home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for IBM RS/6000.
- Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
- Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* Note that some other tm.h files include this one and then override
- many of the definitions that relate to assembler syntax. */
-
-
- /* Names to predefine in the preprocessor for this target machine. */
-
- #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
- -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
-
- /* Print subsidiary information on the compiler version in use. */
- #define TARGET_VERSION ;
-
- /* Tell the assembler to assume that all undefined names are external.
-
- Don't do this until the fixed IBM assembler is more generally available.
- When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
- ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
- longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
- will no longer be needed. */
-
- /* #define ASM_SPEC "-u" */
-
- /* Define appropriate architecture macros for preprocessor depending on
- target switches. */
-
- #define CPP_SPEC "\
- %{!mcpu*: \
- %{mpower: %{!mpower2: -D_ARCH_PWR}} \
- %{mpower2: -D_ARCH_PWR2} \
- %{mpowerpc*: -D_ARCH_PPC} \
- %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
- %{!mno-power: %{!mpower2: -D_ARCH_PWR}}} \
- %{mcpu=common: -D_ARCH_COM} \
- %{mcpu=power: -D_ARCH_PWR} \
- %{mcpu=powerpc: -D_ARCH_PPC} \
- %{mcpu=rios: -D_ARCH_PWR} \
- %{mcpu=rios1: -D_ARCH_PWR} \
- %{mcpu=rios2: -D_ARCH_PWR2} \
- %{mcpu=rsc: -D_ARCH_PWR} \
- %{mcpu=rsc1: -D_ARCH_PWR} \
- %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
- %{mcpu=mpc601: -D_ARCH_PPC -D_ARCH_PWR} \
- %{mcpu=ppc601: -D_ARCH_PPC -D_ARCH_PWR} \
- %{mcpu=603: -D_ARCH_PPC} \
- %{mcpu=mpc603: -D_ARCH_PPC} \
- %{mcpu=ppc603: -D_ARCH_PPC} \
- %{mcpu=604: -D_ARCH_PPC} \
- %{mcpu=mpc604: -D_ARCH_PPC} \
- %{mcpu=ppc604: -D_ARCH_PPC}"
-
- /* Define the options for the binder: Start text at 512, align all segments
- to 512 bytes, and warn if there is text relocation.
-
- The -bhalt:4 option supposedly changes the level at which ld will abort,
- but it also suppresses warnings about multiply defined symbols and is
- used by the AIX cc command. So we use it here.
-
- -bnodelcsect undoes a poor choice of default relating to multiply-defined
- csects. See AIX documentation for more information about this. */
-
- #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
- %{static:-bnso -bI:/lib/syscalls.exp} %{g*:-bexport:/usr/lib/libg.exp}"
-
- /* Profiled library versions are used by linking with special directories. */
- #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
- %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc"
-
- /* gcc must do the search itself to find libgcc.a, not use -l. */
- #define LINK_LIBGCC_SPECIAL_1
-
- /* Don't turn -B into -L if the argument specifies a relative file name. */
- #define RELATIVE_PREFIX_NOT_LINKDIR
-
- /* Architecture type. */
-
- extern int target_flags;
-
- /* Use POWER architecture instructions and MQ register. */
- #define MASK_POWER 0x01
-
- /* Use POWER2 extensions to POWER architecture. */
- #define MASK_POWER2 0x02
-
- /* Use PowerPC architecture instructions. */
- #define MASK_POWERPC 0x04
-
- /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
- #define MASK_PPC_GPOPT 0x08
-
- /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
- #define MASK_PPC_GFXOPT 0x10
-
- /* Use PowerPC-64 architecture instructions. */
- #define MASK_POWERPC64 0x20
-
- /* Use revised mnemonic names defined for PowerPC architecture. */
- #define MASK_NEW_MNEMONICS 0x40
-
- /* Disable placing fp constants in the TOC; can be turned on when the
- TOC overflows. */
- #define MASK_NO_FP_IN_TOC 0x80
-
- /* Disable placing symbol+offset constants in the TOC; can be turned on when
- the TOC overflows. */
- #define MASK_NO_SUM_IN_TOC 0x100
-
- /* Output only one TOC entry per module. Normally linking fails if
- there are more than 16K unique variables/constants in an executable. With
- this option, linking fails only if there are more than 16K modules, or
- if there are more than 16K unique variables/constant in a single module.
-
- This is at the cost of having 2 extra loads and one extra store per
- function, and one less allocatable register. */
- #define MASK_MINIMAL_TOC 0x200
-
- #define TARGET_POWER (target_flags & MASK_POWER)
- #define TARGET_POWER2 (target_flags & MASK_POWER2)
- #define TARGET_POWERPC (target_flags & MASK_POWERPC)
- #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
- #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
- #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
- #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
- #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
- #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
- #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
-
- /* Run-time compilation parameters selecting different hardware subsets.
-
- Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- {{"power", MASK_POWER}, \
- {"power2", MASK_POWER | MASK_POWER2}, \
- {"no-power2", - MASK_POWER2}, \
- {"no-power", - (MASK_POWER | MASK_POWER2)}, \
- {"powerpc", MASK_POWERPC}, \
- {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
- | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
- {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
- {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
- {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
- {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
- {"new-mnemonics", MASK_NEW_MNEMONICS}, \
- {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
- {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
- | MASK_MINIMAL_TOC)}, \
- {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
- {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
- {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
- {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
- {"minimal-toc", MASK_MINIMAL_TOC}, \
- {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
- {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
- {"", TARGET_DEFAULT}}
-
- #define TARGET_DEFAULT MASK_POWER
-
- /* Processor type. */
- enum processor_type
- {PROCESSOR_RIOS1,
- PROCESSOR_RIOS2,
- PROCESSOR_PPC601,
- PROCESSOR_PPC603,
- PROCESSOR_PPC604,
- PROCESSOR_PPC620};
-
- extern enum processor_type rs6000_cpu;
-
- /* Recast the processor type to the cpu attribute. */
- #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
-
- /* Define generic processor types based upon current deployment. */
- #define PROCESSOR_COMMON PROCESSOR_PPC601
- #define PROCESSOR_POWER PROCESSOR_RIOS1
- #define PROCESSOR_POWERPC PROCESSOR_PPC601
-
- /* Define the default processor. This is overridden by other tm.h files. */
- #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
-
- /* Specify the dialect of assembler to use. New mnemonics is dialect one
- and the old mnemonics are dialect zero. */
- #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
-
- /* This macro is similar to `TARGET_SWITCHES' but defines names of
- command options that have values. Its definition is an
- initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- fixed part of the option name, and the address of a variable.
