home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler, for Hitachi Super-H.
- Copyright (C) 1993, 1994 Free Software Foundation, Inc.
-
- Contributed by Steve Chamberlain (sac@cygnus.com)
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- /* Run-time Target Specification. */
- #define TARGET_SH
-
- #define TARGET_VERSION \
- fputs (" (Hitachi SH)", stderr);
-
- /* Generate SDB debugging information. */
-
- #define SDB_DEBUGGING_INFO 1
-
- #define SDB_DELIM ";"
-
- #define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)"
-
- /* Show we can debug even without a frame pointer. */
- #define CAN_DEBUG_WITHOUT_FP
-
-
- #define CONDITIONAL_REGISTER_USAGE \
- /* Experimental calling convention with fewer saved registers */ \
- if (TARGET_NOSAVE) \
- { \
- call_used_regs[8] = 1; \
- call_used_regs[9] = 1; \
- call_used_regs[10] = 1; \
- call_used_regs[11] = 1; \
- } \
- /* Hitachi saves and restores mac registers on call */ \
- if (TARGET_HITACHI) \
- { \
- call_used_regs[MACH_REG] = 0; \
- call_used_regs[MACL_REG] = 0; \
- }
-
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- extern int target_flags;
- #define ISIZE_BIT (1<<1)
- #define FAST_BIT (1<<2)
- #define MAC_BIT (1<<3)
- #define RTL_BIT (1<<4)
- #define DT_BIT (1<<5)
- #define DALIGN_BIT (1<<6)
- #define SH0_BIT (1<<7)
- #define SH1_BIT (1<<8)
- #define SH2_BIT (1<<9)
- #define SH3_BIT (1<<10)
- #define C_BIT (1<<11)
- #define R_BIT (1<<12)
- #define SPACE_BIT (1<<13)
- #define BIGTABLE_BIT (1<<14)
- #define TRYR0_BIT (1<<15)
- #define NOSAVE_BIT (1<<16)
- #define SMALLCALL_BIT (1<<17)
- #define CONSTLEN_2_BIT (1<<20)
- #define CONSTLEN_3_BIT (1<<21)
- #define HITACHI_BIT (1<<22)
- #define PARANOID_BIT (1<<23)
- #define RETR2_BIT (1<<24)
- #define CONSTLEN_0_BIT (1<<25)
- #define BSR_BIT (1<<26)
- #define SHORTADDR_BIT (1<<27)
-
- /* Nonzero if we should generate code using type 0 insns */
- #define TARGET_SH0 (target_flags & SH0_BIT)
-
- /* Nonzero if we should generate code using type 1 insns */
- #define TARGET_SH1 (target_flags & SH1_BIT)
-
- /* Nonzero if we should generate code using type 2 insns */
- #define TARGET_SH2 (target_flags & SH2_BIT)
-
- /* Nonzero if we should generate code using type 3 insns */
- #define TARGET_SH3 (target_flags & SH3_BIT)
-
- /* Nonzero if we should generate faster code rather than smaller code */
- #define TARGET_FASTCODE (target_flags & FAST_BIT)
-
- /* Nonzero if we should generate faster code rather than smaller code */
- #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
-
- /* Nonzero if we should dump out instruction size info */
- #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
-
- /* Nonzero if we should try to generate mac instructions */
- #define TARGET_MAC (target_flags & MAC_BIT)
-
- /* Nonzero if we should dump the rtl in the assembly file. */
- #define TARGET_DUMP_RTL (target_flags & RTL_BIT)
-
- /* Nonzero if we should dump the rtl somewher else. */
- #define TARGET_DUMP_R (target_flags & R_BIT)
-
- /* Nonzero to align doubles on 64 bit boundaries */
- #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
-
- /* Nonzero to use long jump tables */
- #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
-
- /* Nonzero if combine dumping wanted */
- #define TARGET_CDUMP (target_flags & C_BIT)
-
- /* Nonzero if trying to use reg+disp for QIs and HIs. This
- doesn't work yet.*/
- #define TARGET_TRYR0 (target_flags & TRYR0_BIT)
-
- /* Nonzero if using no save calling convention */
- #define TARGET_NOSAVE (target_flags & NOSAVE_BIT)
-
- /* Nonzero if using no save calling convention */
- #define TARGET_SMALLCALL (target_flags & SMALLCALL_BIT)
-
- /* Select max size of computed constant code sequences to be 3 insns */
- #define TARGET_CLEN3 (target_flags & CONSTLEN_3_BIT)
-
- /* Select max size of computed constant code sequences to be 0 insns - ie don't do it */
- #define TARGET_CLEN0 (target_flags & CONSTLEN_0_BIT)
-
- /* Nonzero if using Hitachi's calling convention */
- #define TARGET_HITACHI (target_flags & HITACHI_BIT)
- #define TARGET_PARANOID (target_flags & PARANOID_BIT)
- #define TARGET_RETR2 (target_flags & RETR2_BIT)
- #define TARGET_SHORTADDR (target_flags & SHORTADDR_BIT)
- #define TARGET_BSR (target_flags & BSR_BIT)
-
-
- #define TARGET_SWITCHES \
- { {"isize", ( ISIZE_BIT) }, \
- {"space", ( SPACE_BIT) }, \
- {"0", ( SH0_BIT) }, \
- {"1", ( SH1_BIT) }, \
- {"2", ( SH2_BIT) }, \
