rtx (PLUS, SImode, xop0, \
- GEN_INT (n)), NULL_RTX); \
- emit_move_insn (base_reg, val); \
- (X) = (low_n == 0 ? base_reg \
- : gen_rtx (PLUS, SImode, base_reg, GEN_INT (low_n))); \
- } \
- else if (xop0 != XEXP (X, 0) || xop1 != XEXP (x, 1)) \
- (X) = gen_rtx (PLUS, SImode, xop0, xop1); \
- } \
- else if (GET_CODE (X) == MINUS) \
- { \
- rtx xop0 = XEXP (X, 0); \
- rtx xop1 = XEXP (X, 1); \
- \
- if (CONSTANT_P (xop0)) \
- xop0 = force_reg (SImode, xop0); \
- if (CONSTANT_P (xop1) && ! LEGITIMATE_CONSTANT_P (xop1)) \
- xop1 = force_reg (SImode, xop1); \
- if (xop0 != XEXP (X, 0) || xop1 != XEXP (X, 1)) \
- (X) = gen_rtx (MINUS, SImode, xop0, xop1); \
- } \
- if (memory_address_p (MODE, X)) \
- goto WIN; \
- }
-
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { \
- if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
- || GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
- goto LABEL; \
- }
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE SImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* signed 'char' is most compatible, but RISC OS wants it unsigned.
- unsigned is probably best, but may break some code. */
- #ifndef DEFAULT_SIGNED_CHAR
- #define DEFAULT_SIGNED_CHAR 0
- #endif
-
- /* Don't cse the address of the function being compiled. */
- #define NO_RECURSIVE_FUNCTION_CSE 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
- #define WORD_REGISTER_OPERATIONS
-
- /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
- #define LOAD_EXTEND_OP(MODE) \
- ((MODE) == QImode ? ZERO_EXTEND \
- : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : NIL))
-
- /* Define this if zero-extension is slow (more than one real instruction).
- On the ARM, it is more than one instruction only if not fetching from
- memory. */
- /* #define SLOW_ZERO_EXTEND */
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* Immediate shift counts are truncated by the output routines (or was it
- the assembler?). Shift counts in a register are truncated by ARM. Note
- that the native compiler puts too large (> 32) immediate shift counts
- into a register and shifts by the register, letting the ARM decide what
- to do instead of doing that itself. */
- /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
- code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
- On the arm, Y in a register is used modulo 256 for the shift. Only for
- rotates is modulo 32 used. */
- /* #define SHIFT_COUNT_TRUNCATED 1 */
-
- /* XX This is not true, is it? */
- /* All integers have the same format so truncation is easy. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
-
- /* Calling from registers is a massive pain. */
- #define NO_FUNCTION_CSE 1
-
- /* Chars and shorts should be passed as ints. */
- #define PROMOTE_PROTOTYPES 1
-
- /* The machine modes of pointers and functions */
- #define Pmode SImode
- #define FUNCTION_MODE Pmode
-
- /* The structure type of the machine dependent info field of insns
- No uses for this yet. */
- /* #define INSN_MACHINE_INFO struct machine_info */
-
- /* The relative costs of various types of constants. Note that cse.c defines
- REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
- #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- if (const_ok_for_arm (INTVAL (RTX))) \
- return (OUTER_CODE) == SET ? 2 : -1; \
- else if (OUTER_CODE == AND \
- && const_ok_for_arm (~INTVAL (RTX))) \
- return -1; \
- else if ((OUTER_CODE == COMPARE \
- || OUTER_CODE == PLUS || OUTER_CODE == MINUS) \
- && const_ok_for_arm (-INTVAL (RTX))) \
- return -1; \
- else \
- return 5; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 6; \
- case CONST_DOUBLE: \
- if (const_double_rtx_ok_for_fpu (RTX)) \
- return (OUTER_CODE) == SET ? 2 : -1; \
- else if (((OUTER_CODE) == COMPARE || (OUTER_CODE) == PLUS) \
- && neg_const_double_rtx_ok_for_fpu (RTX)) \
- return -1; \
- return(7);
-
- #define ARM_FRAME_RTX(X) \
- ((X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
- || (X) == arg_pointer_rtx)
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- default: \
- return arm_rtx_costs (X, CODE, OUTER_CODE);
-
- /* Moves to and from memory are quite expensive */
- #define MEMORY_MOVE_COST(MODE) 10
-
- /* All address computations that can be done are free, but rtx cost returns
- the same for practically all of them. So we weight the differnt types
- of address here in the order (most pref first):
- PRE/POST_INC/DEC, SHIFT or NON-INT sum, INT sum, REG, MEM or LABEL. */
- #define ADDRESS_COST(X) \
- (10 - ((GET_CODE (X) == MEM || GET_CODE (X) == LABEL_REF \
- || GET_CODE (X) == SYMBOL_REF) \
- ? 0 \
- : ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC \
- || GET_CODE (X) == POST_INC || GET_CODE (X) == POST_DEC) \
- ? 10 \
- : (((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS) \
- ? 6 + (GET_CODE (XEXP (X, 1)) == CONST_INT ? 2 \
- : ((GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == '2' \
- || GET_RTX_CLASS (GET_CODE (XEXP (X, 0))) == 'c' \
- || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == '2' \
- || GET_RTX_CLASS (GET_CODE (XEXP (X, 1))) == 'c') \
- ? 1 : 0)) \
- : 4)))))
-
-
-
- /* Try to generate sequences that don't involve branches, we can then use
- conditional instructions */
- #define BRANCH_COST 4
-
- /* Condition code information. */
- /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
- CCFPEmode should be used with floating inequalites,
- CCFPmode should be used with floating equalities.
