home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler. Alliant FX version.
- Copyright (C) 1989, 1993, 1994 Free Software Foundation, Inc.
- Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu)
- and Joe Weening (weening@gang-of-four.stanford.edu).
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* This file is based on m68k.h, simplified by removing support for
- the Sun FPA and other things not applicable to the Alliant. Some
- remnants of these features remain. */
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)"
-
- /* Print subsidiary information on the compiler version in use. */
-
- #define TARGET_VERSION fprintf (stderr, " (Alliant)");
-
- /* Run-time compilation parameters selecting different hardware
- subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs
- are no longer supported.) The Alliant CE is 68020-compatible, and
- also has floating point, vector and concurrency instructions.
-
- Although the IP doesn't have floating point, it emulates it in the
- operating system. Using this generally is faster than running code
- compiled with -msoft-float, because the soft-float code still uses
- (simulated) FP registers and ends up emulating several fmove{s,d}
- instructions per call. So I don't recommend using soft-float for
- any Alliant code. -- JSW
- */
-
- extern int target_flags;
-
- /* Macros used in the machine description to test the flags. */
-
- /* Compile for a 68020 (not a 68000 or 68010). */
- #define TARGET_68020 (target_flags & 1)
- /* Compile CE insns for floating point (not library calls). */
- #define TARGET_CE (target_flags & 2)
- /* Compile using 68020 bitfield insns. */
- #define TARGET_BITFIELD (target_flags & 4)
- /* Compile with 16-bit `int'. */
- #define TARGET_SHORT (target_flags & 040)
-
- /* Default 3 means compile 68020 and CE instructions. We don't use
- bitfield instructions because there appears to be a bug in the
- implementation of bfins on the CE. */
-
- #define TARGET_DEFAULT 3
-
- /* Define __HAVE_CE__ in preprocessor according to the -m flags.
- This will control the use of inline FP insns in certain macros.
- Also inform the program which CPU this is for. */
-
- #if TARGET_DEFAULT & 02
-
- /* -mce is the default */
- #define CPP_SPEC \
- "%{!msoft-float:-D__HAVE_CE__ }\
- %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
-
- #else
-
- /* -msoft-float is the default */
- #define CPP_SPEC \
- "%{mce:-D__HAVE_CE__ }\
- %{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
-
- #endif
-
- /* Link with libg.a when debugging, for dbx's sake. */
-
- #define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} "
-
- /* Make the linker remove temporary labels, since the Alliant assembler
- doesn't. */
-
- #define LINK_SPEC "-X"
-
- /* Every structure or union's size must be a multiple of 2 bytes. */
-
- #define STRUCTURE_SIZE_BOUNDARY 16
-
- /* This is BSD, so it wants DBX format. */
-
- #define DBX_DEBUGGING_INFO
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { { "68020", 5}, \
- { "c68020", 5}, \
- { "bitfield", 4}, \
- { "68000", -7}, \
- { "c68000", -7}, \
- { "soft-float", -2}, \
- { "nobitfield", -4}, \
- { "short", 040}, \
- { "noshort", -040}, \
- { "", TARGET_DEFAULT}}
-
- /* target machine storage layout */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is true for 68020 insns such as bfins and bfexts.
- We make it true always by avoiding using the single-bit insns
- except in special cases with constant bit numbers. */
- #define BITS_BIG_ENDIAN 1
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the 68000. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is the lowest
- numbered. */
- /* For 68000 we can decide arbitrarily
- since there are no machine instructions for them. */
- #define WORDS_BIG_ENDIAN 0
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 16
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 16
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 16
-
- /* Set this non-zero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
- /* Define number of bits in most basic integer type.
- (If undefined, default is BITS_PER_WORD). */
-
- #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
-
- /* Define these to avoid dependence on meaning of `int'.
