home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler. Sun 68000/68020 version.
- Copyright (C) 1987, 1988, 1993, 1994 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* Note that some other tm.h files include this one and then override
- many of the definitions that relate to assembler syntax. */
-
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */
-
- /* Print subsidiary information on the compiler version in use. */
- #ifdef MOTOROLA
- #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
- #else
- #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
- #endif
-
- /* Define SUPPORT_SUN_FPA to include support for generating code for
- the Sun Floating Point Accelerator, an optional product for Sun 3
- machines. By default, it is not defined. Avoid defining it unless
- you need to output code for the Sun3+FPA architecture, as it has the
- effect of slowing down the register set operations in hard-reg-set.h
- (total number of registers will exceed number of bits in a long,
- if defined, causing the set operations to expand to loops).
- SUPPORT_SUN_FPA is typically defined in sun3.h. */
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
-
- /* Macros used in the machine description to test the flags. */
-
- /* Compile for a 68020 (not a 68000 or 68010). */
- #define TARGET_68020 (target_flags & 1)
-
- /* Compile 68881 insns for floating point (not library calls). */
- #define TARGET_68881 (target_flags & 2)
-
- /* Compile using 68020 bitfield insns. */
- #define TARGET_BITFIELD (target_flags & 4)
-
- /* Compile using rtd insn calling sequence.
- This will not work unless you use prototypes at least
- for all functions that can take varying numbers of args. */
- #define TARGET_RTD (target_flags & 8)
-
- /* Compile passing first two args in regs 0 and 1.
- This exists only to test compiler features that will
- be needed for RISC chips. It is not usable
- and is not intended to be usable on this cpu. */
- #define TARGET_REGPARM (target_flags & 020)
-
- /* Compile with 16-bit `int'. */
- #define TARGET_SHORT (target_flags & 040)
-
- /* Compile with special insns for Sun FPA. */
- #ifdef SUPPORT_SUN_FPA
- #define TARGET_FPA (target_flags & 0100)
- #else
- #define TARGET_FPA 0
- #endif
-
- /* Compile (actually, link) for Sun SKY board. */
- #define TARGET_SKY (target_flags & 0200)
-
- /* Optimize for 68040, but still allow execution on 68020
- (-m68020-40 or -m68040).
- The 68040 will execute all 68030 and 68881/2 instructions, but some
- of them must be emulated in software by the OS. When TARGET_68040 is
- turned on, these instructions won't be used. This code will still
- run on a 68030 and 68881/2. */
- #define TARGET_68040 (target_flags & 01400)
-
- /* Use the 68040-only fp instructions (-m68040). */
- #define TARGET_68040_ONLY (target_flags & 01000)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { { "68020", -01400}, \
- { "c68020", -01400}, \
- { "68020", 5}, \
- { "c68020", 5}, \
- { "68881", 2}, \
- { "bitfield", 4}, \
- { "68000", -01405}, \
- { "c68000", -01405}, \
- { "soft-float", -01102}, \
- { "nobitfield", -4}, \
- { "rtd", 8}, \
- { "nortd", -8}, \
- { "short", 040}, \
- { "noshort", -040}, \
- { "fpa", 0100}, \
- { "nofpa", -0100}, \
- { "sky", 0200}, \
- { "nosky", -0200}, \
- { "68020-40", 0407}, \
- { "68030", -01400}, \
- { "68030", 5}, \
- { "68040", 01007}, \
- { "68851", 0}, /* Affects *_SPEC and/or GAS. */ \
- { "no-68851", 0}, /* Affects *_SPEC and/or GAS. */ \
- { "68302", 0}, /* Affects *_SPEC and/or GAS. */ \
- { "no-68302", 0}, /* Affects *_SPEC and/or GAS. */ \
- { "68332", 0}, /* Affects *_SPEC and/or GAS. */ \
- { "no-68332", 0}, /* Affects *_SPEC and/or GAS. */ \
- SUBTARGET_SWITCHES \
- { "", TARGET_DEFAULT}}
- /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
-
- /* This is meant to be redefined in the host dependent files */
- #define SUBTARGET_SWITCHES
-
- #ifdef SUPPORT_SUN_FPA
- /* Blow away 68881 flag silently on TARGET_FPA (since we can't clear
- any bits in TARGET_SWITCHES above) */
- #define OVERRIDE_OPTIONS \
- { \
- if (TARGET_FPA) target_flags &= ~2; \
- if (! TARGET_68020 && flag_pic == 2) \
- error("-fPIC is not currently supported on the 68000 or 68010\n"); \
- SUBTARGET_OVERRIDE_OPTIONS \
- }
- #else
- #define OVERRIDE_OPTIONS \
- { \
- if (! TARGET_68020 && flag_pic == 2) \
- error("-fPIC is not currently supported on the 68000 or 68010\n"); \
- SUBTARGET_OVERRIDE_OPTIONS \
- }
- #endif /* defined SUPPORT_SUN_FPA */
-
- /* This is meant to be redefined in the host dependent files */
- #define SUBTARGET_OVERRIDE_OPTIONS
-
- /* target machine storage layout */
-
- /* Define for XFmode extended real floating point support.
