home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler. Convex version.
- Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* Standard GCC variables that we reference. */
-
- extern int target_flags;
-
- /* Convex machine-specific flags
- -mc1 target instruction set, libraries, scheduling
- -mc2
- -mc32
- -mc34
- -mc38
- -margcount use standard calling sequence, with arg count word
- -mno-argcount don't push arg count, depend on symbol table
- -margcount-nop place arg count in a nop instruction (faster than push)
- -mvolatile-cache use data cache for volatile mem refs (default)
- -mvolatile-nocache bypass data cache for volatile mem refs
- -mlong32 cc- and libc-compatible 32-bit longs
- -mlong64 64-bit longs
- */
-
- /* Macro to define tables used to set -mXXX flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #ifndef TARGET_DEFAULT
- #error Use one of convex1.h, convex2.h, etc.
- #endif
-
- #define TARGET_SWITCHES \
- { { "c1", 001 }, \
- { "c2", 002 }, \
- { "c32", 004 }, \
- { "c34", 010 }, \
- { "c38", 020 }, \
- { "argcount", 0100 }, \
- { "argcount-nop", 0200 }, \
- { "no-argcount", -0300 }, \
- { "volatile-cache", -0400 }, \
- { "no-volatile-cache", 0400 }, \
- { "volatile-nocache", 0400 }, \
- { "long64", 01000 }, \
- { "long32", -01000 }, \
- { "", TARGET_DEFAULT }}
-
- /* Macros used in the machine description to test the flags. */
-
- #define TARGET_C1 (target_cpu == 0)
- #define TARGET_C2 (target_cpu == 1)
- #define TARGET_C34 (target_cpu == 2)
- #define TARGET_C38 (target_cpu == 3)
- #define TARGET_ARGCOUNT (target_flags & 0100)
- #define TARGET_ARGCOUNT_NOP (target_flags & 0200)
- #define TARGET_LONG64 (target_flags & 01000)
- #define TARGET_VOLATILE_NOCACHE (target_flags & 0400)
-
- #define OVERRIDE_OPTIONS \
- { \
- extern int dollars_in_ident; \
- init_convex (); \
- /* To compile system header files, allow $ in identifiers even if -ansi */ \
- dollars_in_ident = 1; \
- if ((target_flags & 077) != (TARGET_DEFAULT & 077)) \
- target_flags &= ~TARGET_DEFAULT; \
- if (target_flags & 001) \
- target_cpu = 0; \
- else if (target_flags & 006) \
- target_cpu = 1; \
- else if (target_flags & 010) \
- target_cpu = 2; \
- else if (target_flags & 020) \
- target_cpu = 3; \
- }
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "-Dconvex -Dunix -Asystem(unix) -Acpu(convex) -Amachine(convex)"
-
- /* Print subsidiary information on the compiler version in use. */
-
- #define TARGET_VERSION fprintf (stderr, " (convex)");
-
- /* Target-dependent specs.
- Some libraries come in c1 and c2+ versions; use the appropriate ones.
- Make a target-dependent __convex_cxx__ define to relay the target cpu
- to the program being compiled. */
-
- #if TARGET_DEFAULT & 1
-
- /* C1 default */
-
- #if _IEEE_FLOAT_
-
- #define CPP_SPEC \
- "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
- %{mc2:-D__convex_c2__} \
- %{mc32:-D__convex_c32__} \
- %{mc34:-D__convex_c34__} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_IEEE_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #else
-
- #define CPP_SPEC \
- "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-D__convex_c1__}}}} \
- %{mc2:-D__convex_c2__} \
- %{mc32:-D__convex_c32__} \
- %{mc34:-D__convex_c34__} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_CONVEX_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #endif
-
- #define LIB_SPEC \
- "%{!mc2:%{!mc32:%{!mc34:%{!mc38:-lC1%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
- %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- -lc%{traditional:_old}%{p:_p}%{pg:_p}"
-
- #endif
-
- #if TARGET_DEFAULT & 2
-
- /* C2 default */
-
- #if _IEEE_FLOAT_
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
- %{mc32:-D__convex_c32__} \
- %{mc34:-D__convex_c34__} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_IEEE_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #else
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{!mc1:%{!mc32:%{!mc34:%{!mc38:-D__convex_c2__}}}} \
- %{mc32:-D__convex_c32__} \