- Note that WCHAR_TYPE_SIZE is used in cexp.y,
- where TARGET_SHORT is not available. */
-
- #define WCHAR_TYPE "long int"
- #define WCHAR_TYPE_SIZE 32
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
- For the Alliant, we give the data registers numbers 0-7,
- the address registers numbers 010-017,
- and the floating point registers numbers 020-027. */
- #define FIRST_PSEUDO_REGISTER 24
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the Alliant, these are a0 (argument pointer),
- a6 (frame pointer) and a7 (stack pointer). */
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 0, 0, 0, 0, 0, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0 }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like.
- The Alliant calling sequence allows a function to use any register,
- so we include them all here. */
-
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1, \
- 1, 1, 1, 1, 1, 1, 1, 1 }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the Alliant, ordinary registers hold 32 bits worth;
- for the FP registers, a single register is always enough for
- any floating-point value. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the Alliant, the cpu registers can hold any mode but the FP registers
- can hold only floating point. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (((MODE1) == SFmode || (MODE1) == DFmode \
- || (MODE1) == SCmode || (MODE1) == DCmode) \
- == ((MODE2) == SFmode || (MODE2) == DFmode \
- || (MODE2) == SCmode || (MODE2) == DCmode))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* m68000 pc isn't overloaded on a register. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 15
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 14
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- /* Set for now on Alliant until we find a way to make this work with
- their calling sequence. */
- #define FRAME_POINTER_REQUIRED 1
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 8
-
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 10
-
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 9
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The Alliant has three kinds of registers, so eight classes would be
- a complete set. One of them is not needed. */
-
- enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS,
- ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \
- "ADDR_REGS", "GENERAL_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { \
- 0, /* NO_REGS */ \
- 0x00ff0000, /* FP_REGS */ \
- 0x000000ff, /* DATA_REGS */ \
- 0x00ff00ff, /* DATA_OR_FP_REGS */ \
- 0x0000ff00, /* ADDR_REGS */ \
- 0x0000ffff, /* GENERAL_REGS */ \
- 0x00ffffff /* ALL_REGS */ \
- }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- extern enum reg_class regno_reg_class[];
- #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
-
- /* The class value for index registers, and the one for base regs. */
-
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS ADDR_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'a' ? ADDR_REGS : \
- ((C) == 'd' ? DATA_REGS : \
- ((C) == 'f' ? FP_REGS : \
- NO_REGS)))
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For the 68000, `I' is used for the range 1 to 8
- allowed as immediate shift counts and in addq.
- `J' is used for the range of signed numbers that fit in 16 bits.
- `K' is for numbers that moveq can't handle.
- `L' is for range -8 to -1, range of values that can be added with subq. */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
- (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
- (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
- (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 68000 series, use a data reg if possible when the
- value is a constant in the range where moveq could be used
- and we ensure that QImodes are reloaded into data regs. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) == CONST_INT \
- && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
- && (CLASS) != ADDR_REGS) \
- ? DATA_REGS \
- : GET_MODE (X) == QImode \
- ? DATA_REGS \
- : (CLASS))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On the 68000, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FP_REGS ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Moves between fp regs and other regs are two insns. */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
- || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \
- ? 4 : 2)
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* The Alliant uses -fcaller-saves by default. */
- #define DEFAULT_CALLER_SAVES
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET -4
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the 68000, sp@- in a byte insn really pushes a word. */
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 0
-
- /* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the Alliant we define this as SIZE and make the calling sequence
- (in alliant.md) pop the args. This wouldn't be necessary if we
- could add to the pending stack adjustment the size of the argument
- descriptors that are pushed after the arguments. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE)
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- /* On the Alliant the return value is in FP0 if real, else D0. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- (TREE_CODE (VALTYPE) == REAL_TYPE \
- ? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
- : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- /* On the Alliant the return value is in FP0 if real, else D0. The
- Alliant library functions for floating-point emulation return their
- values both in FP0 and in D0/D1. But since not all libgcc functions
- return the results of these directly, we cannot assume that D0/D1
- contain the values we expect on return from a libgcc function. */
-
- #define LIBCALL_VALUE(MODE) \
- (((MODE) == DFmode || (MODE) == SFmode) \
- ? gen_rtx (REG, MODE, 16) \
- : gen_rtx (REG, MODE, 0))
-
- /* 1 if N is a possible register number for a function value.