- This will automatically cause REAL_ARITHMETIC to be defined. */
- #define LONG_DOUBLE_TYPE_SIZE 96
-
- /* Define if you don't want extended real, but do want to use the
- software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
- /* #define REAL_ARITHMETIC */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is true for 68020 insns such as bfins and bfexts.
- We make it true always by avoiding using the single-bit insns
- except in special cases with constant bit numbers. */
- #define BITS_BIG_ENDIAN 1
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the 68000. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is the lowest
- numbered. */
- /* For 68000 we can decide arbitrarily
- since there are no machine instructions for them.
- So let's be consistent. */
- #define WORDS_BIG_ENDIAN 1
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 16
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 16
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 16
-
- /* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
- #define SELECT_RTX_SECTION(MODE, X) \
- { \
- if (!flag_pic) \
- readonly_data_section(); \
- else if (LEGITIMATE_PIC_OPERAND_P (X)) \
- readonly_data_section(); \
- else \
- data_section(); \
- }
-
- /* Define number of bits in most basic integer type.
- (If undefined, default is BITS_PER_WORD). */
-
- #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
-
- /* Define these to avoid dependence on meaning of `int'.
- Note that WCHAR_TYPE_SIZE is used in cexp.y,
- where TARGET_SHORT is not available. */
-
- #define WCHAR_TYPE "long int"
- #define WCHAR_TYPE_SIZE 32
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
- For the 68000, we give the data registers numbers 0-7,
- the address registers numbers 010-017,
- and the 68881 floating point registers numbers 020-027. */
- #ifndef SUPPORT_SUN_FPA
- #define FIRST_PSEUDO_REGISTER 24
- #else
- #define FIRST_PSEUDO_REGISTER 56
- #endif
-
- /* This defines the register which is used to hold the offset table for PIC. */
- #define PIC_OFFSET_TABLE_REGNUM 13
-
- /* Used to output a (use pic_offset_table_rtx) so that we
- always save/restore a5 in functions that use PIC relocation
- at *any* time during the compilation process. */
- #define FINALIZE_PIC finalize_pic()
-
- #ifndef SUPPORT_SUN_FPA
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 68000, only the stack pointer is such. */
-
- #define FIXED_REGISTERS \
- {/* Data registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- \
- /* Address registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 1, \
- \
- /* Floating point registers \
- (if available). */ \
- 0, 0, 0, 0, 0, 0, 0, 0 }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 0, 0, 0, 0, 0, 0, \
- 1, 1, 0, 0, 0, 0, 0, 1, \
- 1, 1, 0, 0, 0, 0, 0, 0 }
-
- #else /* SUPPORT_SUN_FPA */
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 68000, only the stack pointer is such. */
-
- /* fpa0 is also reserved so that it can be used to move shit back and
- forth between high fpa regs and everything else. */
-
- #define FIXED_REGISTERS \
- {/* Data registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- \
- /* Address registers. */ \
- 0, 0, 0, 0, 0, 0, 0, 1, \
- \
- /* Floating point registers \
- (if available). */ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- \
- /* Sun3 FPA registers. */ \
- 1, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0 }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- #define CALL_USED_REGISTERS \
- {1, 1, 0, 0, 0, 0, 0, 0, \
- 1, 1, 0, 0, 0, 0, 0, 1, \
- 1, 1, 0, 0, 0, 0, 0, 0, \
- /* FPA registers. */ \
- 1, 1, 1, 1, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0 }
-
- #endif /* defined SUPPORT_SUN_FPA */
-
-
- /* Make sure everything's fine if we *don't* have a given processor.
- This assumes that putting a register in fixed_regs will keep the
- compiler's mitts completely off it. We don't bother to zero it out
- of register classes. If neither TARGET_FPA or TARGET_68881 is set,
- the compiler won't touch since no instructions that use these
- registers will be valid.
-
- Reserve PIC_OFFSET_TABLE_REGNUM (a5) for doing PIC relocation if
- position independent code is being generated by making it a
- fixed register */
-
- #ifndef SUPPORT_SUN_FPA
-
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- if (flag_pic) \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- /* prevent saving/restoring of the base reg */ \
- if (flag_pic == 3) \
- call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- }
-
- #else /* defined SUPPORT_SUN_FPA */
-
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- int i; \
- HARD_REG_SET x; \
- if (!TARGET_FPA) \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (TARGET_FPA) \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- if (flag_pic) \
- fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
- }
-
- #endif /* defined SUPPORT_SUN_FPA */
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the 68000, ordinary registers hold 32 bits worth;
- for the 68881 registers, a single register is always enough for
- anything that can be stored in them at all. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- #ifndef SUPPORT_SUN_FPA
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 68000, the cpu registers can hold any mode but the 68881 registers
- can hold only SFmode or DFmode. The 68881 registers can't hold anything
- if 68881 use is disabled. */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (((REGNO) < 16) \
- || ((REGNO) < 24 \
- && TARGET_68881 \
- && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)))
-
- #else /* defined SUPPORT_SUN_FPA */
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 68000, the cpu registers can hold any mode but the 68881 registers
- can hold only SFmode or DFmode. And the 68881 registers can't hold anything
- if 68881 use is disabled. However, the Sun FPA register can
- (apparently) hold whatever you feel like putting in them.