- %{mc34:-D__convex_c34__} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_CONVEX_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #endif
-
- #define LIB_SPEC \
- "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{!mc1:%{!mc32:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
- %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- -lc%{traditional:_old}%{p:_p}%{pg:_p}"
-
- #endif
-
- #if TARGET_DEFAULT & 4
-
- /* C32 default */
-
- #if _IEEE_FLOAT_
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{mc2:-D__convex_c2__} \
- %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
- %{mc34:-D__convex_c34__} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_IEEE_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #else
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{mc2:-D__convex_c2__} \
- %{!mc1:%{!mc2:%{!mc34:%{!mc38:-D__convex_c32__}}}} \
- %{mc34:-D__convex_c34__} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_CONVEX_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #endif
-
- #define LIB_SPEC \
- "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{!mc1:%{!mc2:%{!mc34:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
- %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- -lc%{traditional:_old}%{p:_p}%{pg:_p}"
-
- #endif
-
- #if TARGET_DEFAULT & 010
-
- /* C34 default */
-
- #if _IEEE_FLOAT_
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{mc2:-D__convex_c2__} \
- %{mc32:-D__convex_c32__} \
- %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_IEEE_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #else
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{mc2:-D__convex_c2__} \
- %{mc32:-D__convex_c32__} \
- %{!mc1:%{!mc2:%{!mc32:%{!mc38:-D__convex_c34__}}}} \
- %{mc38:-D__convex_c38__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_CONVEX_FLOAT_ \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #endif
-
- #define LIB_SPEC \
- "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{!mc1:%{!mc2:%{!mc32:%{!mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
- %{mc38:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- -lc%{traditional:_old}%{p:_p}%{pg:_p}"
-
- #endif
-
- #if TARGET_DEFAULT & 020
-
- /* C38 default */
-
- #if _IEEE_FLOAT_
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{mc2:-D__convex_c2__} \
- %{mc32:-D__convex_c32__} \
- %{mc34:-D__convex_c34__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_IEEE_FLOAT_ \
- %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #else
-
- #define CPP_SPEC \
- "%{mc1:-D__convex_c1__} \
- %{mc2:-D__convex_c2__} \
- %{mc32:-D__convex_c32__} \
- %{mc34:-D__convex_c34__} \
- %{fno-builtin:-D__NO_INLINE} \
- -D__NO_INLINE_MATH -D__NO_INLINE_STDLIB \
- -D_CONVEX_FLOAT_ \
- %{!mc1:%{!mc2:%{!mc32:%{!mc34:-D__convex_c38__}}}} \
- %{.S:-P} \
- %{!traditional:-D__stdc__} \
- %{!traditional:-D_LONGLONG} \
- %{!traditional:-Ds64_t=long\\ long -Du64_t=unsigned\\ long\\ long} \
- %{!ansi:-D_POSIX_SOURCE} \
- %{!ansi:-D_CONVEX_SOURCE}"
-
- #endif
-
- #define LIB_SPEC \
- "%{mc1:-lC1%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc2:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc32:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}} \
- %{!mc1:%{!mc2:%{!mc32:%{!mc34:-lC2%{traditional:_old}%{p:_p}%{pg:_p}}}}} \
- -lc%{traditional:_old}%{p:_p}%{pg:_p}"
-
- #endif
-
- #if _IEEE_FLOAT_
-
- /* ieee default */
-
- #define ASM_SPEC "-fi"
-
- #define LINK_SPEC \
- "-E%{traditional:no}posix \
- -X \
- %{F} %{M*} %{y*} \
- -fi \
- -A__iob=___ap$iob \
- -A_use_libc_sema=___ap$use_libc_sema \
- %{traditional:-A___gcc_cleanup=__cleanup} \
- %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
- -L/usr/lib"
-
- #define STARTFILE_SPEC \
- "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
- %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
- %{pg:/usr/lib/crt/gcrt0.o} \
- /usr/lib/crt/fpmode_i.o"
-
- #else
-
- /* native default */
-
- #define ASM_SPEC "-fn"
-
- #define LINK_SPEC \
- "-E%{traditional:no}posix \
- -X \
- %{F} %{M*} %{y*} \
- -fn \
- -A__iob=___ap$iob \
- -A_use_libc_sema=___ap$use_libc_sema \