- The variable, type `char *', is set to the variable part of the
- given option if the fixed part matches. The actual option name
- is made by appending `-m' to the specified name.
-
- Here is an example which defines `-mshort-data-NUMBER'. If the
- given option is `-mshort-data-512', the variable `m88k_short_data'
- will be set to the string `"512"'.
-
- extern char *m88k_short_data;
- #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
-
- #define TARGET_OPTIONS \
- { {"cpu=", &rs6000_cpu_string}}
-
- extern char *rs6000_cpu_string;
-
- /* Sometimes certain combinations of command options do not make sense
- on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- On the RS/6000 this is used to define the target cpu type. */
-
- #define OVERRIDE_OPTIONS rs6000_override_options ()
-
- /* Show we can debug even without a frame pointer. */
- #define CAN_DEBUG_WITHOUT_FP
-
- /* target machine storage layout */
-
- /* Define this macro if it is advisable to hold scalars in registers
- in a wider mode than that declared by the program. In such cases,
- the value is constrained to be within the bounds of the declared
- type, but kept valid in the wider mode. The signedness of the
- extension may differ from that of the type. */
-
- #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
- if (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) < 4) \
- (MODE) = SImode;
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- /* That is true on RS/6000. */
- #define BITS_BIG_ENDIAN 1
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on RS/6000. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is lowest
- numbered.
-
- For RS/6000 we can decide arbitrarily since there are no machine
- instructions for them. Might as well be consistent with bits and bytes. */
- #define WORDS_BIG_ENDIAN 1
-
- /* number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Type used for ptrdiff_t, as a string used in a declaration. */
- #define PTRDIFF_TYPE "int"
-
- /* Type used for wchar_t, as a string used in a declaration. */
- #define WCHAR_TYPE "short unsigned int"
-
- /* Width of wchar_t in bits. */
- #define WCHAR_TYPE_SIZE 16
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 64
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 32
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 32
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* Every structure's size must be a multiple of this. */
- #define STRUCTURE_SIZE_BOUNDARY 8
-
- /* A bitfield declared as `int' forces `int' alignment for the struct. */
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* Make strings word-aligned so strcpy from constants will be faster. */
- #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- (TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
- /* Make arrays of chars word-aligned for the same reasons. */
- #define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
-
- /* Non-zero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 0
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- RS/6000 has 32 fixed-point registers, 32 floating-point registers,
- an MQ register, a count register, a link register, and 8 condition
- register fields, which we view here as separate registers.
-
- In addition, the difference between the frame and argument pointers is
- a function of the number of registers saved, so we need to have a
- register for AP that will later be eliminated in favor of SP or FP.
- This is a normal register, but it is fixed. */
-
- #define FIRST_PSEUDO_REGISTER 76
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
-
- On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
-
- cr5 is not supposed to be used. */
-
- #define FIXED_REGISTERS \
- {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
- 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1}
-
- /* List the order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS.
-
- We allocate in the following order:
- fp0 (not saved or used for anything)
- fp13 - fp2 (not saved; incoming fp arg registers)
- fp1 (not saved; return value)
- fp31 - fp14 (saved; order given to save least number)
- cr1, cr6, cr7 (not saved or special)
- cr0 (not saved, but used for arithmetic operations)
- cr2, cr3, cr4 (saved)
- r0 (not saved; cannot be base reg)
- r9 (not saved; best for TImode)
- r11, r10, r8-r4 (not saved; highest used first to make less conflict)
- r3 (not saved; return value register)
- r31 - r13 (saved; order given to save least number)
- r12 (not saved; if used for DImode or DFmode would use r13)
- mq (not saved; best to use it if we can)
- ctr (not saved; when we have the choice ctr is better)
- lr (saved)
- cr5, r1, r2, ap (fixed) */
-
- #define REG_ALLOC_ORDER \
- {32, \
- 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
- 33, \
- 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
- 50, 49, 48, 47, 46, \
- 69, 74, 75, 68, 70, 71, 72, \
- 0, \
- 9, 11, 10, 8, 7, 6, 5, 4, \
- 3, \
- 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
- 18, 17, 16, 15, 14, 13, 12, \
- 64, 66, 65, \
- 73, 1, 2, 67}
-
- /* True if register is floating-point. */
- #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
-
- /* True if register is a condition register. */
- #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
-
- /* True if register is an integer register. */
- #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On RS/6000, ordinary registers hold 32 bits worth;
- a single floating point register holds 64 bits worth. */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- (FP_REGNO_P (REGNO) \
- ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- For POWER and PowerPC, the GPRs can hold any mode, but the float
- registers only can hold floating modes and DImode, and CR register only
- can hold CC modes. We cannot put TImode anywhere except general
- register and it must be able to fit within the register set. */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (FP_REGNO_P (REGNO) ? \
- (GET_MODE_CLASS (MODE) == MODE_FLOAT \
- || (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD)) \
- : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
- : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
- && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
- : 1)
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
- ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
- : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
- ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
- : GET_MODE_CLASS (MODE1) == MODE_CC \
- ? GET_MODE_CLASS (MODE2) == MODE_CC \
- : GET_MODE_CLASS (MODE2) == MODE_CC \
- ? GET_MODE_CLASS (MODE1) == MODE_CC \
- : 1)
-
- /* A C expression returning the cost of moving data from a register of class
- CLASS1 to one of CLASS2.
-
- On the RS/6000, copying between floating-point and fixed-point
- registers is expensive. */
-
- #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
- ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
- : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
- : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
- : 2)
-
- /* A C expressions returning the cost of moving data of MODE from a register to
- or from memory.
-
- On the RS/6000, bump this up a bit. */
-
- #define MEMORY_MOVE_COST(MODE) \
- ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
- && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
- ? 3 : 2) \
- + 4)
-
- /* Specify the cost of a branch insn; roughly the number of extra insns that
- should be added to avoid a branch.