- If using the fpa, don't put a double in d7/a0. */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (((REGNO) < 16 \
- && !(TARGET_FPA \
- && GET_MODE_CLASS ((MODE)) != MODE_INT \
- && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
- && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \
- && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \
- || ((REGNO) < 24 \
- ? TARGET_68881 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
- : ((REGNO) < 56 ? TARGET_FPA : 0)))
-
- #endif /* defined SUPPORT_SUN_FPA */
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (! TARGET_68881 \
- || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
- == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
- || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* m68000 pc isn't overloaded on a register. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 15
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 14
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 14
-
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 8
-
- /* Register in which address to store a structure value
- is passed to a function. */
- #define STRUCT_VALUE_REGNUM 9
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The 68000 has three kinds of registers, so eight classes would be
- a complete set. One of them is not needed. */
-
- #ifndef SUPPORT_SUN_FPA
-
- enum reg_class {
- NO_REGS, DATA_REGS,
- ADDR_REGS, FP_REGS,
- GENERAL_REGS, DATA_OR_FP_REGS,
- ADDR_OR_FP_REGS, ALL_REGS,
- LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "DATA_REGS", \
- "ADDR_REGS", "FP_REGS", \
- "GENERAL_REGS", "DATA_OR_FP_REGS", \
- "ADDR_OR_FP_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { \
- 0x00000000, /* NO_REGS */ \
- 0x000000ff, /* DATA_REGS */ \
- 0x0000ff00, /* ADDR_REGS */ \
- 0x00ff0000, /* FP_REGS */ \
- 0x0000ffff, /* GENERAL_REGS */ \
- 0x00ff00ff, /* DATA_OR_FP_REGS */ \
- 0x00ffff00, /* ADDR_OR_FP_REGS */ \
- 0x00ffffff, /* ALL_REGS */ \
- }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
-
- #else /* defined SUPPORT_SUN_FPA */
-
- /*
- * Notes on final choices:
- *
- * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
- * else.
- * 2) Removed all unions that involve address registers with
- * floating point registers (left in unions of address and data with
- * floating point).
- * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
- * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
- * 4) Left in everything else.
- */
- enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
- FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
- DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
- GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
- LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \
- "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \
- "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \
- "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { \
- {0, 0}, /* NO_REGS */ \
- {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \
- {0xff000000, 0x00ffffff}, /* FPA_REGS */ \
- {0x00ff0000, 0x00000000}, /* FP_REGS */ \
- {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \
- {0x000000ff, 0x00000000}, /* DATA_REGS */ \
- {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \
- {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \
- {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\
- {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \
- {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \
- {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\
- {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\
- {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \
- }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- extern enum reg_class regno_reg_class[];
- #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
-
- #endif /* SUPPORT_SUN_FPA */
-
- /* The class value for index registers, and the one for base regs. */
-
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS ADDR_REGS
-
- /* Get reg_class from a letter such as appears in the machine description.
- We do a trick here to modify the effective constraints on the
- machine description; we zorch the constraint letters that aren't
- appropriate for a specific target. This allows us to guarantee
- that a specific kind of register will not be used for a given target
- without fiddling with the register classes above. */
-
- #ifndef SUPPORT_SUN_FPA
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'a' ? ADDR_REGS : \
- ((C) == 'd' ? DATA_REGS : \
- ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
- NO_REGS) : \
- NO_REGS)))
-
- #else /* defined SUPPORT_SUN_FPA */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'a' ? ADDR_REGS : \
- ((C) == 'd' ? DATA_REGS : \
- ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
- NO_REGS) : \
- ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \
- NO_REGS) : \
- ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
- NO_REGS) : \
- NO_REGS)))))
-
- #endif /* defined SUPPORT_SUN_FPA */
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For the 68000, `I' is used for the range 1 to 8
- allowed as immediate shift counts and in addq.
- `J' is used for the range of signed numbers that fit in 16 bits.
- `K' is for numbers that moveq can't handle.
- `L' is for range -8 to -1, range of values that can be added with subq. */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
- (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
- (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
- (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
-
- /*
- * A small bit of explanation:
- * "G" defines all of the floating constants that are *NOT* 68881
- * constants. this is so 68881 constants get reloaded and the
- * fpmovecr is used. "H" defines *only* the class of constants that
- * the fpa can use, because these can be gotten at in any fpa
- * instruction and there is no need to force reloads.
- */
- #ifndef SUPPORT_SUN_FPA
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
- #else /* defined SUPPORT_SUN_FPA */
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
- (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
- #endif /* defined SUPPORT_SUN_FPA */
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 68000 series, use a data reg if possible when the
- value is a constant in the range where moveq could be used
- and we ensure that QImodes are reloaded into data regs.