- %{traditional:-A___gcc_cleanup=__cleanup} \
- %{!traditional:-A___gcc_cleanup=___ap$do_registered_functions} \
- -L/usr/lib"
-
- #define STARTFILE_SPEC \
- "%{!pg:%{!p:/usr/lib/crt/crt0.o}} \
- %{!pg:%{p:/usr/lib/crt/mcrt0.o}} \
- %{pg:/usr/lib/crt/gcrt0.o}"
-
- #endif
-
- /* Use /path/libgcc.a instead of -lgcc, makes bootstrap work more smoothly. */
-
- #define LINK_LIBGCC_SPECIAL_1
-
- /* Allow $ in identifiers. */
-
- #define DOLLARS_IN_IDENTIFIERS 2
-
- /* Since IEEE support was added to gcc, most things seem to like it
- better if we disable exceptions and check afterward for infinity. */
-
- #if __convex__
- #if _IEEE_FLOAT_
- #define REAL_VALUE_ISNAN(x) 0
- #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0x7ff0) == 0x7ff0)
- #else
- #define REAL_VALUE_ISNAN(x) 0
- #define REAL_VALUE_ISINF(x) ((*(short *) &(x) & 0xfff0) == 0x8000)
- #endif
- #endif
-
- /* Target machine storage layout */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN 1
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is numbered. */
- #define WORDS_BIG_ENDIAN 1
-
- /* Number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 64
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 8
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 64
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
-
- /* A bitfield declared as `int' forces `int' alignment for the struct. */
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* No data type wants to be aligned rounder than this. */
- /* beware of doubles in structs -- 64 is incompatible with cc */
- #define BIGGEST_ALIGNMENT 32
-
- /* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 0
-
- /* Define sizes of basic C types to conform to ordinary usage -- these
- types depend on BITS_PER_WORD otherwise. */
- #define CHAR_TYPE_SIZE 8
- #define SHORT_TYPE_SIZE 16
- #define INT_TYPE_SIZE 32
- #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
- #define LONG_LONG_TYPE_SIZE 64
- #define FLOAT_TYPE_SIZE 32
- #define DOUBLE_TYPE_SIZE 64
- #define LONG_DOUBLE_TYPE_SIZE 64
- /* This prevents cexp.c from depending on LONG_TYPE_SIZE. */
- #define MAX_LONG_TYPE_SIZE 64
-
- /* Declare the standard types used by builtins to match convex stddef.h --
- with int rather than long. */
-
- #define SIZE_TYPE "unsigned int"
- #define PTRDIFF_TYPE "int"
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers. */
- #define FIRST_PSEUDO_REGISTER 16
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- For Convex, these are AP, FP, and SP. */
- #define FIXED_REGISTERS \
- { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }
-
- /* List the order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS.
- For Convex, put S0 (the return register) last. */
- #define REG_ALLOC_ORDER \
- { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 0, 8, 14, 15 }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On Convex, S registers can hold any type, A registers any nonfloat. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (S_REGNO_P (REGNO) \
- || (GET_MODE_SIZE (MODE) <= 4 && (MODE) != SFmode))
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- ((GET_MODE_SIZE (MODE1) <= 4 && (MODE1) != SFmode) \
- == (GET_MODE_SIZE (MODE2) <= 4 && (MODE2) != SFmode))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- #define S0_REGNUM 0
- #define A0_REGNUM 8
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM A0_REGNUM
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM (A0_REGNUM + 7)
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 1
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM (A0_REGNUM + 6)
-
- /* Register in which static-chain is passed to a function.
- Use S0, not an A reg, because this rare use would otherwise prevent
- an A reg from being available to global-alloc across calls. */
- #define STATIC_CHAIN_REGNUM S0_REGNUM
-
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM (A0_REGNUM + 1)
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* Convex has classes A (address) and S (scalar).
- A is further divided into SP_REGS (stack pointer) and INDEX_REGS.