-
- Set this to 3 on the RS/6000 since that is roughly the average cost of an
- unscheduled conditional branch. */
-
- #define BRANCH_COST 3
-
- /* A C statement (sans semicolon) to update the integer variable COST
- based on the relationship between INSN that is dependent on
- DEP_INSN through the dependence LINK. The default is to make no
- adjustment to COST. On the RS/6000, ignore the cost of anti- and
- output-dependencies. In fact, output dependencies on the CR do have
- a cost, but it is probably not worthwhile to track it. */
-
- #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
- (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
-
- /* Define this macro to change register usage conditional on target flags.
- Set MQ register fixed (already call_used) if not POWER architecture
- (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated. */
-
- #define CONDITIONAL_REGISTER_USAGE \
- if (!TARGET_POWER) \
- fixed_regs[64] = 1;
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 1
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 31
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 67
-
- /* Place to put static chain when calling a function that requires it. */
- #define STATIC_CHAIN_REGNUM 11
-
- /* Place that structure value return address is placed.
-
- On the RS/6000, it is passed as an extra parameter. */
- #define STRUCT_VALUE 0
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The RS/6000 has three types of registers, fixed-point, floating-point,
- and condition registers, plus three special registers, MQ, CTR, and the
- link register.
-
- However, r0 is special in that it cannot be used as a base register.
- So make a class for registers valid as base registers.
-
- Also, cr0 is the only condition code register that can be used in
- arithmetic insns, so make a separate class for it. */
-
- enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS,
- NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS,
- SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS,
- ALL_REGS, LIM_REG_CLASSES };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \
- "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \
- "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \
- "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \
- {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \
- {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \
- {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \
- {~0, ~0, 0xffff} }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- #define REGNO_REG_CLASS(REGNO) \
- ((REGNO) == 0 ? GENERAL_REGS \
- : (REGNO) < 32 ? BASE_REGS \
- : FP_REGNO_P (REGNO) ? FLOAT_REGS \
- : (REGNO) == 68 ? CR0_REGS \
- : CR_REGNO_P (REGNO) ? CR_REGS \
- : (REGNO) == 64 ? MQ_REGS \
- : (REGNO) == 65 ? LINK_REGS \
- : (REGNO) == 66 ? CTR_REGS \
- : (REGNO) == 67 ? BASE_REGS \
- : NO_REGS)
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS BASE_REGS
-
- /* Get reg_class from a letter such as appears in the machine description. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'f' ? FLOAT_REGS \
- : (C) == 'b' ? BASE_REGS \
- : (C) == 'h' ? SPECIAL_REGS \
- : (C) == 'q' ? MQ_REGS \
- : (C) == 'c' ? CTR_REGS \
- : (C) == 'l' ? LINK_REGS \
- : (C) == 'x' ? CR0_REGS \
- : (C) == 'y' ? CR_REGS \
- : NO_REGS)
-
- /* The letters I, J, K, L, M, N, and P in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- `I' is signed 16-bit constants
- `J' is a constant with only the high-order 16 bits non-zero
- `K' is a constant with only the low-order 16 bits non-zero
- `L' is a constant that can be placed into a mask operand
- `M' is a constant that is greater than 31
- `N' is a constant that is an exact power of two
- `O' is the constant zero
- `P' is a constant whose negation is a signed 16-bit constant */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
- : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
- : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
- : (C) == 'L' ? mask_constant (VALUE) \
- : (C) == 'M' ? (VALUE) > 31 \
- : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
- : (C) == 'O' ? (VALUE) == 0 \
- : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
- : 0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself.
-
- We flag for special constants when we can copy the constant into
- a general register in two insns for DF and one insn for SF. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0)
-
- /* Optional extra constraints for this machine.
-
- For the RS/6000, `Q' means that this is a memory operand that is just
- an offset from a register. */
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
-
- On the RS/6000, we have to return NO_REGS when we want to reload a
- floating-point CONST_DOUBLE to force it to be copied to memory. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) == CONST_DOUBLE \
- && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
- ? NO_REGS : (CLASS))
-
- /* Return the register class of a scratch register needed to copy IN into
- or out of a register in CLASS in MODE. If it can be done directly,
- NO_REGS is returned. */
-
- #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
- secondary_reload_class (CLASS, MODE, IN)
-
- /* If we are copying between FP registers and anything else, we need a memory
- location. */
-
- #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
- ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS.
-
- On RS/6000, this is the size of MODE in words,
- except in the FP regs, where a single reg is enough for two words. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FLOAT_REGS \
- ? ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame.
-
- On the RS/6000, we grow upwards, from the area after the outgoing
- arguments. */
- /* #define FRAME_GROWS_DOWNWARD */
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated.
-
- On the RS/6000, the frame pointer is the same as the stack pointer,
- except for dynamic allocations. So we start after the fixed area and
- outgoing parameter area. */
-
- #define STARTING_FRAME_OFFSET (current_function_outgoing_args_size + 24)
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On RS/6000, don't define this because there are no push insns. */
- /* #define PUSH_ROUNDING(BYTES) */
-
- /* Offset of first parameter from the argument pointer register value.
- On the RS/6000, we define the argument pointer to the start of the fixed
- area. */
- #define FIRST_PARM_OFFSET(FNDECL) 24
-
- /* Define this if stack space is still allocated for a parameter passed
- in a register. The value is the number of bytes allocated to this
- area. */
- #define REG_PARM_STACK_SPACE(FNDECL) 32
-
- /* Define this if the above stack space is to be considered part of the
- space allocated by the caller. */
- #define OUTGOING_REG_PARM_STACK_SPACE
-
- /* This is the difference between the logical top of stack and the actual sp.
-
- For the RS/6000, sp points past the fixed area. */
- #define STACK_POINTER_OFFSET 24
-
- /* Define this if the maximum size of all the outgoing args is to be
- accumulated and pushed during the prologue. The amount can be
- found in the variable current_function_outgoing_args_size. */
- #define ACCUMULATE_OUTGOING_ARGS
-
- /* Value is the number of bytes of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack. */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0.
-
- On RS/6000 an integer value is in r3 and a floating-point value is in
- fp1. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), \
- TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3)
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3)
-
- /* The definition of this macro implies that there are cases where
- a scalar value cannot be returned in registers.