- {"3", ( SH3_BIT) }, \
- {"ac", ( MAC_BIT) }, \
- {"dalign", ( DALIGN_BIT) }, \
- {"c", ( C_BIT) }, \
- {"r", ( RTL_BIT) }, \
- {"bigtable", ( BIGTABLE_BIT)}, \
- {"try-r0", ( TRYR0_BIT)}, \
- {"R", ( R_BIT) }, \
- {"nosave", ( NOSAVE_BIT) }, \
- {"clen3", ( CONSTLEN_3_BIT) }, \
- {"clen0", ( CONSTLEN_0_BIT) }, \
- {"smallcall", ( SMALLCALL_BIT) }, \
- {"hitachi", ( HITACHI_BIT) }, \
- {"paranoid", ( PARANOID_BIT) }, \
- {"r2", ( RETR2_BIT) }, \
- {"shortaddr", ( SHORTADDR_BIT) }, \
- {"bsr", ( BSR_BIT) }, \
- {"", TARGET_DEFAULT} \
- }
-
- #define TARGET_DEFAULT (FAST_BIT)
-
- /* Macro to define table for command options with values. */
- #define TARGET_OPTIONS \
- { { "maxsi-", &max_si}, \
- { "maxhi-", &max_hi} }
-
- #define OVERRIDE_OPTIONS \
- do { \
- sh_cpu = CPU_SH0; \
- if (TARGET_SH1) \
- sh_cpu = CPU_SH1; \
- if (TARGET_SH2) \
- sh_cpu = CPU_SH2; \
- if (TARGET_SH3) \
- sh_cpu = CPU_SH3; \
- \
- /* We *MUST* always define optimize since we *HAVE* to run \
- shorten branches to get correct code. */ \
- \
- optimize = 1; \
- flag_delayed_branch = 1; \
- /* But never run scheduling before reload, since than can \
- break global alloc, and generates slower code anyway due \
- to the pressure on R0. */ \
- flag_schedule_insns = 0; \
- if (max_si) \
- max_count_si = atoi (max_si); \
- else \
- max_count_si = 1010; \
- if (max_hi) \
- max_count_hi = atoi (max_hi); \
- else \
- max_count_hi = 505; \
- if (TARGET_BSR) \
- flag_no_function_cse = 1; \
- } while (0)
-
-
- /* Target machine storage Layout. */
-
- /* Define to use software floating point emulator for REAL_ARITHMETIC and
- decimal <-> binary conversion. */
- #define REAL_ARITHMETIC
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields. */
- #define BITS_BIG_ENDIAN 0
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- #define BYTES_BIG_ENDIAN 1
-
- /* Define this if most significant word of a multiword number is the lowest
- numbered. */
- #define WORDS_BIG_ENDIAN 1
-
- /* Number of bits in an addressable storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
- #define MAX_BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- #define PARM_BOUNDARY 32
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 32
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 32
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
-
- /* The best alignment to use in cases where we have a choice. */
- #define FASTEST_ALIGNMENT 32
-
- /* Every structures size must be a multiple of 32 bits. */
- #define STRUCTURE_SIZE_BOUNDARY 32
-
- /* Make strings word-aligned so strcpy from constants will be faster. */
- #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
- ((TREE_CODE (EXP) == STRING_CST \
- && (ALIGN) < FASTEST_ALIGNMENT) \
- ? FASTEST_ALIGNMENT : (ALIGN))
-
- /* Make arrays of chars word-aligned for the same reasons. */
- #define DATA_ALIGNMENT(TYPE, ALIGN) \
- (TREE_CODE (TYPE) == ARRAY_TYPE \
- && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
- && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
-
- /* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT 1
-
-
- /* Standard register usage. */
-
- /* Register allocation for the Hitachi calling convention:
-
- r0 arg return
- r1..r3 scratch
- r4-r7 args in
- r8..r13 call saved
- r14 frame pointer/call saved
- r15 stack pointer
- ap arg pointer (doesn't really exist, always eliminated)
- pr subroutine return address
- t t bit
- mach multiply/accumulate result
- macl
- */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- */
-
- #define AP_REG 16
- #define PR_REG 17
- #define T_REG 18
- #define GBR_REG 19
- #define MACH_REG 20
- #define MACL_REG 21
-
- #define FIRST_PSEUDO_REGISTER 22
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
-
- mach register is fixed 'cause it's only 10 bits wide */
-
- /* r0 r1 r2 r3
- r4 r5 r6 r7
- r8 r9 r10 r11
- r12 r13 r14 r15
- ap pr t gbr
- mh ml */
-
- #define FIXED_REGISTERS \
- { 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 0, \
- 0, 0, 0, 1, \
- 1, 1, 1, 1, \
- 1, 1}
-
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
-
- /* r0 r1 r2 r3
- r4 r5 r6 r7
- r8 r9 r10 r11
- r12 r13 r14 r15
- ap pr t gbr
- mh ml */
-
- #define CALL_USED_REGISTERS \
- { 1, 1, 1, 1, \
- 1, 1, 1, 1, \
- 0, 0, 0, 0, \
- 0, 0, 0, 1, \
- 1, 0, 1, 1, \
- 1, 1}