- CC_NOOVmode should be used with SImode integer equalites
- CCmode should be used otherwise. */
-
- #define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
-
- #define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
- : ((GET_MODE (X) == SImode) \
- && ((OP) == EQ || (OP) == NE) \
- && (GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
- || GET_CODE (X) == AND || GET_CODE (X) == IOR \
- || GET_CODE (X) == XOR || GET_CODE (X) == MULT \
- || GET_CODE (X) == NOT || GET_CODE (X) == NEG \
- || GET_CODE (X) == LSHIFTRT \
- || GET_CODE (X) == ASHIFT || GET_CODE (X) == ASHIFTRT \
- || GET_CODE (X) == ROTATERT || GET_CODE (X) == ZERO_EXTRACT) \
- ? CC_NOOVmode \
- : GET_MODE (X) == QImode ? CC_NOOVmode : CCmode))
-
- #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
-
- #define STORE_FLAG_VALUE 1
-
- /* Define the information needed to generate branch insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
- extern struct rtx_def *arm_compare_op0, *arm_compare_op1;
- extern int arm_compare_fp;
-
- /* Define the codes that are matched by predicates in arm.c */
- #define PREDICATE_CODES \
- {"s_register_operand", {SUBREG, REG}}, \
- {"arm_add_operand", {SUBREG, REG, CONST_INT}}, \
- {"fpu_add_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"arm_rhs_operand", {SUBREG, REG, CONST_INT}}, \
- {"fpu_rhs_operand", {SUBREG, REG, CONST_DOUBLE}}, \
- {"arm_not_operand", {SUBREG, REG, CONST_INT}}, \
- {"shiftable_operator", {PLUS, MINUS, AND, IOR, XOR}}, \
- {"minmax_operator", {SMIN, SMAX, UMIN, UMAX}}, \
- {"shift_operator", {ASHIFT, ASHIFTRT, LSHIFTRT, ROTATERT, MULT}}, \
- {"di_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
- {"load_multiple_operation", {PARALLEL}}, \
- {"store_multiple_operation", {PARALLEL}}, \
- {"equality_operator", {EQ, NE}}, \
- {"arm_rhsm_operand", {SUBREG, REG, CONST_INT, MEM}}, \
- {"const_shift_operand", {CONST_INT}}, \
- {"index_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_int_operand", {SUBREG, REG, CONST_INT}}, \
- {"multi_register_push", {PARALLEL}}, \
- {"cc_register", {REG}}, \
- {"reversible_cc_register", {REG}},
-
-
- /* Assembler output control */
-
- #ifndef ARM_OS_NAME
- #define ARM_OS_NAME "(generic)"
- #endif
-
- /* The text to go at the start of the assembler file */
- #define ASM_FILE_START(STREAM) \
- { \
- extern char *version_string; \
- fprintf (STREAM,"%c Generated by gcc %s for ARM/%s\n", \
- ARM_COMMENT_CHAR, version_string, ARM_OS_NAME); \
- fprintf (STREAM,"%srfp\t.req\t%sr9\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf (STREAM,"%ssl\t.req\t%sr10\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf (STREAM,"%sfp\t.req\t%sr11\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf (STREAM,"%sip\t.req\t%sr12\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf (STREAM,"%ssp\t.req\t%sr13\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf (STREAM,"%slr\t.req\t%sr14\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- fprintf (STREAM,"%spc\t.req\t%sr15\n", ARM_REG_PREFIX, ARM_REG_PREFIX); \
- }
-
- #define ASM_APP_ON ""
- #define ASM_APP_OFF ""
-
- /* Switch to the text or data segment. */
- #define TEXT_SECTION_ASM_OP ".text"
- #define DATA_SECTION_ASM_OP ".data"
-
- /* The assembler's names for the registers. */
- #ifndef REGISTER_NAMES
- #define REGISTER_NAMES \
- { \
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
- "r8", "r9", "sl", "fp", "ip", "sp", "lr", "pc", \
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
- "cc", "sfp", "afp" \
- }
- #endif
-
- #ifndef ADDITIONAL_REGISTER_NAMES