-
- For the RS/6000, any structure or union type is returned in memory. */
-
- #define RETURN_IN_MEMORY(TYPE) \
- (TYPE_MODE (TYPE) == BLKmode)
-
- /* 1 if N is a possible register number for a function value
- as seen by the caller.
-
- On RS/6000, this is r3 and fp1. */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33))
-
- /* 1 if N is a possible register number for function argument passing.
- On RS/6000, these are r3-r10 and fp1-fp13. */
-
- #define FUNCTION_ARG_REGNO_P(N) \
- (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45))
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the RS/6000, this is a structure. The first element is the number of
- total argument words, the second is used to store the next
- floating-point register number, and the third says how many more args we
- have prototype types for. */
-
- struct rs6000_args {int words, fregno, nargs_prototype; };
- #define CUMULATIVE_ARGS struct rs6000_args
-
- /* Define intermediate macro to compute the size (in registers) of an argument
- for the RS/6000. */
-
- #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
- (! (NAMED) ? 0 \
- : (MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
- : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- (CUM).words = 0, \
- (CUM).fregno = 33, \
- (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
- ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
- + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
- || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
- : 0)
-
- /* Similar, but when scanning the definition of a procedure. We always
- set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
-
- #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
- (CUM).words = 0, \
- (CUM).fregno = 33, \
- (CUM).nargs_prototype = 1000
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- { (CUM).nargs_prototype--; \
- if (NAMED) \
- { \
- (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \
- if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
- (CUM).fregno++; \
- } \
- }
-
- /* Non-zero if we can use a floating-point register to pass this arg. */
- #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
- (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46)
-
- /* Determine where to put an argument to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On RS/6000 the first eight words of non-FP are normally in registers
- and the rest are pushed. The first 13 FP args are in registers.
-
- If this is floating-point and no prototype is specified, we use
- both an FP and integer register (or possibly FP reg and stack). Library
- functions (when TYPE is zero) always have the proper types for args,
- so we can pass the FP value just in one register. emit_library_function
- doesn't support EXPR_LIST anyway. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- (! (NAMED) ? 0 \
- : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
- : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \
- ? ((CUM).nargs_prototype > 0 || (TYPE) == 0 \
- ? gen_rtx (REG, MODE, (CUM).fregno) \
- : ((CUM).words < 8 \
- ? gen_rtx (EXPR_LIST, VOIDmode, \
- gen_rtx (REG, (MODE), 3 + (CUM).words), \
- gen_rtx (REG, (MODE), (CUM).fregno)) \
- : gen_rtx (EXPR_LIST, VOIDmode, 0, \
- gen_rtx (REG, (MODE), (CUM).fregno)))) \
- : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0)
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- (! (NAMED) ? 0 \
- : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \
- : (((CUM).words < 8 \
- && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \
- ? 8 - (CUM).words : 0))
-
- /* Perform any needed actions needed for a function that is receiving a
- variable number of arguments.
-
- CUM is as above.
-
- MODE and TYPE are the mode and type of the current parameter.
-
- PRETEND_SIZE is a variable that should be set to the amount of stack
- that must be pushed by the prolog to pretend that our caller pushed
- it.
-
- Normally, this macro will push all remaining incoming registers on the
- stack and set PRETEND_SIZE to the length of the registers pushed. */
-
- #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
- { if ((CUM).words < 8) \
- { \
- int first_reg_offset = (CUM).words; \
- \
- if (MUST_PASS_IN_STACK (MODE, TYPE)) \
- first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
- \
- if (first_reg_offset > 8) \
- first_reg_offset = 8; \
- \
- if (! (NO_RTL) && first_reg_offset != 8) \
- move_block_from_reg \
- (3 + first_reg_offset, \
- gen_rtx (MEM, BLKmode, \
- plus_constant (virtual_incoming_args_rtx, \
- first_reg_offset * 4)), \
- 8 - first_reg_offset, (8 - first_reg_offset) * UNITS_PER_WORD); \
- PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \
- } \
- }
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- output_function_profiler ((FILE), (LABELNO));
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. No definition is equivalent to
- always zero.
-
- On the RS/6000, this is non-zero because we can restore the stack from
- its backpointer, which we maintain. */
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- The trampoline should set the static chain pointer to value placed
- into the trampoline and should branch to the specified routine.
-
- On the RS/6000, this is not code at all, but merely a data area,
- since that is the way all functions are called. The first word is
- the address of the function, the second word is the TOC pointer (r2),
- and the third word is the static chain value. */
-
- #define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); }
-
- /* Length in units of the trampoline for entering a nested function. */
-
- #define TRAMPOLINE_SIZE 12
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
- #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
- { \
- emit_move_insn (gen_rtx (MEM, SImode, \
- memory_address (SImode, (ADDR))), \
- gen_rtx (MEM, SImode, \
- memory_address (SImode, (FNADDR)))); \
- emit_move_insn (gen_rtx (MEM, SImode, \
- memory_address (SImode, \
- plus_constant ((ADDR), 4))), \
- gen_rtx (MEM, SImode, \
- memory_address (SImode, \
- plus_constant ((FNADDR), 4)))); \
- emit_move_insn (gen_rtx (MEM, SImode, \
- memory_address (SImode, \
- plus_constant ((ADDR), 8))), \
- force_reg (SImode, (CXT))); \
- }
-
- /* Definitions for register eliminations.
-
- We have two registers that can be eliminated on the RS/6000. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer.
-
- In addition, we use the elimination mechanism to see if r30 is needed
- Initially we assume that it isn't. If it is, we spill it. This is done
- by making it an eliminable register. We replace it with itself so that
- if it isn't needed, then existing uses won't be modified. */
-
- /* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
- #define ELIMINABLE_REGS \
- {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- { 30, 30} }
-
- /* Given FROM and TO register numbers, say whether this elimination is allowed.
- Frame pointer elimination is automatically handled.
-
- For the RS/6000, if frame pointer elimination is being done, we would like
- to convert ap into fp, not sp.