- On the Alliant, D0 and FP0 are the only registers thus used.
- (No need to mention D1 when used as a pair with D0.) */
-
- #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0)
-
- /* Define this if PCC uses the nonreentrant convention for returning
- structure and union values. */
-
- #define PCC_STATIC_STRUCT_RETURN
-
- /* 1 if N is a possible register number for function argument passing.
- On the Alliant, no registers are used in this way. */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the Alliant, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the Alliant, the offset starts at 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- /* On the Alliant all args are pushed. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used.
- The Alliant uses caller-saves, so this macro is very simple. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \
- if (frame_pointer_needed) \
- { \
- if (fsize < 0x8000) \
- fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \
- else if (TARGET_68020) \
- fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \
- else \
- fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \
- fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }}
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tjbsr __mcount_\n")
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- { if (frame_pointer_needed) \
- fprintf (FILE, "\tunlk a6\n"); \
- fprintf (FILE, "\trts\n"); }
-
- /* Store in the variable DEPTH the initial difference between the
- frame pointer reg contents and the stack pointer reg contents,
- as of the start of the function body. This depends on the layout
- of the fixed parts of the stack frame and on how registers are saved. */
-
- #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
- { \
- int regno; \
- int offset = -4; \
- for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 12; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- (DEPTH) = offset - ((get_frame_size () + 3) & -4); \
- }
-
- /* Addressing modes, and classification of registers for them. */
-
- #define HAVE_POST_INCREMENT
- /* #define HAVE_POST_DECREMENT */
-
- #define HAVE_PRE_DECREMENT
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
- #define REGNO_OK_FOR_DATA_P(REGNO) \
- ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the 68000, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
- /* 1 if X is a data register. */
-
- #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
-
- /* 1 if X is an fp register. */
-
- #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
-
- /* 1 if X is an address register */
-
- #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- /* Alliant FP instructions don't take immediate operands, so this
- forces them into memory. */
- #define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
-
- #define INDIRECTABLE_1_ADDRESS_P(X) \
- (CONSTANT_ADDRESS_P (X) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- || (GET_CODE (X) == PLUS \
- && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))
-
- #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
- { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
-
- #define GO_IF_INDEXABLE_BASE(X, ADDR) \
- { if (GET_CODE (X) == LABEL_REF) goto ADDR; \
- if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
-
- #define GO_IF_INDEXING(X, ADDR) \
- { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
-
- #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
- { GO_IF_INDEXING (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
- { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
- if (GET_CODE (XEXP (X, 0)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
- { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
-
- #define LEGITIMATE_INDEX_REG_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
- || (GET_CODE (X) == SIGN_EXTEND \
- && GET_CODE (XEXP (X, 0)) == REG \
- && GET_MODE (XEXP (X, 0)) == HImode \
- && REG_OK_FOR_INDEX_P (XEXP (X, 0))))
-
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X) \
- || (TARGET_68020 && GET_CODE (X) == MULT \
- && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 2 \
- || INTVAL (XEXP (X, 1)) == 4 \
- || INTVAL (XEXP (X, 1)) == 8)))
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
- GO_IF_INDEXED_ADDRESS (X, ADDR); }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 68000, we handle X+REG by loading X into a register R and
- using R+REG. R will go in an address reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in an address reg. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { register int ch = (X) != (OLDX); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == MULT) \
- ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
- if (GET_CODE (XEXP (X, 1)) == MULT) \
- ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
- if (ch && GET_CODE (XEXP (X, 1)) == REG \
- && GET_CODE (XEXP (X, 0)) == REG) \
- goto WIN; \
- if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
- if (GET_CODE (XEXP (X, 0)) == REG \
- || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 1), 0); \
- emit_move_insn (temp, val); \
- XEXP (X, 1) = temp; \
- goto WIN; } \
- else if (GET_CODE (XEXP (X, 1)) == REG \
- || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 0), 0); \
- emit_move_insn (temp, val); \
- XEXP (X, 0) = temp; \
- goto WIN; }}}
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 68000, only predecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE HImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Define this if zero-extension is slow (more than one real instruction). */
- #define SLOW_ZERO_EXTEND
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits. */
- #define SHIFT_COUNT_TRUNCATED 1
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE -1
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- /* Constant zero is super cheap due to clr instruction. */ \
- if (RTX == const0_rtx) return 0; \
- if ((unsigned) INTVAL (RTX) < 077) return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
-
- /* Check a `double' value for validity for a particular machine mode.