- SI_REGS is S_REGS + INDEX_REGS -- all the regs except SP. */
-
- enum reg_class {
- NO_REGS, S_REGS, INDEX_REGS, SP_REGS, A_REGS, SI_REGS,
- ALL_REGS, LIM_REG_CLASSES
- };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Since GENERAL_REGS is the same class as ALL_REGS,
- don't give it a different class number; just make it an alias. */
-
- #define GENERAL_REGS ALL_REGS
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- {"NO_REGS", "S_REGS", "INDEX_REGS", "SP_REGS", "A_REGS", "SI_REGS", \
- "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { 0, 0x00ff, 0xfe00, 0x0100, 0xff00, 0xfeff, 0xffff }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) (regno_reg_class[REGNO])
-
- #define S_REGNO_P(REGNO) (((REGNO) - S0_REGNUM) < (unsigned) 8)
- #define A_REGNO_P(REGNO) (((REGNO) - A0_REGNUM) < (unsigned) 8)
-
- #define S_REG_P(X) (REG_P (X) && S_REGNO_P (REGNO (X)))
- #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X)))
-
- /* The class value for index registers, and the one for base regs. */
-
- #define INDEX_REG_CLASS INDEX_REGS
- #define BASE_REG_CLASS INDEX_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
- /* a => A_REGS
- d => S_REGS ('s' is taken)
- A => INDEX_REGS (i.e., A_REGS except sp) */
-
- #define REG_CLASS_FROM_LETTER(C) \
- reg_class_from_letter[(unsigned char) (C)]
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C. */
- /* 'I' is used to pass any CONST_INT and reject any CONST_DOUBLE.
- CONST_DOUBLE integers are handled by G and H constraint chars. */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) 1
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
- /* Convex uses G, H:
- value usable in ld.d (low word 0) or ld.l (high word all sign) */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- (((C) == 'G' && LD_D_P (VALUE)) || \
- ((C) == 'H' && LD_L_P (VALUE)) || \
- 0)
-
- #define LD_D_P(X) (const_double_low_int (X) == 0)
-
- #define LD_L_P(X) (const_double_low_int (X) >= 0 \
- ? const_double_high_int (X) == 0 \
- : const_double_high_int (X) == -1)
-
- /* Optional extra constraints for this machine.
- For Convex, 'Q' means that OP is a volatile MEM.
- For volatile scalars, we use instructions that bypass the data cache. */
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? (GET_CODE (OP) == MEM && MEM_VOLATILE_P (OP) \
- && ! TARGET_C1 && TARGET_VOLATILE_NOCACHE) \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-
- /* Put 2-word constants that can't be immediate operands into memory. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) != CONST_DOUBLE \
- || GET_MODE (X) == SFmode \
- || LD_L_P (X) || LD_D_P (X)) ? (CLASS) : NO_REGS)
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- #define CLASS_MAX_NREGS(CLASS, MODE) ((GET_MODE_SIZE (MODE) + 7) / 8)
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Define this if should default to -fcaller-saves. */
- #define DEFAULT_CALLER_SAVES
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by. */
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 0
-
- /* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack. */
-
- #define RETURN_POPS_ARGS(FUNTYPE, SIZE) (SIZE)
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), S0_REGNUM)
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, S0_REGNUM)
-
- /* Define this if PCC uses the nonreentrant convention for returning
- structure and union values. */
-
- #define PCC_STATIC_STRUCT_RETURN
-
- /* 1 if N is a possible register number for a function value.