-
- We need r30 if -mmininal-toc was specified, and there are constant pool
- references. */
-
- #define CAN_ELIMINATE(FROM, TO) \
- ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
- ? ! frame_pointer_needed \
- : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || get_pool_size () == 0 \
- : 1)
-
- /* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
- #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- { \
- int total_stack_size = (rs6000_sa_size () + get_frame_size () \
- + current_function_outgoing_args_size); \
- \
- total_stack_size = (total_stack_size + 7) & ~7; \
- \
- if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
- { \
- if (rs6000_pushes_stack ()) \
- (OFFSET) = 0; \
- else \
- (OFFSET) = - total_stack_size; \
- } \
- else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
- (OFFSET) = total_stack_size; \
- else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
- { \
- if (rs6000_pushes_stack ()) \
- (OFFSET) = total_stack_size; \
- else \
- (OFFSET) = 0; \
- } \
- else if ((FROM) == 30) \
- (OFFSET) = 0; \
- else \
- abort (); \
- }
-
- /* Addressing modes, and classification of registers for them. */
-
- /* #define HAVE_POST_INCREMENT */
- /* #define HAVE_POST_DECREMENT */
-
- #define HAVE_PRE_DECREMENT
- #define HAVE_PRE_INCREMENT
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < FIRST_PSEUDO_REGISTER \
- ? (REGNO) <= 31 || (REGNO) == 67 \
- : (reg_renumber[REGNO] >= 0 \
- && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
-
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < FIRST_PSEUDO_REGISTER \
- ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
- : (reg_renumber[REGNO] > 0 \
- && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
-
- On the RS/6000, all integer constants are acceptable, most won't be valid
- for particular insns, though. Only easy FP constants are
- acceptable. */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
- || easy_fp_constant (X, GET_MODE (X)))
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- On the RS/6000, there are four valid address: a SYMBOL_REF that
- refers to a constant pool entry of an address (or the sum of it
- plus a constant), a short (16-bit signed) constant plus a register,
- the sum of two registers, or a register indirect, possibly with an
- auto-increment. For DFmode and DImode with an constant plus register,
- we must ensure that both words are addressable. */
-
- #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
- (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \
- && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
-
- #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
- (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
- || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
- && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
-
- #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
- (GET_CODE (X) == CONST_INT \
- && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
-
- #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
- (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
- && (((MODE) != DFmode && (MODE) != DImode) \
- || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
-
- #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
- (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == REG \
- && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
- || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
- && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
-
- #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
- goto ADDR; \
- if (GET_CODE (X) == PRE_INC \
- && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
- goto ADDR; \
- if (GET_CODE (X) == PRE_DEC \
- && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
- goto ADDR; \
- if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
- goto ADDR; \
- if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
- goto ADDR; \
- if ((MODE) != DImode && (MODE) != TImode \
- && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
- goto ADDR; \
- }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- On RS/6000, first check for the sum of a register with a constant
- integer that is out of range. If so, generate code to add the
- constant with the low-order 16 bits masked to the register and force
- this result into another register (this can be done with `cau').
- Then generate an address of REG+(CONST&0xffff), allowing for the
- possibility of bit 16 being a one.
-
- Then check for the sum of a register and something not constant, try to
- load the other things into a register and return the sum. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
- { int high_int, low_int; \
- high_int = INTVAL (XEXP (X, 1)) >> 16; \
- low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
- if (low_int & 0x8000) \
- high_int += 1, low_int |= 0xffff0000; \
- (X) = gen_rtx (PLUS, SImode, \
- force_operand \
- (gen_rtx (PLUS, SImode, XEXP (X, 0), \
- gen_rtx (CONST_INT, VOIDmode, \
- high_int << 16)), 0),\
- gen_rtx (CONST_INT, VOIDmode, low_int)); \
- goto WIN; \
- } \
- else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
- && GET_CODE (XEXP (X, 1)) != CONST_INT \
- && (MODE) != DImode && (MODE) != TImode) \
- { \
- (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
- force_reg (SImode, force_operand (XEXP (X, 1), 0))); \
- goto WIN; \
- } \
- }
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
-
- On the RS/6000 this is true if the address is valid with a zero offset
- but not with an offset of four (this means it cannot be used as an
- address for DImode or DFmode) or is a pre-increment or decrement. Since
- we know it is valid, we just check for an address that is not valid with
- an offset of four. */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { if (GET_CODE (ADDR) == PLUS \
- && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
- && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
- goto LABEL; \
- if (GET_CODE (ADDR) == PRE_INC) \
- goto LABEL; \
- if (GET_CODE (ADDR) == PRE_DEC) \
- goto LABEL; \
- }
-
- /* Define this if some processing needs to be done immediately before
- emitting code for an insn. */
-
- /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE SImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 0
-
- /* This flag, if defined, says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one. */
-
- /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 16
-
- /* Nonzero if access to memory by bytes is no faster than for words.
- Also non-zero if doing byte operations (specifically shifts) in registers
- is undesirable. */
- #define SLOW_BYTE_ACCESS 1
-
- /* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
- #define WORD_REGISTER_OPERATIONS
-
- /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
- #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
-
- /* Define if loading short immediate values into registers sign extends. */
- #define SHORT_IMMEDIATES_SIGN_EXTEND
-
- /* The RS/6000 uses the XCOFF format. */
-
- #define XCOFF_DEBUGGING_INFO
-
- /* Define if the object format being used is COFF or a superset. */
- #define OBJECT_FORMAT_COFF
-
- /* Define the magic numbers that we recognize as COFF. */
-
- #define MY_ISCOFF(magic) \
- ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
-
- /* This is the only version of nm that collect2 can work with. */
- #define REAL_NM_FILE_NAME "/usr/ucb/nm"
-
- /* We don't have GAS for the RS/6000 yet, so don't write out special
- .stabs in cc1plus. */
-
- #define FASCIST_ASSEMBLER
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* Mode of a function address in a call instruction (for indexing purposes).
-
- Doesn't matter on RS/6000. */
- #define FUNCTION_MODE SImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
- #define NO_FUNCTION_CSE
-
- /* Define this to be nonzero if shift instructions ignore all but the low-order
- few bits.
-
- The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
- have been dropped from the PowerPC architecture. */
-
- #define SHIFT_COUNT_TRUNCATED TARGET_POWER ? 1 : 0
-
- /* Use atexit for static constructors/destructors, instead of defining
- our own exit function. */
- #define HAVE_ATEXIT
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch.