- This is defined to avoid crashes outputting certain constants. */
-
- #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
- if (OVERFLOW) \
- (D) = 3.4028234663852890e+38; \
- else if ((MODE) == SFmode) \
- { \
- if ((d) > 3.4028234663852890e+38) \
- (OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \
- else if ((D) < -3.4028234663852890e+38) \
- (OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \
- else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \
- (OVERFLOW) = 1, (D) = 0.0; \
- else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \
- (OVEFLOW) = 1, (D) = 0.0; \
- }
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- /* On the Alliant, floating-point instructions do not modify the
- ordinary CC register. Only fcmp and ftest instructions modify the
- floating-point CC register. We should actually keep track of what
- both kinds of CC registers contain, but for now we only consider
- the most recent instruction that has set either register. */
-
- /* Set if the cc value came from a floating point test, so a floating
- point conditional branch must be output. */
- #define CC_IN_FP 04000
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- /* On the 68000, all the insns to store in an address register
- fail to set the cc's. However, in some cases these instructions
- can make it possibly invalid to use the saved cc's. In those
- cases we clear out some or all of the saved cc's so they won't be used. */
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- { \
- if (GET_CODE (EXP) == SET) \
- { if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \
- { if (cc_status.value1 \
- && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
- cc_status.value2 = 0; } \
- else if (GET_CODE (SET_SRC (EXP)) == MOD \
- || GET_CODE (SET_SRC (EXP)) == UMOD \
- || (GET_CODE (SET_SRC (EXP)) == TRUNCATE \
- && (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \
- || GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \
- /* The swap insn produces cc's that don't correspond to the \
- result. */ \
- CC_STATUS_INIT; \
- else if (SET_DEST (EXP) != cc0_rtx \
- && (FP_REG_P (SET_SRC (EXP)) \
- || GET_CODE (SET_SRC (EXP)) == FIX \
- || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \
- || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \
- { CC_STATUS_INIT; } \
- /* A pair of move insns doesn't produce a useful overall cc. */ \
- else if (!FP_REG_P (SET_DEST (EXP)) \
- && !FP_REG_P (SET_SRC (EXP)) \
- && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \
- && (GET_CODE (SET_SRC (EXP)) == REG \
- || GET_CODE (SET_SRC (EXP)) == MEM \
- || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\
- { CC_STATUS_INIT; } \
- else if (GET_CODE (SET_SRC (EXP)) == CALL) \
- { CC_STATUS_INIT; } \
- else if (XEXP (EXP, 0) != pc_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = XEXP (EXP, 0); \
- cc_status.value2 = XEXP (EXP, 1); } } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { \
- if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
- CC_STATUS_INIT; \
- else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
- cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
- else CC_STATUS_INIT; \
- if (cc_status.value2 != 0 \
- && ADDRESS_REG_P (cc_status.value2) \
- && GET_MODE (cc_status.value2) == QImode) \
- CC_STATUS_INIT; \
- if (cc_status.value2 != 0) \
- switch (GET_CODE (cc_status.value2)) \
- { case PLUS: case MINUS: case MULT: \
- case DIV: case UDIV: case MOD: case UMOD: case NEG: \
- case ASHIFT: case ASHIFTRT: case LSHIFTRT: \
- case ROTATE: case ROTATERT: \
- if (GET_MODE (cc_status.value2) != VOIDmode) \
- cc_status.flags |= CC_NO_OVERFLOW; \
- break; \
- case ZERO_EXTEND: \
- /* (SET r1 (ZERO_EXTEND r2)) on this machine
- ends with a move insn moving r2 in r2's mode.