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the SH regs are UNITS_PER_WORD bits wide; */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- (((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- We may keep double values in even registers */
-
- extern int hard_regno_mode_ok[];
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (hard_regno_mode_ok[REGNO] & (1<<(int)MODE))
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* Define this if the program counter is overloaded on a register. */
- /* #define PC_REGNUM 15*/
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 15
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 14
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms may be accessed
- via the stack pointer) in functions that seem suitable. */
-
- #define FRAME_POINTER_REQUIRED 0
-
- /* Definitions for register eliminations.
-
- We have two registers that can be eliminated on the m88k. First, the
- frame pointer register can often be eliminated in favor of the stack
- pointer register. Secondly, the argument pointer register can always be
- eliminated; it is replaced with either the stack or frame pointer. */
-
- /* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
-
- /* This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference. */
-
- #define ELIMINABLE_REGS \
- {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
-
-
- /* Given FROM and TO register numbers, say whether this elimination
- is allowed. */
- #define CAN_ELIMINATE(FROM, TO) \
- (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
-
- /* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
- #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- OFFSET = initial_elimination_offset (FROM, TO)
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 16
-
- /* Register in which the static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 13
-
- /* The register in which a struct value address is passed */
-
- #define STRUCT_VALUE_REGNUM 2
-
- /* If the structure value address is not passed in a register, define
- `STRUCT_VALUE' as an expression returning an RTX for the place
- where the address is passed. If it returns 0, the address is
- passed as an "invisible" first argument. */
-
- /*#define STRUCT_VALUE ((rtx)0)*/
-
-
- /* Don't default to pcc-struct-return, because we have already specified
- exactly how to return structures in the RETURN_IN_MEMORY macro. */
-
- #define DEFAULT_PCC_STRUCT_RETURN 0
-
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The SH has two sorts of general registers, R0 and the rest. R0 can
- be used as the destination of some of the arithmetic ops. There are
- also some special purpose registers; the T bit register, the
- Procedure Return Register and the Multipy Accumulate Registers */
-
- enum reg_class
- {
- NO_REGS,
- R0_REGS,
- PR_REGS,
- T_REGS,
- MAC_REGS,
- GENERAL_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
- };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
- #define REG_CLASS_NAMES \
- { \
- "NO_REGS", \
- "R0_REGS", \
- "PR_REGS", \
- "T_REGS", \
- "MAC_REGS", \
- "GENERAL_REGS", \
- "ALL_REGS", \
- }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { \
- 0x000000, /* NO_REGS */ \
- 0x000001, /* R0_REGS */ \
- 0x020000, /* PR_REGS */ \
- 0x040000, /* T_REGS */ \
- 0x300000, /* MAC_REGS */ \
- 0x01FFFF, /* GENERAL_REGS */ \
- 0x37FFFF /* ALL_REGS */ \
- }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- extern int regno_reg_class[];
- #define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
-
- /* When defined, the compiler allows registers explicitly used in the
- rtl to be used as spill registers but prevents the compiler from
- extending the lifetime of these registers. */
-
- #define SMALL_REGISTER_CLASSES
-
- /* The order in which register should be allocated. */
- #define REG_ALLOC_ORDER \
- { 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14,15,16,17,18,19,20,21 }
-
- /* The class value for index registers, and the one for base regs. */
- #define INDEX_REG_CLASS R0_REGS
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* Get reg_class from a letter such as appears in the machine
- description. */
- extern enum reg_class reg_class_from_letter[];
-
- #define REG_CLASS_FROM_LETTER(C) \
- ( (C) >= 'a' && (C) <= 'z' ? reg_class_from_letter[(C)-'a'] : NO_REGS )
-
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
- I: arithmetic operand -127..128, as used in add, sub, etc
- L: logical operand 0..255, as used in and, or, etc.