- Also, if a floating constant needs reloading, put it in memory
- if possible. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) == CONST_INT \
- && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
- && (CLASS) != ADDR_REGS) \
- ? DATA_REGS \
- : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
- ? DATA_REGS \
- : (GET_CODE (X) == CONST_DOUBLE \
- && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
- ? NO_REGS \
- : (CLASS))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On the 68000, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
- #ifndef SUPPORT_SUN_FPA
-
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FP_REGS ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Moves between fp regs and other regs are two insns. */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
- || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
- ? 4 : 2)
-
- #else /* defined SUPPORT_SUN_FPA */
-
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Moves between fp regs and other regs are two insns. */
- /* Likewise for high fpa regs and other regs. */
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
- || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
- || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \
- || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \
- ? 4 : 2)
-
- #endif /* define SUPPORT_SUN_FPA */
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Nonzero if we need to generate stack-probe insns.
- On most systems they are not needed.
- When they are needed, define this as the stack offset to probe at. */
- #define NEED_PROBE 0
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the 68000, sp@- in a byte insn really pushes a word. */
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 8
-
- /* Value is the number of byte of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the 68000, the RTS insn cannot pop anything.
- On the 68010, the RTD insn may be used to pop them if the number
- of args is fixed, but if the number is variable then the caller
- must pop them all. RTD can't be used for library calls now
- because the library is compiled with the Unix compiler.
- Use of RTD is a selectable option, since it is incompatible with
- standard Unix calling sequences. If the option is not selected,
- the caller must always pop the args. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
- ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
- && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
- || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
- == void_type_node))) \
- ? (SIZE) : 0)
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- /* On the 68000 the return value is in D0 regardless. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- /* On the 68000 the return value is in D0 regardless. */
-
- #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
-
- /* 1 if N is a possible register number for a function value.
- On the 68000, d0 is the only register thus used. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-
- /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
- more than one register. */
-
- #define NEEDS_UNTYPED_CALL 0
-
- /* Define this if PCC uses the nonreentrant convention for returning
- structure and union values. */
-
- #define PCC_STATIC_STRUCT_RETURN
-
- /* 1 if N is a possible register number for function argument passing.
- On the 68000, no registers are used in this way. */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the m68k, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
- #define CUMULATIVE_ARGS int
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the m68k, the offset starts at 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- /* On the 68000 all args are pushed, except if -mregparm is specified
- then the first two words of arguments are passed in d0, d1.
- *NOTE* -mregparm does not work.
- It exists only to test register calling conventions. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- ((TARGET_REGPARM && (CUM) < 8 \
- && 8 < ((CUM) + ((MODE) == BLKmode \
- ? int_size_in_bytes (TYPE) \
- : GET_MODE_SIZE (MODE)))) \
- ? 2 - (CUM) / 4 : 0)
-
- /* Generate the assembly code for function entry. */
- #define FUNCTION_PROLOGUE(FILE, SIZE) output_function_prologue(FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
-
- /* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done. */
-
- #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \
- LABELNO, LABELNO);
-
- /* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
- #define BLOCK_PROFILER(FILE, BLOCKNO) \
- asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO)
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- #define EXIT_IGNORE_STACK 1
-
- /* Generate the assembly code for function exit. */
- #define FUNCTION_EPILOGUE(FILE, SIZE) output_function_epilogue (FILE, SIZE)
-
- /* This is a hook for other tm files to change. */
- /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
-
- /* Determine if the epilogue should be output as RTL.
- You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
- #define USE_RETURN_INSN use_return_insn ()
-
- /* Store in the variable DEPTH the initial difference between the
- frame pointer reg contents and the stack pointer reg contents,
- as of the start of the function body. This depends on the layout
- of the fixed parts of the stack frame and on how registers are saved.
-
- On the 68k, if we have a frame, we must add one word to its length
- to allow for the place that a6 is stored when we do have a frame pointer.
- Otherwise, we would need to compute the offset from the frame pointer
- of a local variable as a function of frame_pointer_needed, which
- is hard. */
-
- #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
- { int regno; \
- int offset = -4; \
- for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 12; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \
- + (get_frame_size () == 0 ? 0 : 4)); \
- }
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
- /* On the 68k, the trampoline looks like this:
- mov @#.,a0
- jsr @#___trampoline
- jsr @#___trampoline
- .long STATIC
- .long FUNCTION
- The reason for having three jsr insns is so that an entire line
- of the instruction cache is filled in a predictable way
- that will always be the same.
-
- We always use the assembler label ___trampoline
- regardless of whether the system adds underscores. */
-
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x207c)); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
- ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x4eb9)); \
- ASM_OUTPUT_INT (FILE, gen_rtx (SYMBOL_REF, SImode, "*___trampoline"));\
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- ASM_OUTPUT_SHORT (FILE, const0_rtx); \
- }
-
- /* Length in units of the trampoline for entering a nested function. */
-
- #define TRAMPOLINE_SIZE 26
-
- /* Alignment required for a trampoline. 16 is used to find the
- beginning of a line in the instruction cache. */
-
- #define TRAMPOLINE_ALIGN 16
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), TRAMP); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 18)), CXT); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 22)), FNADDR); \
- }
-
- /* This is the library routine that is used
- to transfer control from the trampoline
- to the actual nested function. */
-
- /* A colon is used with no explicit operands
- to cause the template string to be scanned for %-constructs. */
- /* The function name __transfer_from_trampoline is not actually used.