- Thus, the cc's are set for r2.
- This can set N bit spuriously. */ \
- cc_status.flags |= CC_NOT_NEGATIVE; } \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
- cc_status.value2 = 0; \
- if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \
- || (cc_status.value2 && FP_REG_P (cc_status.value2))) \
- cc_status.flags = CC_IN_FP; }
-
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { if (cc_prev_status.flags & CC_IN_FP) \
- return FLOAT; \
- if (cc_prev_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #define ASM_FILE_START(FILE) \
- fprintf (FILE, "#NO_APP\n");
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON "#APP\n"
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF "#NO_APP\n"
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP ".text"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".data"
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
- "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
- "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
-
- /* How to renumber registers for dbx and gdb.
- On the Sun-3, the floating point registers have numbers
- 18 to 25, not 16 to 23 as they do in the compiler. */
- /* (On the Alliant, dbx isn't working yet at all. */
-
- #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- do { union { double d; long v[2];} tem; \
- tem.d = (VALUE); \
- fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \
- } while (0)
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { union { float f; long l;} tem; \
- tem.f = (VALUE); \
- fprintf (FILE, "\t.long 0x%x\n", tem.l); \
- } while (0)
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \
- do { int i; unsigned char *pp = (unsigned char *) (PTR); \
- fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \
- for (i = 1; i < (SIZE); ++i, ++pp) { \
- if ((i % 8) == 0) \
- fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \
- else \
- fprintf((FILE), ",%d", (unsigned int) *pp); } \
- fprintf ((FILE), "\n"); } while (0)
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO])
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute.
- (The 68000 does not use such vectors,
- but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.long L%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative. */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) == 1) \
- fprintf (FILE, "\t.even\n"); \
- else if ((LOG) != 0) \
- fprintf (FILE, "\t.align %dn", (LOG));
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t. = . + %u\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\t.comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\t.lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- On the Alliant, we use several CODE characters:
- '.' for dot needed in Motorola-style opcode names.
- '-' for an operand pushing on the stack:
- sp@-, -(sp) or -(%sp) depending on the style of syntax.
- '+' for an operand pushing on the stack:
- sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
- '@' for a reference to the top word on the stack:
- sp@, (sp) or (%sp) depending on the style of syntax.
- '#' for an immediate operand prefix (# in MIT and Motorola syntax
- but & in SGS syntax).
- '!' for the cc register (used in an `and to cc' insn).
-
- 'b' for byte insn (no effect, on the Sun; this is for the ISI).
- 'd' to force memory addressing to be absolute, not relative.