- #define ADDITIONAL_REGISTER_NAMES \
- { \
- {"a1", 0}, \
- {"a2", 1}, \
- {"a3", 2}, \
- {"a4", 3}, \
- {"v1", 4}, \
- {"v2", 5}, \
- {"v3", 6}, \
- {"v4", 7}, \
- {"v5", 8}, \
- {"v6", 9}, \
- {"rfp", 9}, /* Gcc used to call it this */ \
- {"sb", 9}, \
- {"v7", 10}, \
- {"r10", 10}, \
- {"r11", 11}, /* fp */ \
- {"r12", 12}, /* ip */ \
- {"r13", 13}, /* sp */ \
- {"r14", 14}, /* lr */ \
- {"r15", 15} /* pc */ \
- }
- #endif
-
- /* Arm Assembler barfs on dollars */
- #define DOLLARS_IN_IDENTIFIERS 0
-
- #define NO_DOLLAR_IN_LABEL
-
- /* DBX register number for a given compiler register number */
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* Generate DBX debugging information. riscix.h will undefine this because
- the native assembler does not support stabs. */
- #define DBX_DEBUGGING_INFO 1
-
- /* Acorn dbx moans about continuation chars, so don't use any. */
- #ifndef DBX_CONTIN_LENGTH
- #define DBX_CONTIN_LENGTH 0
- #endif
-
- /* Output a source filename for the debugger. RISCiX dbx insists that the
- ``desc'' field is set to compiler version number >= 315 (sic). */
- #define DBX_OUTPUT_MAIN_SOURCE_FILENAME(STREAM,NAME) \
- do { \
- fprintf (STREAM, ".stabs \"%s\",%d,0,315,%s\n", (NAME), N_SO, \
- <ext_label_name[1]); \
- text_section (); \
- ASM_OUTPUT_INTERNAL_LABEL (STREAM, "Ltext", 0); \
- } while (0)
-
- /* Output a label definition. */
- #define ASM_OUTPUT_LABEL(STREAM,NAME) \
- arm_asm_output_label ((STREAM), (NAME))
-
- /* Output a function label definition. */
- #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
- ASM_OUTPUT_LABEL(STREAM, NAME)
-
- /* Output a globalising directive for a label. */
- #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
- (fprintf (STREAM, "\t.global\t"), \
- assemble_name (STREAM, NAME), \
- fputc ('\n',STREAM)) \
-
- /* Output a reference to a label. */
- #define ASM_OUTPUT_LABELREF(STREAM,NAME) \
- fprintf (STREAM, "_%s", NAME)
-
- /* Make an internal label into a string. */
- #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
- sprintf (STRING, "*%s%d", PREFIX, NUM)
-
- /* Output an internal label definition. */
- #define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX, NUM) \
- do \
- { \
- char *s = (char *) alloca (11 + strlen (PREFIX)); \
- extern int arm_target_label, arm_ccfsm_state; \
- extern rtx arm_target_insn; \
- \
- if (arm_ccfsm_state == 3 && arm_target_label == (NUM) \
- && !strcmp (PREFIX, "L")) \
- { \
- arm_ccfsm_state = 0; \
- arm_target_insn = NULL; \
- } \
- strcpy (s, "*"); \
- sprintf (&s[strlen (s)], "%s%d", (PREFIX), (NUM)); \
- arm_asm_output_label (STREAM, s); \
- } while (0)
-
- /* Nothing special is done about jump tables */
- /* #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) */
- /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
-
- /* Construct a private name. */
- #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
- ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
- sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
-
- /* Output a push or a pop instruction (only used when profiling). */
- #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
- fprintf(STREAM,"\tstmfd\t%ssp!,{%s%s}\n", ARM_REG_PREFIX, ARM_REG_PREFIX, \
- reg_names[REGNO])
-
- #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
- fprintf(STREAM,"\tldmfd\t%ssp!,{%s%s}\n", ARM_REG_PREFIX, ARM_REG_PREFIX, \
- reg_names[REGNO])
-
- /* Output a relative address. Not needed since jump tables are absolute
- but we must define it anyway. */
- #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