- On the Convex, S0 is the only register thus used. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == S0_REGNUM)
-
- /* 1 if N is a possible register number for function argument passing. */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go. */
- /* On convex, simply count the arguments in case TARGET_ARGCOUNT is set. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += 1)
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- Convex: all args go on the stack. But return the arg count
- as the "next arg register" to be passed to gen_call. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((MODE) == VOIDmode ? gen_rtx (CONST_INT, VOIDmode, (CUM)) : 0)
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { \
- int size = ((SIZE) + 7) & -8; \
- if (size != 0) \
- fprintf (FILE, "\tsub.w #%d,sp\n", size); \
- }
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- { \
- /* Follow function with a zero to stop c34 icache prefetching. */ \
- fprintf (FILE, "\tds.h 0\n"); \
- }
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
- /* On convex, the code for a trampoline is
- ld.w #<link>,s0
- jmp <func> */
-
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- fprintf (FILE, "\tld.w #69696969,s0\n"); \
- fprintf (FILE, "\tjmp 52525252\n"); \
- }
-
- /* Length in units of the trampoline for entering a nested function. */
-
- #define TRAMPOLINE_SIZE 12
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 2)), CXT); \
- emit_move_insn (gen_rtx (MEM, Pmode, plus_constant (TRAMP, 8)), FNADDR); \
- emit_call_insn (gen_call_pop (gen_rtx (MEM, QImode, \
- gen_rtx (SYMBOL_REF, Pmode, \
- "__enable_execute_stack")), \
- const0_rtx, const0_rtx, const0_rtx)); \
- }
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tldea LP%d,a1\n\tcallq mcount\n", (LABELNO));
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- #define EXIT_IGNORE_STACK 1
-
- /* Store in the variable DEPTH the initial difference between the
- frame pointer reg contents and the stack pointer reg contents,
- as of the start of the function body. This depends on the layout
- of the fixed parts of the stack frame and on how registers are saved. */
- #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
- { (DEPTH) = (get_frame_size () + 7) & -8; }
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- /* #define HAVE_PRE_DECREMENT */
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(regno) \
- ((regno) <= LAST_VIRTUAL_REGISTER \
- ? regno_ok_for_index_p[regno] \
- : regno_ok_for_index_p[reg_renumber[regno]])
-
- #define REGNO_OK_FOR_BASE_P(regno) REGNO_OK_FOR_INDEX_P (regno)
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 1
-
- /* 1 if X is an rtx for a constant that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- /* For convex, bounce 2-word constants that can't be immediate operands. */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) != CONST_DOUBLE \
- || GET_MODE (X) == SFmode \
- || LD_L_P (X) || LD_D_P (X))
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) > LAST_VIRTUAL_REGISTER || regno_ok_for_index_p[REGNO (X)])
-
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- For Convex, valid addresses are
- indirectable or (MEM indirectable)
- where indirectable is
- const, reg, (PLUS reg const)
-
- We don't use indirection since with insn scheduling, load + indexing
- is better. */
-
- /* 1 if X is an address that we could indirect through. */
- #define INDIRECTABLE_ADDRESS_P(X) \
- (CONSTANT_ADDRESS_P (X) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- || (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 0))))
-
- /* Go to ADDR if X is a valid address. */
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { register rtx xfoob = (X); \
- if (INDIRECTABLE_ADDRESS_P (xfoob)) \
- goto ADDR; \
- if (GET_CODE (xfoob) == PRE_DEC && XEXP (xfoob, 0) == stack_pointer_rtx) \
- goto ADDR; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For Convex, nothing needs to be done. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE SImode
-
- /* Define this if the case instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- /* #define CASE_VECTOR_PC_RELATIVE */
-
- /* Define this if the case instruction drops through after the table
- when the index is out of range. Don't define it if the case insn
- jumps to the default label instead. */
- /* #define CASE_DROPS_THROUGH */
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* This flag, if defined, says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one. */
- #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 8
-
- /* Define this if zero-extension is slow (more than one real instruction). */
- /* #define SLOW_ZERO_EXTEND */
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS (! TARGET_C2)
-
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- /* #define SHIFT_COUNT_TRUNCATED */
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* On Convex, it is as good to call a constant function address as to
- call an address kept in a register. */
- #define NO_FUNCTION_CSE
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- case CONST_INT: \
- case CONST_DOUBLE: \
- return 0;
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. */
-
- #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
- case PLUS: \
- if (regno_pointer_flag != 0 \
- && GET_CODE (XEXP (RTX, 0)) == REG \
- && REGNO_POINTER_FLAG (REGNO (XEXP (RTX, 0))) \
- && GET_CODE (XEXP (RTX, 1)) == CONST_INT) \
- return 0; \
- else break; \
- case MULT: \
- return 4 * (char) (0x03060403 >> target_cpu * 8); \
- case ASHIFT: \
- case LSHIFTRT: \
- case ASHIFTRT: \
- return 4 * (char) (0x03010403 >> target_cpu * 8); \
- case MEM: \
- return 5;
-
- /* Compute the cost of an address. This is meant to approximate the size
- and/or execution delay of an insn using that address. If the cost is
- approximated by the RTL complexity, including CONST_COSTS above, as
- is usually the case for CISC machines, this macro should not be defined.