- The function definition just permits use of "asm with operands"
- (though the operand list is empty). */
- #define TRANSFER_FROM_TRAMPOLINE \
- void \
- __transfer_from_trampoline () \
- { \
- register char *a0 asm ("%a0"); \
- asm (GLOBAL_ASM_OP " ___trampoline"); \
- asm ("___trampoline:"); \
- asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
- asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
- asm ("rts":); \
- }
-
- /* Addressing modes, and classification of registers for them. */
-
- #define HAVE_POST_INCREMENT
- /* #define HAVE_POST_DECREMENT */
-
- #define HAVE_PRE_DECREMENT
- /* #define HAVE_PRE_INCREMENT */
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
- #define REGNO_OK_FOR_DATA_P(REGNO) \
- ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
- #ifdef SUPPORT_SUN_FPA
- #define REGNO_OK_FOR_FPA_P(REGNO) \
- (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
- #endif
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the 68000, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
- /* 1 if X is a data register. */
-
- #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
-
- /* 1 if X is an fp register. */
-
- #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
-
- /* 1 if X is an address register */
-
- #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
-
- #ifdef SUPPORT_SUN_FPA
- /* 1 if X is a register in the Sun FPA. */
- #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
- #else
- /* Answer must be no if we don't have an FPA. */
- #define FPA_REG_P(X) 0
- #endif
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_CONSTANT_P(X) 1
-
- /* Nonzero if the constant value X is a legitimate general operand
- when generating PIC code. It is given that flag_pic is on and
- that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_PIC_OPERAND_P(X) \
- (! symbolic_operand (X, VOIDmode))
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- When generating PIC, an address involving a SYMBOL_REF is legitimate
- if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
- We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
- and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
-
- Likewise for a LABEL_REF when generating PIC.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
-
- /* Allow SUBREG everywhere we allow REG. This results in better code. It
- also makes function inlining work when inline functions are called with
- arguments that are SUBREGs. */
-
- #define LEGITIMATE_BASE_REG_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == SUBREG \
- && GET_CODE (SUBREG_REG (X)) == REG \
- && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
-
- #define INDIRECTABLE_1_ADDRESS_P(X) \
- ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
- || LEGITIMATE_BASE_REG_P (X) \
- || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
- || (GET_CODE (X) == PLUS \
- && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000) \
- || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
- && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
- || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
- && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF)) \
-
- #if 0
- /* This should replace the last two (non-pic) lines
- except that Sun's assembler does not seem to handle such operands. */
- && (TARGET_68020 ? CONSTANT_ADDRESS_P (XEXP (X, 1)) \
- : (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))))
- #endif
-
-
- #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
- { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
-
- /* Only labels on dispatch tables are valid for indexing from. */
- #define GO_IF_INDEXABLE_BASE(X, ADDR) \
- { rtx temp; \
- if (GET_CODE (X) == LABEL_REF \
- && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
- && GET_CODE (temp) == JUMP_INSN \
- && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
- || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
- goto ADDR; \
- if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
-
- #define GO_IF_INDEXING(X, ADDR) \
- { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
-
- #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
- { GO_IF_INDEXING (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
- { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
- if (GET_CODE (XEXP (X, 0)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
- { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
-
- #define LEGITIMATE_INDEX_REG_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
- || (GET_CODE (X) == SIGN_EXTEND \
- && GET_CODE (XEXP (X, 0)) == REG \
- && GET_MODE (XEXP (X, 0)) == HImode \
- && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
- || (GET_CODE (X) == SUBREG \
- && GET_CODE (SUBREG_REG (X)) == REG \
- && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
-
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X) \
- || (TARGET_68020 && GET_CODE (X) == MULT \
- && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 2 \
- || INTVAL (XEXP (X, 1)) == 4 \
- || INTVAL (XEXP (X, 1)) == 8)))
-
- /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
- GO_IF_INDEXED_ADDRESS (X, ADDR); \
- if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
- && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
- goto ADDR; }
-
- /* Don't call memory_address_noforce for the address to fetch
- the switch offset. This address is ok as it stands (see above),
- but memory_address_noforce would alter it. */
- #define PIC_CASE_VECTOR_ADDRESS(index) index
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 68000, we handle X+REG by loading X into a register R and
- using R+REG. R will go in an address reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in an address reg. */
-
- #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { register int ch = (X) != (OLDX); \
- if (GET_CODE (X) == PLUS) \
- { int copied = 0; \
- if (GET_CODE (XEXP (X, 0)) == MULT) \
- { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
- if (GET_CODE (XEXP (X, 1)) == MULT) \
- { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
- if (ch && GET_CODE (XEXP (X, 1)) == REG \
- && GET_CODE (XEXP (X, 0)) == REG) \
- goto WIN; \
- if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
- if (GET_CODE (XEXP (X, 0)) == REG \
- || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 1), 0); \
- emit_move_insn (temp, val); \
- COPY_ONCE (X); \
- XEXP (X, 1) = temp; \
- goto WIN; } \
- else if (GET_CODE (XEXP (X, 1)) == REG \
- || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 0), 0); \
- emit_move_insn (temp, val); \
- COPY_ONCE (X); \
- XEXP (X, 0) = temp; \
- goto WIN; }}}
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 68000, only predecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE HImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Don't cse the address of the function being compiled. */
- #define NO_RECURSIVE_FUNCTION_CSE
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Define this if zero-extension is slow (more than one real instruction). */
- #define SLOW_ZERO_EXTEND
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE -1
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- /* Constant zero is super cheap due to clr instruction. */ \
- if (RTX == const0_rtx) return 0; \
- /* Constants between -128 and 127 are cheap due to moveq */ \
- if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \
- /* Constants between -256 and 255 are easily generated */ \
- /* by use of moveq and not.b */ \
- if ((OUTER_CODE) == SET && INTVAL (RTX) >= -256 \
- && INTVAL (RTX) < 256) return 2; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
-
- /* Compute the cost of various arithmetic operations.