- fputs ("- - - ASM_OUTPUT_ADDR_DIFF_ELT called!\n", STREAM)
-
- /* Output an element of a dispatch table. */
- #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
- fprintf (STREAM, "\t.word\tL%d\n", VALUE)
-
- /* Output various types of constants. For real numbers we output hex, with
- a comment containing the "human" value, this allows us to pass NaN's which
- the riscix assembler doesn't understand (it also makes cross-assembling
- less likely to fail). */
-
- #define ASM_OUTPUT_LONG_DOUBLE(STREAM,VALUE) \
- do { char dstr[30]; \
- long l[3]; \
- arm_increase_location (12); \
- REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (STREAM, "\t.long 0x%x,0x%x,0x%x\t%c long double %s\n", \
- l[2], l[1], l[0], ARM_COMMENT_CHAR, dstr); \
- else \
- fprintf (STREAM, "\t.long 0x%lx,0x%lx,0x%lx\t%c long double %s\n",\
- l[0], l[1], l[2], ARM_COMMENT_CHAR, dstr); \
- } while (0)
-
-
- #define ASM_OUTPUT_DOUBLE(STREAM, VALUE) \
- do { char dstr[30]; \
- long l[2]; \
- arm_increase_location (8); \
- REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.14g", dstr); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (STREAM, "\t.long 0x%x, 0x%x\t%c double %s\n", l[0], \
- l[1], ARM_COMMENT_CHAR, dstr); \
- else \
- fprintf (STREAM, "\t.long 0x%lx, 0x%lx\t%c double %s\n", l[0], \
- l[1], ARM_COMMENT_CHAR, dstr); \
- } while (0)
-
- #define ASM_OUTPUT_FLOAT(STREAM, VALUE) \
- do { char dstr[30]; \
- long l; \
- arm_increase_location (4); \
- REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.7g", dstr); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (STREAM, "\t.word 0x%x\t%c float %s\n", l, \
- ARM_COMMENT_CHAR, dstr); \
- else \
- fprintf (STREAM, "\t.word 0x%lx\t%c float %s\n", l, \
- ARM_COMMENT_CHAR, dstr); \
- } while (0);
-
- #define ASM_OUTPUT_INT(STREAM, EXP) \
- (fprintf (STREAM, "\t.word\t"), \
- output_addr_const (STREAM, (EXP)), \
- arm_increase_location (4), \
- fputc ('\n', STREAM))
-
- #define ASM_OUTPUT_SHORT(STREAM, EXP) \
- (fprintf (STREAM, "\t.short\t"), \
- output_addr_const (STREAM, (EXP)), \
- arm_increase_location (2), \
- fputc ('\n', STREAM))
-
- #define ASM_OUTPUT_CHAR(STREAM, EXP) \
- (fprintf (STREAM, "\t.byte\t"), \
- output_addr_const (STREAM, (EXP)), \
- arm_increase_location (1), \
- fputc ('\n', STREAM))
-
- #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
- (fprintf (STREAM, "\t.byte\t%d\n", VALUE), \
- arm_increase_location (1))
-
- #define ASM_OUTPUT_ASCII(STREAM, PTR, LEN) \
- output_ascii_pseudo_op ((STREAM), (unsigned char *)(PTR), (LEN))
-
- /* Output a gap. In fact we fill it with nulls. */
- #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
- (arm_increase_location (NBYTES), \
- fprintf (STREAM, "\t.space\t%d\n", NBYTES))
-
- /* Align output to a power of two. Horrible /bin/as. */
- #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
- do \
- { \
- register int amount = 1 << (POWER); \
- extern int arm_text_location; \
- \
- if (amount == 2) \
- fprintf (STREAM, "\t.even\n"); \
- else \
- fprintf (STREAM, "\t.align\t%d\n", amount - 4); \
- \
- if (in_text_section ()) \
- arm_text_location = ((arm_text_location + amount - 1) \
- & ~(amount - 1)); \
- } while (0)
-
- /* Output a common block */
- #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
- (fprintf (STREAM, "\t.comm\t"), \
- assemble_name ((STREAM), (NAME)), \
- fprintf(STREAM, ", %d\t%c%d\n", ROUNDED, ARM_COMMENT_CHAR, SIZE))
-
- /* Output a local common block. /bin/as can't do this, so hack a `.space' into
- the bss segment. Note that this is *bad* practice. */
- #define ASM_OUTPUT_LOCAL(STREAM,NAME,SIZE,ROUNDED) \