- J: something ok as a move source - so it must be easy to make
- M: constant 1
- N: constant 0
- K: shift operand 1,2,8 or 16 */
-
-
- #define CONST_OK_FOR_I(VALUE) (((int)(VALUE))>= -128 && ((int)(VALUE)) <= 127)
- #define CONST_OK_FOR_L(VALUE) (((int)(VALUE))>= 0 && ((int)(VALUE)) <= 255)
- #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
- #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
- #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
- : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
- : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
- : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
- : 0)
-
- /* Similar, but for floating constants, and defining letters G and H.
- Here VALUE is the CONST_DOUBLE rtx itself. */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? CONST_OK_FOR_I (CONST_DOUBLE_HIGH (VALUE)) \
- && CONST_OK_FOR_I (CONST_DOUBLE_LOW (VALUE)) \
- : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class. */
-
- #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
-
- /* Return the register class of a scratch register needed to copy IN into
- or out of a register in CLASS in MODE. If it can be done directly,
- NO_REGS is returned. */
-
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS.
-
- On SH this is the size of MODE in words */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
-
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define the number of register that can hold parameters.
- These two macros are used only in other macro definitions below. */
- #define NPARM_REGS 4
- #define FIRST_PARM_REG 4
- #define FIRST_RET_REG (TARGET_RETR2 ? 2 : 0)
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this macro if the addresses of local variable slots are at
- negative offsets from the frame pointer.
-
- The SH only has positive indexes, so grow the frame up
- */
- /* #define FRAME_GROWS_DOWNWARD */
-
- /* Offset from the frame pointer to the first local variable slot to
- be allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by. */
- #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 0
-
- /* Value is the number of byte of arguments automatically
- popped when returning from a subroutine call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
- SIZE is the number of bytes of arguments passed on the stack.
-
- On the SH, the caller does not pop any of its arguments that were passed
- on the stack. */
- #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, \
- TYPE_MODE (VALTYPE) == BLKmode ? SImode : TYPE_MODE (VALTYPE), \
- FIRST_RET_REG)
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
- #define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, FIRST_RET_REG)
-
- /* 1 if N is a possible register number for a function value.
- On the SH, only r0 can return results. */
- #define FUNCTION_VALUE_REGNO_P(REGNO) \
- ((REGNO) == FIRST_RET_REG)
-
- /* 1 if N is a possible register number for function argument passing.*/
-
- #define FUNCTION_ARG_REGNO_P(REGNO) \
- ((REGNO) >= FIRST_PARM_REG && (REGNO) < (NPARM_REGS + FIRST_PARM_REG))
-
-
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On SH, this is a single integer, which is a number of words
- of arguments scanned so far (including the invisible argument,
- if any, which holds the structure-value-address).
- Thus NARGREGS or more means all following args should go on the stack. */
-
- #define CUMULATIVE_ARGS int
-
- #define ROUND_ADVANCE(SIZE) \
- ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-
- /* Round a register number up to a proper boundary for an arg of mode
- MODE.
-
- The SH doesn't care about double alignment, so we only
- round doubles to even regs when asked to explicitly. */
-
- #define ROUND_REG(X, MODE) \
- ((TARGET_ALIGN_DOUBLE \
- && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
- ? ((X) + ((X) & 1)) : (X))
-
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On SH, the offset always starts at 0: the first parm reg is always
- the same reg. */
-
- #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME) \
- ((CUM) = 0)
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be
- available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) = (ROUND_REG ((CUM), (MODE)) \
- + ((MODE) != BLKmode \
- ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
- : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis).
-
- On SH the first args are normally in registers
- and the rest are pushed. Any arg that starts within the first
- NPARM_REGS words is at least partially passed in a register unless
- its data type forbids. */
-
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- sh_function_arg (CUM, MODE, TYPE, NAMED)
-
- extern struct rtx_def *sh_function_arg();
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero.