-
- On the RS/6000, if it is legal in the insn, it is free. So this
- always returns 0. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- case CONST_DOUBLE: \
- return 0;
-
- /* Provide the costs of a rtl expression. This is in the body of a
- switch on CODE. */
-
- #define RTX_COSTS(X,CODE,OUTER_CODE) \
- case MULT: \
- switch (rs6000_cpu) \
- { \
- case PROCESSOR_RIOS1: \
- return (GET_CODE (XEXP (X, 1)) != CONST_INT \
- ? COSTS_N_INSNS (5) \
- : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
- ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
- case PROCESSOR_RIOS2: \
- return COSTS_N_INSNS (2); \
- case PROCESSOR_PPC601: \
- case PROCESSOR_PPC603: \
- return COSTS_N_INSNS (5); \
- case PROCESSOR_PPC604: \
- case PROCESSOR_PPC620: \
- return COSTS_N_INSNS (4); \
- } \
- case DIV: \
- case MOD: \
- if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
- return COSTS_N_INSNS (2); \
- /* otherwise fall through to normal divide. */ \
- case UDIV: \
- case UMOD: \
- switch (rs6000_cpu) \
- { \
- case PROCESSOR_RIOS1: \
- return COSTS_N_INSNS (19); \
- case PROCESSOR_RIOS2: \
- return COSTS_N_INSNS (13); \
- case PROCESSOR_PPC601: \
- return COSTS_N_INSNS (36); \
- case PROCESSOR_PPC603: \
- return COSTS_N_INSNS (37); \
- case PROCESSOR_PPC604: \
- case PROCESSOR_PPC620: \
- return COSTS_N_INSNS (20); \
- } \
- case MEM: \
- /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
- return 5;
-
- /* Compute the cost of an address. This is meant to approximate the size
- and/or execution delay of an insn using that address. If the cost is
- approximated by the RTL complexity, including CONST_COSTS above, as
- is usually the case for CISC machines, this macro should not be defined.
- For aggressively RISCy machines, only one insn format is allowed, so
- this macro should be a constant. The value of this macro only matters
- for valid addresses.
-
- For the RS/6000, everything is cost 0. */
-
- #define ADDRESS_COST(RTX) 0
-
- /* Adjust the length of an INSN. LENGTH is the currently-computed length and
- should be adjusted to reflect any required changes. This macro is used when
- there is some systematic length adjustment required that would be difficult
- to express in the length attribute. */
-
- /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
-
- /* Add any extra modes needed to represent the condition code.
-
- For the RS/6000, we need separate modes when unsigned (logical) comparisons
- are being done and we need a separate mode for floating-point. We also
- use a mode for the case when we are comparing the results of two
- comparisons. */
-
- #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
-
- /* Define the names for the modes specified above. */
- #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
-
- /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison. For floating-point, CCFPmode
- should be used. CCUNSmode should be used for unsigned comparisons.
- CCEQmode should be used when we are doing an inequality comparison on
- the result of a comparison. CCmode should be used in all other cases. */
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
- : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
- : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
- ? CCEQmode : CCmode))
-
- /* Define the information needed to generate branch and scc insns. This is
- stored from the compare operation. Note that we can't use "rtx" here
- since it hasn't been defined! */
-
- extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
- extern int rs6000_compare_fp_p;
-
- /* Set to non-zero by "fix" operation to indicate that itrunc and
- uitrunc must be defined. */
-
- extern int rs6000_trunc_used;
-
- /* Function names to call to do floating point truncation. */
-
- #define RS6000_ITRUNC "itrunc"
- #define RS6000_UITRUNC "uitrunc"
-
- /* Control the assembler format that we output. */
-
- /* Output at beginning of assembler file.
-
- Initialize the section names for the RS/6000 at this point.
-
- Specify filename to assembler.
-
- We want to go into the TOC section so at least one .toc will be emitted.
- Also, in order to output proper .bs/.es pairs, we need at least one static
- [RW] section emitted.
-
- We then switch back to text to force the gcc2_compiled. label and the space
- allocated after it (when profiling) into the text section.
-
- Finally, declare mcount when profiling to make the assembler happy. */
-
- #define ASM_FILE_START(FILE) \
- { \
- rs6000_gen_section_name (&xcoff_bss_section_name, \
- main_input_filename, ".bss_"); \
- rs6000_gen_section_name (&xcoff_private_data_section_name, \
- main_input_filename, ".rw_"); \
- rs6000_gen_section_name (&xcoff_read_only_section_name, \
- main_input_filename, ".ro_"); \
- \
- output_file_directive (FILE, main_input_filename); \
- toc_section (); \
- if (write_symbols != NO_DEBUG) \
- private_data_section (); \
- text_section (); \
- if (profile_flag) \
- fprintf (FILE, "\t.extern .mcount\n"); \
- }
-
- /* Output at end of assembler file.
-
- On the RS/6000, referencing data should automatically pull in text. */
-
- #define ASM_FILE_END(FILE) \
- { \
- text_section (); \
- fprintf (FILE, "_section_.text:\n"); \
- data_section (); \
- fprintf (FILE, "\t.long _section_.text\n"); \
- }
-
- /* We define this to prevent the name mangler from putting dollar signs into
- function names. */
-
- #define NO_DOLLAR_IN_LABEL
-
- /* We define this to 0 so that gcc will never accept a dollar sign in a
- variable name. This is needed because the AIX assembler will not accept
- dollar signs. */
-
- #define DOLLARS_IN_IDENTIFIERS 0
-
- /* Implicit library calls should use memcpy, not bcopy, etc. */
-
- #define TARGET_MEM_FUNCTIONS
-
- /* Define the extra sections we need. We define three: one is the read-only
- data section which is used for constants. This is a csect whose name is
- derived from the name of the input file. The second is for initialized
- global variables. This is a csect whose name is that of the variable.