- These are vaguely right for a 68020. */
- /* The costs for long multiply have been adjusted to
- work properly in synth_mult on the 68020,
- relative to an average of the time for add and the time for shift,
- taking away a little more because sometimes move insns are needed. */
- #define MULL_COST (TARGET_68040 ? 5 : 13)
- #define MULW_COST (TARGET_68040 ? 3 : 8)
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case PLUS: \
- /* An lea costs about three times as much as a simple add. */ \
- if (GET_MODE (X) == SImode \
- && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == MULT \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
- && GET_CODE (XEXP (XEXP (X, 1), 1)) == CONST_INT \
- && (INTVAL (XEXP (XEXP (X, 1), 1)) == 2 \
- || INTVAL (XEXP (XEXP (X, 1), 1)) == 4 \
- || INTVAL (XEXP (XEXP (X, 1), 1)) == 8)) \
- return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \
- break; \
- case ASHIFT: \
- case ASHIFTRT: \
- case LSHIFTRT: \
- /* A shift by a big integer takes an extra instruction. */ \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 16)) \
- return COSTS_N_INSNS (2); /* clrw;swap */ \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && !(INTVAL (XEXP (X, 1)) > 0 \
- && INTVAL (XEXP (X, 1)) <= 8)) \
- return COSTS_N_INSNS (3); /* lsr #i,dn */ \
- break; \
- case MULT: \
- if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
- return COSTS_N_INSNS (MULW_COST); \
- else \
- return COSTS_N_INSNS (MULL_COST); \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
- return COSTS_N_INSNS (27); /* div.w */ \
- return COSTS_N_INSNS (43); /* div.l */
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- /* Set if the cc value is actually in the 68881, so a floating point
- conditional branch must be output. */
- #define CC_IN_68881 04000
-
- /* Store in cc_status the expressions that the condition codes will
- describe after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- /* On the 68000, all the insns to store in an address register fail to
- set the cc's. However, in some cases these instructions can make it
- possibly invalid to use the saved cc's. In those cases we clear out
- some or all of the saved cc's so they won't be used. */
-
- #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
-
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { if (cc_prev_status.flags & CC_IN_68881) \
- return FLOAT; \
- if (cc_prev_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file. */
-
- #define ASM_FILE_START(FILE) \
- fprintf (FILE, "#NO_APP\n");
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON "#APP\n"
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF "#NO_APP\n"
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP ".text"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".data"
-
- /* Here are four prefixes that are used by asm_fprintf to
- facilitate customization for alternate assembler syntaxes.
- Machines with no likelihood of an alternate syntax need not
- define these and need not use asm_fprintf. */
-
- /* The prefix for register names. Note that REGISTER_NAMES
- is supposed to include this prefix. */
-
- #define REGISTER_PREFIX ""
-
- /* The prefix for local labels. You should be able to define this as
- an empty string, or any arbitrary string (such as ".", ".L%", etc)
- without having to make any other changes to account for the specific
- definition. Note it is a string literal, not interpreted by printf
- and friends. */
-
- #define LOCAL_LABEL_PREFIX ""
-
- /* The prefix to add to user-visible assembler symbols. */
-
- #define USER_LABEL_PREFIX "_"
-
- /* The prefix for immediate operands. */
-
- #define IMMEDIATE_PREFIX "#"
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #ifndef SUPPORT_SUN_FPA
-
- #define REGISTER_NAMES \
- {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
- "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
- "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
-
- #else /* SUPPORTED_SUN_FPA */
-
- #define REGISTER_NAMES \
- {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
- "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
- "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
- "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
- "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
- "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
- "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
-
- #endif /* defined SUPPORT_SUN_FPA */
-
- /* How to renumber registers for dbx and gdb.