-
- We sometimes split args */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
- sh_function_arg_partial_nregs (CUM, MODE, TYPE, NAMED)
-
- extern int current_function_anonymous_args;
-
- /* Perform any needed actions needed for a function that is receiving a
- variable number of arguments. */
-
- #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
- current_function_anonymous_args = 1;
-
-
- /* Call the function profiler with a given profile label. */
-
- #define FUNCTION_PROFILER(STREAM,LABELNO) \
- { \
- fprintf(STREAM, " trapa #5\n"); \
- fprintf(STREAM, " .align 2\n"); \
- fprintf(STREAM, " .long LP%d\n", (LABELNO)); \
- }
-
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- #define EXIT_IGNORE_STACK 0
-
- /* Generate the assembly code for function exit
- Just dump out any accumulated constant table.*/
-
- #define FUNCTION_EPILOGUE(STREAM, SIZE) function_epilogue (STREAM, SIZE)
-
-
- /* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
-
- On the SH, the trapoline looks like
- 1 0000 D301 mov.l l1,r3
- 2 0002 DD02 mov.l l2,r13
- 3 0004 4D2B jmp @r13
- 4 0006 200B or r0,r0
- 5 0008 00000000 l1: .long function
- 6 000c 00000000 l2: .long area
- */
- #define TRAMPOLINE_TEMPLATE(FILE) \
- { \
- fprintf ((FILE), " .word 0xd301\n"); \
- fprintf ((FILE), " .word 0xdd02\n"); \
- fprintf ((FILE), " .word 0x4d2b\n"); \
- fprintf ((FILE), " .word 0x200b\n"); \
- fprintf ((FILE), " .long 0\n"); \
- fprintf ((FILE), " .long 0\n"); \
- }
-
- /* Length in units of the trampoline for entering a nested function. */
- #define TRAMPOLINE_SIZE 16
-
- /* Alignment required for a trampoline in units. */
- #define TRAMPOLINE_ALIGN 4
-
- /* Emit RTL insns to initialize the variable parts of a trampoline.
- FNADDR is an RTX for the address of the function's pure code.
- CXT is an RTX for the static chain value for the function. */
-
- #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
- { \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
- (CXT)); \
- emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
- (FNADDR)); \
- }
-
-
- /* Addressing modes, and classification of registers for them. */
- #define HAVE_POST_INCREMENT 1
- /*#define HAVE_PRE_INCREMENT 1*/
- /*#define HAVE_POST_DECREMENT 1*/
- #define HAVE_PRE_DECREMENT 1
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c.
-
- */
-
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- ((REGNO) < PR_REG || (unsigned) reg_renumber[(REGNO)] < PR_REG)
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) == 0 || (unsigned) reg_renumber[(REGNO)] == 0)
-
- /* Maximum number of registers that can appear in a valid memory
- address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF)
-
- /* Nonzero if the constant value X is a legitimate general operand. */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE(X) != CONST_DOUBLE && GET_CODE(X) != LABEL_REF)
-
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used. */
-
- #define MODE_DISP_OK_4(X,MODE) ((GET_MODE_SIZE(MODE)==4) && ((unsigned)INTVAL(X)<64))
- #define MODE_DISP_OK_8(X,MODE) ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60))
- #define MODE_DISP_OK_2(X,MODE) ((GET_MODE_SIZE(MODE)==2) && ((unsigned)INTVAL(X)<32) && TARGET_TRYR0)
- #define MODE_DISP_OK_1(X,MODE) ((GET_MODE_SIZE(MODE)==1) && ((unsigned)INTVAL(X)<16) && TARGET_TRYR0)
-
- #ifndef REG_OK_STRICT
-
-
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) \
- (REGNO (X) <= 16 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
-
- #define REG_OK_FOR_INDEX_P(X) \
- (REGNO (X) == 0 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
-
- #define REG_OK_FOR_PRE_POST_P(X) \
- (REG_OK_FOR_INDEX_P (X))
-
- #else
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) \
- REGNO_OK_FOR_BASE_P (REGNO (X))
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) \
- REGNO_OK_FOR_INDEX_P (REGNO (X))
-
- #define REG_OK_FOR_PRE_POST_P(X) \
- (REGNO_OK_FOR_INDEX_P (REGNO (X)))
- #endif
-
- /* The Q is a pc relative load operand */
- #define EXTRA_CONSTRAINT_Q(OP) \
- (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP,0)) == LABEL_REF)
-
- /* The U is a label ref */
- #define EXTRA_CONSTRAINT_U(OP) \
- (GET_CODE (OP) == LABEL_REF)
-
- #define IS_INDEX(OP) \
- ((GET_CODE(OP) == PLUS && \
- (INDEX_REGISTER_RTX_P(XEXP(OP,0)) && BASE_REGISTER_RTX_P(XEXP(OP,1))) || \
- (INDEX_REGISTER_RTX_P(XEXP(OP,1)) && BASE_REGISTER_RTX_P(XEXP(OP,0)))))
-
-
-
- #define EXTRA_CONSTRAINT(OP, C) \
- ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
- : (C) == 'U' ? EXTRA_CONSTRAINT_U (OP) \
- : 0)
-
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
-
- #define BASE_REGISTER_RTX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
-
- #define INDEX_REGISTER_RTX_P(X) \
- (GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))
-
-
- /* Jump to LABEL if X is a valid address RTX. This must also take
- REG_OK_STRICT into account when deciding about valid registers, but it uses
- the above macros so we are in luck.