- The third is the TOC. */
-
- #define EXTRA_SECTIONS \
- read_only_data, private_data, read_only_private_data, toc, bss
-
- /* Define the name of our readonly data section. */
-
- #define READONLY_DATA_SECTION read_only_data_section
-
- /* If we are referencing a function that is static or is known to be
- in this file, make the SYMBOL_REF special. We can use this to indicate
- that we can branch to this function without emitting a no-op after the
- call. */
-
- #define ENCODE_SECTION_INFO(DECL) \
- if (TREE_CODE (DECL) == FUNCTION_DECL \
- && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
- SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
-
- /* Indicate that jump tables go in the text section. */
-
- #define JUMP_TABLES_IN_TEXT_SECTION
-
- /* Define the routines to implement these extra sections. */
-
- #define EXTRA_SECTION_FUNCTIONS \
- \
- void \
- read_only_data_section () \
- { \
- if (in_section != read_only_data) \
- { \
- fprintf (asm_out_file, ".csect %s[RO]\n", \
- xcoff_read_only_section_name); \
- in_section = read_only_data; \
- } \
- } \
- \
- void \
- private_data_section () \
- { \
- if (in_section != private_data) \
- { \
- fprintf (asm_out_file, ".csect %s[RW]\n", \
- xcoff_private_data_section_name); \
- \
- in_section = private_data; \
- } \
- } \
- \
- void \
- read_only_private_data_section () \
- { \
- if (in_section != read_only_private_data) \
- { \
- fprintf (asm_out_file, ".csect %s[RO]\n", \
- xcoff_private_data_section_name); \
- in_section = read_only_private_data; \
- } \
- } \
- \
- void \
- toc_section () \
- { \
- if (TARGET_MINIMAL_TOC) \
- { \
- static int toc_initialized = 0; \
- \
- /* toc_section is always called at least once from ASM_FILE_START, \
- so this is guaranteed to always be defined once and only once \
- in each file. */ \
- if (! toc_initialized) \
- { \
- fprintf (asm_out_file, ".toc\nLCTOC..0:\n"); \
- fprintf (asm_out_file, "\t.tc toc_table[TC],toc_table[RW]\n"); \
- toc_initialized = 1; \
- } \
- \
- if (in_section != toc) \
- fprintf (asm_out_file, ".csect toc_table[RW]\n"); \
- } \
- else \
- { \
- if (in_section != toc) \
- fprintf (asm_out_file, ".toc\n"); \
- } \
- in_section = toc; \
- }
-
- /* This macro produces the initial definition of a function name.
- On the RS/6000, we need to place an extra '.' in the function name and
- output the function descriptor.
-
- The csect for the function will have already been created by the
- `text_section' call previously done. We do have to go back to that
- csect, however. */
-
- /* ??? What do the 16 and 044 in the .function line really mean? */
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
- { if (TREE_PUBLIC (DECL)) \
- { \
- fprintf (FILE, "\t.globl ."); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); \
- fprintf (FILE, "\n"); \
- } \
- else if (write_symbols == XCOFF_DEBUG) \
- { \
- fprintf (FILE, "\t.lglobl ."); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); \
- fprintf (FILE, "\n"); \
- } \
- fprintf (FILE, ".csect "); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); \
- fprintf (FILE, "[DS]\n"); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); \
- fprintf (FILE, ":\n"); \
- fprintf (FILE, "\t.long ."); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); \
- fprintf (FILE, ", TOC[tc0], 0\n"); \
- fprintf (FILE, ".csect .text[PR]\n."); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); \
- fprintf (FILE, ":\n"); \
- if (write_symbols == XCOFF_DEBUG) \
- xcoffout_declare_function (FILE, DECL, NAME); \
- }
-
- /* Return non-zero if this entry is to be written into the constant pool
- in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
- containing one of them. If -mfp-in-toc (the default), we also do
- this for floating-point constants. We actually can only do this
- if the FP formats of the target and host machines are the same, but
- we can't check that since not every file that uses
- GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
-
- #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
- (GET_CODE (X) == SYMBOL_REF \
- || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
- || GET_CODE (X) == LABEL_REF \
- || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
- && GET_CODE (X) == CONST_DOUBLE \
- && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- && BITS_PER_WORD == HOST_BITS_PER_INT))
-
- /* Select section for constant in constant pool.
-
- On RS/6000, all constants are in the private read-only data area.
- However, if this is being placed in the TOC it must be output as a
- toc entry. */
-
- #define SELECT_RTX_SECTION(MODE, X) \
- { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
- toc_section (); \
- else \
- read_only_private_data_section (); \
- }
-
- /* Macro to output a special constant pool entry. Go to WIN if we output
- it. Otherwise, it is written the usual way.
-
- On the RS/6000, toc entries are handled this way. */
-
- #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
- { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
- { \
- output_toc (FILE, X, LABELNO); \
- goto WIN; \
- } \
- }
-
- /* Select the section for an initialized data object.
-
- On the RS/6000, we have a special section for all variables except those
- that are static. */
-
- #define SELECT_SECTION(EXP,RELOC) \
- { \
- if ((TREE_CODE (EXP) == STRING_CST \
- && !flag_writable_strings) \
- || (TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
- && DECL_INITIAL (EXP) \
- && (DECL_INITIAL (EXP) == error_mark_node \
- || TREE_CONSTANT (DECL_INITIAL (EXP))) \
- && ! (RELOC))) \
- { \
- if (TREE_PUBLIC (EXP)) \
- read_only_data_section (); \
- else \
- read_only_private_data_section (); \
- } \
- else \
- { \
- if (TREE_PUBLIC (EXP)) \
- data_section (); \
- else \
- private_data_section (); \
- } \
- }
-
- /* This outputs NAME to FILE up to the first null or '['. */
-
- #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
- if ((NAME)[0] == '*' || (NAME)[strlen (NAME) - 1] != ']') \
- assemble_name (FILE, NAME); \
- else \
- { \
- int _len = strlen (NAME); \
- char *_p = alloca (_len + 1); \
- \
- strcpy (_p, NAME); \
- _p[_len - 4] = '\0'; \
- assemble_name (FILE, _p); \
- }
-
- /* Output something to declare an external symbol to the assembler. Most
- assemblers don't need this.