- For aggressively RISCy machines, only one insn format is allowed, so
- this macro should be a constant. The value of this macro only matters
- for valid addresses. */
-
- #define ADDRESS_COST(RTX) 0
-
- /* Specify the cost of a branch insn; roughly the number of extra insns that
- should be added to avoid a branch. */
-
- #define BRANCH_COST 0
-
- /* Adjust the cost of dependences. */
-
- #define ADJUST_COST(INSN,LINK,DEP,COST) \
- { \
- /* Antidependencies don't block issue. */ \
- if (REG_NOTE_KIND (LINK) != 0) \
- (COST) = 0; \
- /* C38 situations where delay depends on context */ \
- else if (TARGET_C38 \
- && GET_CODE (PATTERN (INSN)) == SET \
- && GET_CODE (PATTERN (DEP)) == SET) \
- { \
- enum attr_type insn_type = get_attr_type (INSN); \
- enum attr_type dep_type = get_attr_type (DEP); \
- /* index register must be ready one cycle early */ \
- if (insn_type == TYPE_MLDW || insn_type == TYPE_MLDL \
- || (insn_type == TYPE_MST \
- && reg_mentioned_p (SET_DEST (PATTERN (DEP)), \
- SET_SRC (PATTERN (INSN))))) \
- (COST) += 1; \
- /* alu forwarding off alu takes two */ \
- if (dep_type == TYPE_ALU \
- && insn_type != TYPE_ALU \
- && ! (insn_type == TYPE_MST \
- && SET_DEST (PATTERN (DEP)) == SET_SRC (PATTERN (INSN)))) \
- (COST) += 1; \
- } \
- }
-
- /* Convex uses Vax or IEEE floats.
- Follow the host format. */
- #define TARGET_FLOAT_FORMAT HOST_FLOAT_FORMAT
-
- /* But must prevent real.c from constructing Vax dfloats */
- #define REAL_VALUE_ATOF(X,S) atof (X)
- extern double atof();
-
- /* Check a `double' value for validity for a particular machine mode. */
- #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
- overflow = check_float_value (MODE, &D, OVERFLOW)
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). No extra ones are needed for convex. */
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- #define NOTICE_UPDATE_CC(EXP,INSN) {}
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #if _IEEE_FLOAT_
- #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode ieee\n")
- #else
- #define ASM_FILE_START(FILE) fprintf (FILE, ";NO_APP\n.fpmode native\n")
- #endif
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ";APP\n"
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ";NO_APP\n"
-
- /* Alignment with Convex's assembler goes like this:
- .text can be .aligned up to a halfword.
- .data and .bss can be .aligned up to a longword.
- .lcomm is not supported, explicit declarations in .bss must be used instead.
- We get alignment for word and longword .text data by conventionally
- using .text 2 for word-aligned data and .text 3 for longword-aligned
- data. This requires that the data's size be a multiple of its alignment,
- which seems to be always true. */
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP (current_section_is_text = 1, ".text")
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP (current_section_is_text = 0, ".data")
-
- /* Output before uninitialized data. */
-
- #define BSS_SECTION_ASM_OP (current_section_is_text = 0, ".bss")
-
- /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
-
- #define EXTRA_SECTIONS in_bss
-
- #define EXTRA_SECTION_FUNCTIONS \
- void \
- bss_section () \
- { \
- if (in_section != in_bss) \
- { \
- fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
- in_section = in_bss; \
- } \
- }
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if (current_section_is_text && (LOG) > 1) \
- fprintf (FILE, ".text %d\n", LOG); \
- else if (current_section_is_text) \
- fprintf (FILE, ".text\n.align %d\n", 1 << (LOG)); \
- else \
- fprintf (FILE, ".align %d\n", 1 << (LOG))
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- { \
- "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
- "sp", "a1", "a2", "a3", "a4", "a5", "ap", "fp", \
- }
-
- /* This is BSD, so it wants DBX format. */
-
- #define DBX_DEBUGGING_INFO
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* Do not break .stabs pseudos into continuations. */
-
- #define DBX_CONTIN_LENGTH 0
-
- /* This is the char to use for continuation (in case we need to turn
- continuation back on). */
-
- #define DBX_CONTIN_CHAR '?'