- On the Sun-3, the floating point registers have numbers
- 18 to 25, not 16 to 23 as they do in the compiler. */
-
- #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define GLOBAL_ASM_OP ".globl"
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fprintf (FILE, "%s ", GLOBAL_ASM_OP); \
- assemble_name (FILE, NAME); \
- fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- asm_fprintf (FILE, "%0U%s", NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
-
- /* This is how to output a `long double' extended real constant. */
-
- #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
- do { long l[3]; \
- REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (FILE, "\t.long 0x%x,0x%x,0x%x\n", l[0], l[1], l[2]); \
- else \
- fprintf (FILE, "\t.long 0x%lx,0x%lx,0x%lx\n", l[0], l[1], l[2]); \
- } while (0)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
- fprintf (FILE, "\t.double 0r%s\n", dstr); \
- } while (0)
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { long l; \
- REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- fprintf (FILE, "\t.long 0x%x\n", l); \
- else \
- fprintf (FILE, "\t.long 0x%lx\n", l); \
- } while (0)
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute.
- (The 68000 does not use such vectors,
- but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative. */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- /* We don't have a way to align to more than a two-byte boundary, so do the
- best we can and don't complain. */
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) >= 1) \
- fprintf (FILE, "\t.even\n");
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.skip %u\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Output a float value (represented as a C double) as an immediate operand.
- This macro is a 68k-specific macro. */
-
- #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
- do { \
- if (CODE == 'f') \
- { \
- char dstr[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \
- asm_fprintf ((FILE), "%I0r%s", dstr); \
- } \
- else \
- { \
- long l; \
- REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
- if (sizeof (int) == sizeof (long)) \
- asm_fprintf ((FILE), "%I0x%x", l); \
- else \
- asm_fprintf ((FILE), "%I0x%lx", l); \
- } \
- } while (0)
-
- /* Output a double value (represented as a C double) as an immediate operand.
- This macro is a 68k-specific macro. */
- #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
- do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
- asm_fprintf (FILE, "%I0r%s", dstr); \
- } while (0)
-
- /* Note, long double immediate operands are not actually
- generated by m68k.md. */
- #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
- do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
- asm_fprintf (FILE, "%I0r%s", dstr); \
- } while (0)
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- On the 68000, we use several CODE characters:
- '.' for dot needed in Motorola-style opcode names.
- '-' for an operand pushing on the stack:
- sp@-, -(sp) or -(%sp) depending on the style of syntax.
- '+' for an operand pushing on the stack:
- sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
- '@' for a reference to the top word on the stack:
- sp@, (sp) or (%sp) depending on the style of syntax.
- '#' for an immediate operand prefix (# in MIT and Motorola syntax
- but & in SGS syntax).
- '!' for the fpcr register (used in some float-to-fixed conversions).
- '$' for the letter `s' in an op code, but only on the 68040.
- '&' for the letter `d' in an op code, but only on the 68040.
- '/' for register prefix needed by longlong.h.
-
- 'b' for byte insn (no effect, on the Sun; this is for the ISI).
- 'd' to force memory addressing to be absolute, not relative.
- 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
- 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
- than directly). Second part of 'y' below.
- 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
- or print pair of registers as rx:ry.
- 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
- CONST_DOUBLE's as SunFPA constant RAM registers if
- possible, so it should not be used except for the SunFPA. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
- || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
- || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
-
- /* A C compound statement to output to stdio stream STREAM the
- assembler syntax for an instruction operand X. X is an RTL
- expression.
-
- CODE is a value that can be used to specify one of several ways
- of printing the operand. It is used when identical operands
- must be printed differently depending on the context. CODE
- comes from the `%' specification that was used to request
- printing of the operand. If the specification was just `%DIGIT'
- then CODE is 0; if the specification was `%LTR DIGIT' then CODE
- is the ASCII code for LTR.
-
- If X is a register, this macro should print the register's name.
- The names can be found in an array `reg_names' whose type is
- `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
-
- When the machine description has a specification `%PUNCT' (a `%'
- followed by a punctuation character), this macro is called with
- a null pointer for X and the punctuation character for CODE.
-
- See m68k.c for the m68k specific codes. */
-
- #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
- /* A C compound statement to output to stdio stream STREAM the
- assembler syntax for an instruction operand that is a memory
- reference whose address is ADDR. ADDR is an RTL expression.
-
- On some machines, the syntax for a symbolic address depends on
- the section that the address refers to. On these machines,
- define the macro `ENCODE_SECTION_INFO' to store the information
- into the `symbol_ref', and then check for it here. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
-
-
- /* Definitions for generating bytecode */
-
- /* Just so it's known this target is supported by the bytecode generator.