- output_lcomm_directive (STREAM, NAME, SIZE, ROUNDED)
-
- /* Output a source line for the debugger. */
- /* #define ASM_OUTPUT_SOURCE_LINE(STREAM,LINE) */
-
- /* Output a #ident directive. */
- #define ASM_OUTPUT_IDENT(STREAM,STRING) \
- fprintf (STREAM,"- - - ident %s\n",STRING)
-
- /* The assembler's parentheses characters. */
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Target characters. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Only perform branch elimination (by making instructions conditional) if
- we're optimising. Otherwise it's of no use anyway. */
- #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
- if (optimize) \
- final_prescan_insn (INSN, OPVEC, NOPERANDS)
-
- #ifndef ARM_COMMENT_CHAR
- #define ARM_COMMENT_CHAR '@'
- #endif
-
- /* Default is for register names not to have a prefix. */
- #ifndef ARM_REG_PREFIX
- #define ARM_REG_PREFIX ""
- #endif
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '?' || (CODE) == '|' || (CODE) == '@')
- /* Output an operand of an instruction. */
- #define PRINT_OPERAND(STREAM, X, CODE) \
- arm_print_operand (STREAM, X, CODE)
-
- #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
- (HOST_BITS_PER_WIDE_INT <= 32 ? (x) \
- : (((x) & (unsigned HOST_WIDE_INT) 0xffffffff) | \
- (((x) & (unsigned HOST_WIDE_INT) 0x80000000) \
- ? ((~ (HOST_WIDE_INT) 0) \
- & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
- : 0))))
-
- /* Output the address of an operand. */
- #define PRINT_OPERAND_ADDRESS(STREAM,X) \
- { \
- int is_minus = GET_CODE (X) == MINUS; \
- \
- if (GET_CODE (X) == REG) \
- fprintf (STREAM, "[%s%s, #0]", ARM_REG_PREFIX, \
- reg_names[REGNO (X)]); \
- else if (GET_CODE (X) == PLUS || is_minus) \
- { \
- rtx base = XEXP (X, 0); \
- rtx index = XEXP (X, 1); \
- char *base_reg_name; \
- HOST_WIDE_INT offset = 0; \
- if (GET_CODE (base) != REG) \
- { \
- /* Ensure that BASE is a register (one of them must be). */ \
- rtx temp = base; \
- base = index; \
- index = temp; \
- } \
- base_reg_name = reg_names[REGNO (base)]; \
- switch (GET_CODE (index)) \
- { \
- case CONST_INT: \
- offset = INTVAL (index); \
- if (is_minus) \
- offset = -offset; \
- fprintf (STREAM, "[%s%s, #%d]", ARM_REG_PREFIX, \
- base_reg_name, offset); \
- break; \
- \
- case REG: \
- fprintf (STREAM, "[%s%s, %s%s%s]", ARM_REG_PREFIX, \
- base_reg_name, is_minus ? "-" : "", \
- ARM_REG_PREFIX, reg_names[REGNO (index)] ); \
- break; \
- \
- case MULT: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- case ASHIFT: \
- case ROTATERT: \
- { \
- fprintf (STREAM, "[%s%s, %s%s%s", ARM_REG_PREFIX, \
- base_reg_name, is_minus ? "-" : "", ARM_REG_PREFIX,\
- reg_names[REGNO (XEXP (index, 0))]); \
- arm_print_operand (STREAM, index, 'S'); \
- fputs ("]", STREAM); \
- break; \
- } \
- \
- default: \
- abort(); \
- } \
- } \
- else if (GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC \
- || GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC) \
- { \
- extern int output_memory_reference_mode; \
- \
- if (GET_CODE (XEXP (X, 0)) != REG) \
- abort (); \
- \
- if (GET_CODE (X) == PRE_DEC || GET_CODE (X) == PRE_INC) \
- fprintf (STREAM, "[%s%s, #%s%d]!", ARM_REG_PREFIX, \
- reg_names[REGNO (XEXP (X, 0))], \
- GET_CODE (X) == PRE_DEC ? "-" : "", \
- GET_MODE_SIZE (output_memory_reference_mode)); \
- else \
- fprintf (STREAM, "[%s%s], #%s%d", ARM_REG_PREFIX, \
- reg_names[REGNO (XEXP (X, 0))], \
- GET_CODE (X) == POST_DEC ? "-" : "", \
- GET_MODE_SIZE (output_memory_reference_mode)); \
- } \
- else output_addr_const(STREAM, X); \
- }
-