-
- Allow REG
- REG+disp
- REG+r0
- REG++
- --REG
- */
-
- /* The SH allows a displacement in a QI or HI amode, but only when the
- other operand is R0. GCC doesn't handle this very well, so we forgo
- all of that.
-
- A legitimate index for a QI or HI is 0, SI and above can be any
- number 0..63 */
-
- #define GO_IF_LEGITIMATE_INDEX(MODE, REGNO, OP, LABEL) \
- do { \
- if (GET_CODE (OP) == CONST_INT) \
- { \
- if (MODE_DISP_OK_4 (OP, MODE)) goto LABEL; \
- if (MODE_DISP_OK_8 (OP, MODE)) goto LABEL; \
- if (MODE_DISP_OK_2 (OP, MODE)) goto LABEL; \
- if (MODE_DISP_OK_1 (OP, MODE)) goto LABEL; \
- } \
- } while(0)
-
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
- { \
- if (BASE_REGISTER_RTX_P (X)) \
- goto LABEL; \
- else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
- goto LABEL; \
- else if (GET_CODE (X) == PLUS) \
- { \
- rtx xop0 = XEXP(X,0); \
- rtx xop1 = XEXP(X,1); \
- if (GET_MODE_SIZE(MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop0), xop1, LABEL); \
- if (GET_MODE_SIZE(MODE) <= 8 && BASE_REGISTER_RTX_P (xop1)) \
- GO_IF_LEGITIMATE_INDEX (MODE, REGNO (xop1), xop0, LABEL); \
- if (GET_MODE_SIZE(MODE)<= 4) { \
- if(BASE_REGISTER_RTX_P(xop1) && \
- INDEX_REGISTER_RTX_P(xop0)) goto LABEL; \
- if(INDEX_REGISTER_RTX_P(xop1) && \
- BASE_REGISTER_RTX_P(xop0)) goto LABEL; \
- } \
- } \
- else if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_DEC) \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_PRE_POST_P (XEXP (X, 0))) \
- goto LABEL; \
- }
-
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) ;
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { \
- if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_DEC \
- || GET_CODE(ADDR) == PRE_INC || GET_CODE(ADDR) == POST_INC) \
- goto LABEL; \
- }
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #define CASE_VECTOR_PC_RELATIVE
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* 'char' is signed by default */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* The type of size_t unsigned int. */
- #define SIZE_TYPE "unsigned int"
-
- /* Don't cse the address of the function being compiled. */
- /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Define if operations between registers always perform the operation
- on the full register even if a narrower mode is specified. */
- #define WORD_REGISTER_OPERATIONS
-
- /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
- will either zero-extend or sign-extend. The value of this macro should
- be the code that says which one of the two operations is implicitly
- done, NIL if none. */
- #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
-
- /* Define this if zero-extension is slow (more than one real instruction).
- On the SH, it's only one instruction */
- /* #define SLOW_ZERO_EXTEND */
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE 1
-
- /* Immediate shift counts are truncated by the output routines (or was it
- the assembler?). Shift counts in a register are truncated by ARM. Note
- that the native compiler puts too large (> 32) immediate shift counts
- into a register and shifts by the register, letting the ARM decide what
- to do instead of doing that itself. */
- #define SHIFT_COUNT_TRUNCATED 1
-
- /* All integers have the same format so truncation is easy. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- Desirable on machines where ordinary constants are expensive
- but a CALL with constant address is cheap. */
- /*#define NO_FUNCTION_CSE 1*/
-
- /* Chars and shorts should be passed as ints. */
- #define PROMOTE_PROTOTYPES 1
-
- /* The machine modes of pointers and functions */
- #define Pmode SImode
- #define FUNCTION_MODE Pmode
-
- /* The relative costs of various types of constants. Note that cse.c defines
- REG = 1, SUBREG = 2, any node = (2 + sum of subnodes). */
-
- #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
- case CONST_INT: \
- if (INTVAL(RTX)==0) return 0; \
- if (CONST_OK_FOR_I (INTVAL(RTX))) \
- return 1; \
- else \
- return 8; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 5; \
- case CONST_DOUBLE: \
- return 10;
-
- #define RTX_COSTS(X, CODE, OUTER_CODE) \
- case AND: \
- return COSTS_N_INSNS (andcosts (X)); \
- case MULT: \
- return COSTS_N_INSNS (multcosts (X)); \
- case ASHIFT: \
- case ASHIFTRT: \
- return COSTS_N_INSNS (shiftcosts (X)) ; \
- case DIV: \
- case UDIV: \
- case MOD: \
- case UMOD: \
- return COSTS_N_INSNS (100); \
- case FLOAT: \
- case FIX: \
- return 100;
-
-
- /* The multiply and divide insns on the SH are actually function calls
- with some special constraints on arguments and register usage.