-
- If we haven't already, add "[RW]" (or "[DS]" for a function) to the
- name. Normally we write this out along with the name. In the few cases
- where we can't, it gets stripped off. */
-
- #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
- { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
- if ((TREE_CODE (DECL) == VAR_DECL \
- || TREE_CODE (DECL) == FUNCTION_DECL) \
- && (NAME)[0] != '*' \
- && (NAME)[strlen (NAME) - 1] != ']') \
- { \
- char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
- strcpy (_name, XSTR (_symref, 0)); \
- strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
- XSTR (_symref, 0) = _name; \
- } \
- fprintf (FILE, "\t.extern "); \
- assemble_name (FILE, XSTR (_symref, 0)); \
- if (TREE_CODE (DECL) == FUNCTION_DECL) \
- { \
- fprintf (FILE, "\n\t.extern ."); \
- RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
- } \
- fprintf (FILE, "\n"); \
- }
-
- /* Similar, but for libcall. We only have to worry about the function name,
- not that of the descriptor. */
-
- #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
- { fprintf (FILE, "\t.extern ."); \
- assemble_name (FILE, XSTR (FUN, 0)); \
- fprintf (FILE, "\n"); \
- }
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON ""
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF ""
-
- /* Output before instructions. */
-
- #define TEXT_SECTION_ASM_OP ".csect .text[PR]"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".csect .data[RW]"
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"0", "1", "2", "3", "4", "5", "6", "7", \
- "8", "9", "10", "11", "12", "13", "14", "15", \
- "16", "17", "18", "19", "20", "21", "22", "23", \
- "24", "25", "26", "27", "28", "29", "30", "31", \
- "0", "1", "2", "3", "4", "5", "6", "7", \
- "8", "9", "10", "11", "12", "13", "14", "15", \
- "16", "17", "18", "19", "20", "21", "22", "23", \
- "24", "25", "26", "27", "28", "29", "30", "31", \
- "mq", "lr", "ctr", "ap", \
- "0", "1", "2", "3", "4", "5", "6", "7" }
-
- /* Table of additional register names to use in user input. */
-
- #define ADDITIONAL_REGISTER_NAMES \
- {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
- "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
- "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
- "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
- "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
- "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
- "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
- "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
- "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
- "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
- "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
- "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
- "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
- "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
- "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
- "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
- /* no additional names for: mq, lr, ctr, ap */ \
- "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
- "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
- "cc", 68 }
-
- /* How to renumber registers for dbx and gdb. */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* Text to write out after a CALL that may be replaced by glue code by
- the loader. This depends on the AIX version. */
- #define RS6000_CALL_GLUE "cror 31,31,31"
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* This is how to output a command to make the user-level label named NAME
- defined for reference from other files. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs ("\t.globl ", FILE); \
- RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, NAME)
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
-
- /* This is how to output an internal label prefix. rs6000.c uses this
- when generating traceback tables. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
- fprintf (FILE, "%s..", PREFIX)
-
- /* This is how to output a label for a jump table. Arguments are the same as
- for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
- passed. */
-
- #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
- { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "%s..%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `double' constant. */
-
- #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
- { \
- if (REAL_VALUE_ISINF (VALUE) \
- || REAL_VALUE_ISNAN (VALUE) \
- || REAL_VALUE_MINUS_ZERO (VALUE)) \
- { \
- long t[2]; \
- REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
- fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
- t[0] & 0xffffffff, t[1] & 0xffffffff); \
- } \
- else \
- { \
- char str[30]; \
- REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
- fprintf (FILE, "\t.double 0d%s\n", str); \
- } \
- }
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
- { \
- if (REAL_VALUE_ISINF (VALUE) \
- || REAL_VALUE_ISNAN (VALUE) \
- || REAL_VALUE_MINUS_ZERO (VALUE)) \
- { \
- long t; \
- REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
- fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
- } \
- else \
- { \
- char str[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
- fprintf (FILE, "\t.float 0d%s\n", str); \
- } \
- }
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.short "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- /* This is how to output an assembler line to define N characters starting
- at P to FILE. */
-
- #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
-
- /* This is how to output code to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- asm_fprintf (FILE, "\{tstu|stwu} %s,-4(r1)\n", reg_names[REGNO]);
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- asm_fprintf (FILE, "\t{l|lwz} %s,0(r1)\n\t{ai|addic} r1,r1,4\n", \
- reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute.
- (RS/6000 does not use such vectors, but we must define this macro
- anyway.) */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- do { char buf[100]; \
- fprintf (FILE, "\t.long "); \
- ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
- assemble_name (FILE, buf); \
- fprintf (FILE, "\n"); \
- } while (0)
-
- /* This is how to output an element of a case-vector that is relative. */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- do { char buf[100]; \
- fprintf (FILE, "\t.long "); \
- ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
- assemble_name (FILE, buf); \
- fprintf (FILE, "-"); \
- ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
- assemble_name (FILE, buf); \
- fprintf (FILE, "\n"); \
- } while (0)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", (LOG))
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- do { fputs (".comm ", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- fprintf ((FILE), ",%d\n", (SIZE)); } while (0)
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
- do { fputs (".lcomm ", (FILE)); \
- RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
- fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
- } while (0)
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
- #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
-
- /* Define which CODE values are valid. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '.')
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
-
- /* Define the codes that are matched by predicates in rs6000.c. */
-
- #define PREDICATE_CODES \
- {"short_cint_operand", {CONST_INT}}, \
- {"u_short_cint_operand", {CONST_INT}}, \
- {"non_short_cint_operand", {CONST_INT}}, \
- {"gpc_reg_operand", {SUBREG, REG}}, \
- {"cc_reg_operand", {SUBREG, REG}}, \
- {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
- {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
- {"easy_fp_constant", {CONST_DOUBLE}}, \
- {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
- {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
- {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
- {"add_operand", {SUBREG, REG, CONST_INT}}, \
- {"non_add_cint_operand", {CONST_INT}}, \
- {"and_operand", {SUBREG, REG, CONST_INT}}, \
- {"non_and_cint_operand", {CONST_INT}}, \
- {"logical_operand", {SUBREG, REG, CONST_INT}}, \
- {"non_logical_cint_operand", {CONST_INT}}, \
- {"mask_operand", {CONST_INT}}, \
- {"call_operand", {SYMBOL_REF, REG}}, \
- {"current_file_function_operand", {SYMBOL_REF}}, \
- {"input_operand", {SUBREG, MEM, REG, CONST_INT}}, \
- {"load_multiple_operation", {PARALLEL}}, \
- {"store_multiple_operation", {PARALLEL}}, \
- {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
- GT, LEU, LTU, GEU, GTU}}, \
- {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
- GT, LEU, LTU, GEU, GTU}},
-