- 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
- 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
- or print pair of registers as rx:ry. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
- || (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- { int i; \
- if (CODE == '.') ; \
- else if (CODE == '#') fprintf (FILE, "#"); \
- else if (CODE == '-') fprintf (FILE, "sp@-"); \
- else if (CODE == '+') fprintf (FILE, "sp@+"); \
- else if (CODE == '@') fprintf (FILE, "sp@"); \
- else if (CODE == '!') fprintf (FILE, "cc"); \
- else if ((X) == 0 ) ; \
- else if (GET_CODE (X) == REG) \
- { if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \
- fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \
- else \
- fprintf (FILE, "%s", reg_names[REGNO (X)]); \
- } \
- else if (GET_CODE (X) == MEM) \
- { \
- output_address (XEXP (X, 0)); \
- if (CODE == 'd' && ! TARGET_68020 \
- && CONSTANT_ADDRESS_P (XEXP (X, 0)) \
- && !(GET_CODE (XEXP (X, 0)) == CONST_INT \
- && INTVAL (XEXP (X, 0)) < 0x8000 \
- && INTVAL (XEXP (X, 0)) >= -0x8000)) \
- fprintf (FILE, ":l"); \
- } \
- else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
- { union { double d; int i[2]; } u; \
- union { float f; int i; } u1; \
- u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
- u1.f = u.d; \
- if (CODE == 'f') \
- fprintf (FILE, "#0r%.9g", u1.f); \
- else \
- fprintf (FILE, "#0x%x", u1.i); } \
- else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != DImode) \
- { union { double d; int i[2]; } u; \
- u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
- fprintf (FILE, "#0r%.20g", u.d); } \
- else { putc ('#', FILE); output_addr_const (FILE, X); }}
-
- /* Note that this contains a kludge that knows that the only reason
- we have an address (plus (label_ref...) (reg...))
- is in the insn before a tablejump, and we know that m68k.md
- generates a label LInnn: on such an insn. */
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx reg1, reg2, breg, ireg; \
- register rtx addr = ADDR; \
- static char *sz = ".BW.L...D"; \
- rtx offset; \
- switch (GET_CODE (addr)) \
- { \
- case REG: \
- fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \
- break; \
- case PRE_DEC: \
- fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \
- break; \
- case POST_INC: \
- fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \
- break; \
- case PLUS: \
- reg1 = 0; reg2 = 0; \
- ireg = 0; breg = 0; \
- offset = 0; \
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
- { \
- offset = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
- { \
- offset = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) != PLUS) ; \
- else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == MULT) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == MULT) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
- || GET_CODE (addr) == SIGN_EXTEND) \
- { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
- /* for OLD_INDEXING \
- else if (GET_CODE (addr) == PLUS) \
- { \
- if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg2 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg2 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- } \
- */ \
- if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
- if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
- || GET_CODE (reg1) == MULT)) \
- || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
- { breg = reg2; ireg = reg1; } \
- else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
- { breg = reg1; ireg = reg2; } \
- if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
- { int scale = 1; \
- if (GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (XEXP (ireg, 0))]); \
- else \
- fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (ireg)]); \
- fprintf (FILE, ":%c", sz[scale]); \
- putc (']', FILE); \
- break; } \
- if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \
- { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (breg)]); \
- break; } \
- if (ireg != 0 || breg != 0) \
- { int scale = 1; \
- if (breg == 0) \
- abort (); \
- if (addr && GET_CODE (addr) == LABEL_REF) abort (); \
- fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \
- if (addr != 0) { \
- putc( '(', FILE ); \
- output_addr_const (FILE, addr); \
- if (ireg != 0) { \
- if (GET_CODE(addr) == CONST_INT) { \
- int size_of = 1, val = INTVAL(addr); \
- if (val < -0x8000 || val >= 0x8000) \
- size_of = 4; \
- else if (val < -0x80 || val >= 0x80) \
- size_of = 2; \
- fprintf(FILE, ":%c", sz[size_of]); \
- } \
- else \
- fprintf(FILE, ":L"); } \
- putc( ')', FILE ); } \
- if (ireg != 0) { \
- putc ('[', FILE); \
- if (ireg != 0 && GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \
- else if (ireg != 0) \
- fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \
- fprintf (FILE, ":%c", sz[scale]); \
- putc (']', FILE); \
- } \
- break; \
- } \
- else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
- { fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (reg1)]); \
- break; } \
- default: \
- if (GET_CODE (addr) == CONST_INT \
- && INTVAL (addr) < 0x8000 \
- && INTVAL (addr) >= -0x8000) \
- fprintf (FILE, "%d:W", INTVAL (addr)); \
- else \
- output_addr_const (FILE, addr); \
- }}
-
- /*
- Local variables:
- version-control: t
- End:
- */
-
-