-
- These macros tell reorg that the references to arguments and
- register clobbers for insns of type sfunc do not appear to happen
- until after the millicode call. This allows reorg to put insns
- which set the argument registers into the delay slot of the millicode
- call -- thus they act more like traditional CALL_INSNs.
-
- get_attr_type will try to recognize the given insn, so make sure to
- filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
- in particular. */
-
- #define INSN_SETS_ARE_DELAYED(X) \
- ((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER \
- && get_attr_type (X) == TYPE_SFUNC))
-
- #define INSN_REFERENCES_ARE_DELAYED(X) \
- ((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
- && GET_CODE (PATTERN (X)) != USE \
- && GET_CODE (PATTERN (X)) != CLOBBER \
- && get_attr_type (X) == TYPE_SFUNC))
-
- /* Compute extra cost of moving data between one register class
- and another.
-
- On the SH it is hard to move into the T reg, but simple to load
- from it.
- */
-
- #define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
- (((DSTCLASS == T_REGS) || (DSTCLASS == PR_REG)) ? 10 : 1)
-
- /* Assembler output control */
-
- /* The text to go at the start of the assembler file */
- #define ASM_FILE_START(STREAM) \
- output_file_start (STREAM, f_options, sizeof f_options / sizeof f_options[0], \
- W_options, sizeof W_options / sizeof W_options[0]);
-
-
- #define ASM_FILE_END(STREAM)
-
-
- #define ASM_APP_ON ""
- #define ASM_APP_OFF ""
- #define FILE_ASM_OP "\t.file\n"
- #define IDENT_ASM_OP "\t.ident\n"
-
- /* How to change between sections. */
-
- #define TEXT_SECTION_ASM_OP "\t.text"
- #define DATA_SECTION_ASM_OP "\t.data"
- #define CTORS_SECTION_ASM_OP "\t.section\t.ctors\n"
- #define DTORS_SECTION_ASM_OP "\t.section\t.dtors\n"
- #define INIT_SECTION_ASM_OP "\t.section\t.init\n"
- #define EXTRA_SECTIONS in_ctors, in_dtors
-
- #define EXTRA_SECTION_FUNCTIONS \
- void \
- ctors_section() \
- { \
- if (in_section != in_ctors) \
- { \
- fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
- in_section = in_ctors; \
- } \
- } \
- void \
- dtors_section() \
- { \
- if (in_section != in_dtors) \
- { \
- fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
- in_section = in_dtors; \
- } \
- }
-
- /* Assemble generic sections.
- This is currently only used to support section attributes. */
-
- #define ASM_OUTPUT_SECTION_NAME(FILE, NAME) \
- do { fprintf (FILE, ".section\t%s\n", NAME); } while (0)
-
- #define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
- do { ctors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
-
- #define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
- do { dtors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
-
- #undef DO_GLOBAL_CTORS_BODY
-
- #define DO_GLOBAL_CTORS_BODY \
- { \
- typedef (*pfunc)(); \
- extern pfunc __ctors[]; \
- extern pfunc __ctors_end[]; \
- pfunc *p; \
- for (p = __ctors; p < __ctors_end; p++) \
- { \
- (*p)(); \
- } \
- }
-
- #undef DO_GLOBAL_DTORS_BODY
- #define DO_GLOBAL_DTORS_BODY \
- { \
- typedef (*pfunc)(); \
- extern pfunc __dtors[]; \
- extern pfunc __dtors_end[]; \
- pfunc *p; \
- for (p = __dtors; p < __dtors_end; p++) \
- { \
- (*p)(); \
- } \
- }
-
-
- #define ASM_OUTPUT_REG_PUSH(file, v) \
- fprintf (file, "\tmov.l r%s,-@r15\n", v);
-
- #define ASM_OUTPUT_REG_POP(file, v) \
- fprintf (file, "\tmov.l @r15+,r%s\n", v);
-
-
- /* The assembler's names for the registers. RFP need not always be used as
- the Real framepointer; it can also be used as a normal general register.