- If this define isn't found anywhere in the target config files, then
- dummy stubs are supplied by bytecode.h, and any attempt to use
- -fbytecode will result in an error message. */
-
- #define TARGET_SUPPORTS_BYTECODE
-
- /* Minimal segment alignment within sections is 8 units. */
- #define MACHINE_SEG_ALIGN 3
-
- /* Integer alignment is two units. */
- #define INT_ALIGN 2
-
- /* Pointer alignment is eight units. */
- #define PTR_ALIGN 3
-
- /* Global symbols begin with `_' */
- #define NAMES_HAVE_UNDERSCORES
-
- /* BC_xxx below are similar to their ASM_xxx counterparts above. */
- #define BC_GLOBALIZE_LABEL(FP, NAME) bc_globalize_label(NAME)
-
- #define BC_OUTPUT_COMMON(FP, NAME, SIZE, ROUNDED) \
- do { bc_emit_common(NAME, ROUNDED); bc_globalize_label(NAME); } while (0)
-
- #define BC_OUTPUT_LOCAL(FP, NAME, SIZE, ROUNDED) \
- bc_emit_common(NAME, ROUNDED)
-
- #define BC_OUTPUT_ALIGN(FP, ALIGN) bc_align(ALIGN)
-
- #define BC_OUTPUT_LABEL(FP, NAME) bc_emit_labeldef(NAME)
-
- #define BC_OUTPUT_SKIP(FP, SIZE) bc_emit_skip(SIZE)
-
- #define BC_OUTPUT_LABELREF(FP, NAME) \
- do { \
- char *foo = (char *) xmalloc(strlen(NAME) + 2); \
- strcpy(foo, "_"); \
- strcat(foo, NAME); \
- bc_emit_labelref (foo); \
- free (foo); \
- } while (0)
-
- #define BC_OUTPUT_FLOAT(FP, VAL) \
- do { \
- float F = VAL; \
- bc_emit ((char *) &F, sizeof F); \
- } while (0)
-
- #define BC_OUTPUT_DOUBLE(FP, VAL) \
- do { \
- double D = VAL; \
- bc_emit ((char *) &D, sizeof D); \
- } while (0)
-
- #define BC_OUTPUT_BYTE(FP, VAL) \
- do { \
- char C = VAL; \
- bc_emit (&C, 1); \
- } while (0)
-
-
- #define BC_OUTPUT_FILE ASM_OUTPUT_FILE
- #define BC_OUTPUT_ASCII ASM_OUTPUT_ASCII
- #define BC_OUTPUT_IDENT ASM_OUTPUT_IDENT
-
- /* Same as XSTR, but for bytecode */
- #define BCXSTR(RTX) ((RTX)->bc_label)
-
-
- /* Flush bytecode buffer onto file */
- #define BC_WRITE_FILE(FP) \
- { \
- fprintf (FP, ".text\n"); \
- bc_seg_write (bc_text_seg, FP); \
- fprintf(FP, "\n.data\n"); \
- bc_seg_write (bc_data_seg, FP); \
- bc_sym_write (FP); /* do .globl, .bss, etc. */ \
- }
-
- /* Write one symbol */
- #define BC_WRITE_SEGSYM(SEGSYM, FP) \
- { \
- prsym (FP, (SEGSYM)->sym->name); \
- fprintf (FP, ":\n"); \
- }
-
-
- /* Write one reloc entry */
- #define BC_WRITE_RELOC_ENTRY(SEGRELOC, FP, OFFSET) \
- { \
- fprintf (FP, "\t.long "); \
- prsym (FP, (SEGRELOC)->sym->name); \
- fprintf (FP, " + %d\n", OFFSET); \
- }
-
- /* Start new line of bytecodes */
- #define BC_START_BYTECODE_LINE(FP) \
- { \
- fprintf (FP, "\t.byte"); \
- }
-
- /* Write one bytecode */
- #define BC_WRITE_BYTECODE(SEP, VAL, FP) \
- { \
- fprintf (FP, "%c0x%02X", (SEP), (VAL) & 0xff); \
- }
-
- /* Write one bytecode RTL entry */
- #define BC_WRITE_RTL(R, FP) \
- { \
- fprintf (FP, "%s+%d/0x%08X\n", (R)->label, (R)->offset, (R)->bc_label); \
- }
-
-
- /* Emit function entry trampoline */
- #define BC_EMIT_TRAMPOLINE(TRAMPSEG, CALLINFO) \
- { \
- short insn; \
- \
- /* Push a reference to the callinfo structure. */ \
- insn = 0x4879; /* pea xxx.L */ \
- seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
- seg_refsym (TRAMPSEG, CALLINFO, 0); \
- \
- /* Call __interp, pop arguments, and return. */ \
- insn = 0x4eb9; /* jsr xxx.L */ \
- seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
- seg_refsym (TRAMPSEG, "__callint", 0); \
- insn = 0x588f; /* addql #4, sp */ \
- seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
- insn = 0x4e75; /* rts */ \
- seg_data (TRAMPSEG, (char *) &insn, sizeof insn); \
- }
-
-
-
- #if 0
- #define VALIDATE_STACK() if (stack_depth < 0) abort ();
- #else
- #if 0
- #define VALIDATE_STACK() \
- fprintf (stderr, " %%%d%%", stack_depth);
- #endif
- #endif
-
- /* Define functions defined in aux-output.c and used in templates. */
-
- extern char *output_move_double ();
- extern char *output_move_const_single ();
- extern char *output_move_const_double ();
- extern char *output_btst ();
-
- /*
- Local variables:
- version-control: t
- End:
- */
-