-
- /* Don't use stab extensions until GDB v4 port is available for convex. */
-
- #define DEFAULT_GDB_EXTENSIONS 0
- #define DBX_NO_XREFS
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
- /* Put case tables in .text 2, where they will be word-aligned */
-
- #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
- ASM_OUTPUT_ALIGN (FILE, 2); \
- ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM)
-
- #define ASM_OUTPUT_CASE_END(FILE,NUM,TABLE) \
- ASM_OUTPUT_ALIGN (FILE, 1)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- outfloat (FILE, VALUE, "%.17e", "\tds.d ", "\n")
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- outfloat (FILE, VALUE, "%.9e", "\tds.s ", "\n")
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- { \
- fprintf (FILE, "\tds.w "); \
- output_addr_const (FILE, simplify_for_convex (VALUE)); \
- fprintf (FILE, "\n"); \
- }
-
- /* Likewise for a `long long int' constant. */
-
- #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
- { \
- if (GET_CODE (VALUE) == CONST_DOUBLE) \
- fprintf (FILE, "\tds.w %d,%d\n", \
- const_double_high_int (VALUE), const_double_low_int (VALUE)); \
- else if (GET_CODE (VALUE) == CONST_INT) \
- { \
- int val = INTVAL (VALUE); \
- fprintf (FILE, "\tds.w %d,%d\n", val < 0 ? -1 : 0, val); \
- } \
- else \
- abort (); \
- }
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\tds.h "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\tds.b "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\tds.b %#x\n", (VALUE))
-
- /* This is how to output a string */
-
- #define ASM_OUTPUT_ASCII(FILE,STR,SIZE) do { \
- int i; \
- fprintf ((FILE), "\tds.b \""); \
- for (i = 0; i < (SIZE); i++) { \
- register int c = (STR)[i] & 0377; \
- if (c >= ' ' && c < 0177 && c != '\\' && c != '"') \
- putc (c, (FILE)); \
- else \
- fprintf ((FILE), "\\%03o", c);} \
- fprintf ((FILE), "\"\n");} while (0)
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tpsh.%c %s\n", \
- S_REGNO_P (REGNO) ? 'l' : 'w', \
- reg_names[REGNO])
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tpop.%c %s\n", \
- S_REGNO_P (REGNO) ? 'l' : 'w', \
- reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute. */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\tds.w L%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative.
- (not used on Convex) */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\tds.w L%d-L%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter by SIZE bytes. */
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\tds.b %u(0)\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( bss_section (), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ":\tbs.b %u\n", (ROUNDED)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Output an arg count before function entries. */
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
- asm_declare_function_name (FILE, NAME, DECL)
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print an instruction operand X on file FILE.
- CODE is the code from the %-spec that requested printing this operand;
- if `%z3' was used to print operand 3, then CODE is 'z'. */
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- print_operand (FILE, X, CODE)
-
- /* Print a memory operand whose address is X, on file FILE. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address (FILE, ADDR)
-
- /* Definitions for g++. */
-
- /* Do not put out GNU stabs for constructors and destructors.
- ld bounces them. */
-
- #define FASCIST_ASSEMBLER
-
- /* Convex user addresses are negative, so use positive numbers
- to mean `vtable index'. */
-
- #define VTABLE_USES_MASK
- #define VINDEX_MAX ((unsigned) 0x80000000)
- #define SET_DECL_VINDEX(DECL, INDEX) \
- (DECL_VINDEX (DECL) = (INDEX))
-
- /* __gcc_cleanup is loader-aliased to __ap$do_registered_functions if we
- are linking against standard libc, 0 if old (-traditional) libc. */
-
- #define EXIT_BODY \
- { \
- extern void __gcc_cleanup (); \
- if (__gcc_cleanup != _cleanup) \
- __gcc_cleanup (); \
- _cleanup (); \
- }
-
- /* cexp.y uses LONG_TYPE_SIZE which depends on target_flags, which it
- doesn't have. Until some better way exists, provide a def here. */
- #ifdef YYBISON
- int target_flags;
- #endif
-
- /* Header for convex.c.
- Here at the end so we can use types defined above. */
-
- extern int target_cpu;
- extern int current_section_is_text;
- extern enum reg_class regno_reg_class[];
- extern enum reg_class reg_class_from_letter[];
- extern char regno_ok_for_index_p_base[];
- #define regno_ok_for_index_p (regno_ok_for_index_p_base + 1)
-
- extern int const_double_low_int ();
- extern int const_double_high_int ();
- extern char *output_cmp ();
- extern char *output_condjump ();
- extern char *output_call ();
- extern void gen_ap_for_call ();
- extern int check_float_value ();
- extern void asm_declare_function_name ();
-