- Note that the name `fp' is horribly misleading since `fp' is in fact only
- the argument-and-return-context pointer. */
- #define REGISTER_NAMES \
- { \
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "ap", "pr", "t", "gbr", "mach","macl" \
- }
-
- /* DBX register number for a given compiler register number */
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* Output a label definition. */
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", LOG)
-
- /* Output a function label definition. */
- #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
- ASM_OUTPUT_LABEL(STREAM, NAME)
-
- /* Output a globalising directive for a label. */
- #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
- (fprintf (STREAM, "\t.global\t"), \
- assemble_name (STREAM, NAME), \
- fputc ('\n',STREAM)) \
-
- /* Output a reference to a label. */
- #define ASM_OUTPUT_LABELREF(STREAM,NAME) \
- fprintf (STREAM, "_%s", NAME)
-
- /* Make an internal label into a string. */
- #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
- sprintf (STRING, "*%s%d", PREFIX, NUM)
-
- /* Output an internal label definition. */
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
- /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
-
- /* Construct a private name. */
- #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
- ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
- sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
-
- /* Jump tables must be 32 bit aligned, no matter the size of the element */
- #define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
- fprintf (STREAM, "\t.align 2\n%s%d:\n", PREFIX, NUM);
-
- /* Output a relative address table. */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
- if (TARGET_BIGTABLE) \
- fprintf (STREAM, "\t.long L%d-L%d\n", VALUE,REL); \
- else \
- fprintf (STREAM, "\t.word L%d-L%d\n", VALUE,REL); \
-
- /* Output an absolute table element */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
- if (TARGET_BIGTABLE) \
- fprintf (STREAM, "\t.long L%d\n", VALUE); \
- else \
- fprintf (STREAM, "\t.word L%d\n", VALUE); \
-
- /* Output various types of constants. */
-
-
- /* This is how to output an assembler line defining a `double' */
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf (FILE, "\t.double %s\n", dstr); \
- } while (0)
-
-
- /* This is how to output an assembler line defining a `float' constant. */
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- do { char dstr[30]; \
- REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf (FILE, "\t.float %s\n", dstr); \
- } while (0)
-
- #define ASM_OUTPUT_INT(STREAM, EXP) \
- (fprintf (STREAM, "\t.long\t"), \
- output_addr_const (STREAM, (EXP)), \
- fputc ('\n', STREAM))
-
- #define ASM_OUTPUT_SHORT(STREAM, EXP) \
- (fprintf (STREAM, "\t.short\t"), \
- output_addr_const (STREAM, (EXP)), \
- fputc ('\n', STREAM))
-
- #define ASM_OUTPUT_CHAR(STREAM, EXP) \
- (fprintf (STREAM, "\t.byte\t"), \
- output_addr_const (STREAM, (EXP)), \
- fputc ('\n', STREAM))
-
- #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
- fprintf (STREAM, "\t.byte\t%d\n", VALUE) \
-
- /* This is how to output an assembler line
- that says to advance the location counter by SIZE bytes. */
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\t.comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
- ( fputs ("\t.lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%d\n", (SIZE)))
-
-
- /* The assembler's parentheses characters. */
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Target characters. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
-
- /* Only perform branch elimination (by making instructions conditional) if
- we're optimising. Otherwise it's of no use anyway. */
- #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
- final_prescan_insn (INSN, OPVEC, NOPERANDS)
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null. */
-
- #define PRINT_OPERAND(STREAM, X, CODE) print_operand (STREAM, X, CODE)
-
- /* Print a memory address as an operand to reference that memory location. */
-
- #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address (STREAM, X)
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
- ((CHAR)=='.' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR)=='!' || (CHAR)=='@')
-
-
- extern struct rtx_def *sh_compare_op0;
- extern struct rtx_def *sh_compare_op1;
- extern struct rtx_def *prepare_scc_operands();
- extern struct rtx_def *table_lab;
-
-
- extern enum attr_cpu sh_cpu; /* target cpu */
-
- /* Declare functions defined in sh.c and used in templates. */
-
- extern char *output_branch();
- extern char *output_shift();
- extern char *output_movedouble();
- extern char *output_movepcrel();
- extern char *output_jump_label_table();
- extern char *output_far_jump();
-
-
- #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
-
- /* Generate calls to memcpy, memcmp and memset. */
-
- #define TARGET_MEM_FUNCTIONS
-
- #define HANDLE_PRAGMA(finput) handle_pragma (finput)
-
- /* Set when processing a function with pragma interrupt turned on. */
-
- extern int pragma_interrupt;
- #define MOVE_RATIO (TARGET_SMALLCODE ? 4 : 16)
-
- char *max_si;
- char *max_hi;
- int max_count_si;
- int max_count_hi;
-