home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler. Tahoe version.
- Copyright (C) 1989, 1993, 1994 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /*
- * File: tahoe.h
- *
- * Original port made at the University of Buffalo by Devon Bowen,
- * Dale Wiles and Kevin Zachmann.
- *
- * HCX/UX version by Piet van Oostrum (piet@cs.ruu.nl)
- *
- * Performance hacking by Michael Tiemann (tiemann@cygnus.com)
- */
-
- /* define this for the HCX/UX version */
-
- /* #define HCX_UX */
-
- /*
- * Run-time Target Specification
- */
-
- #ifdef HCX_UX
- /* no predefines, see Makefile and hcx-universe.c */
- /* have cc1 print that this is the hcx version */
- #define TARGET_VERSION printf (" (hcx)");
- #else
- /* we want "tahoe" and "unix" defined for all future compilations */
- #define CPP_PREDEFINES "-Dtahoe -Dunix -Asystem(unix) -Acpu(tahoe) -Amachine(tahoe)"
- /* have cc1 print that this is the tahoe version */
- #define TARGET_VERSION printf (" (tahoe)");
- #endif
-
- /* this is required in all tm files to hold flags */
-
- extern int target_flags;
-
- /* Zero if it is safe to output .dfloat and .float pseudos. */
- #define TARGET_HEX_FLOAT (target_flags & 1)
-
- #define TARGET_DEFAULT 1
-
- #define TARGET_SWITCHES \
- { {"hex-float", 1}, \
- {"no-hex-float", -1}, \
- { "", TARGET_DEFAULT} }
-
-
- /*
- * Storage Layout
- */
-
- /* This symbol was previously not mentioned, so apparently the tahoe
- is little-endian for bits, or else doesn't care. */
- #define BITS_BIG_ENDIAN 0
-
- /* tahoe uses a big endian byte order */
-
- #define BYTES_BIG_ENDIAN 1
-
- /* tahoe uses a big endian word order */
-
- #define WORDS_BIG_ENDIAN 1
-
- /* standard byte size is usable on tahoe */
-
- #define BITS_PER_UNIT 8
-
- /* longs on the tahoe are 4 byte groups */
-
- #define BITS_PER_WORD 32
-
- /* from the last two params we get 4 bytes per word */
-
- #define UNITS_PER_WORD 4
-
- /* addresses are 32 bits (one word) */
-
- #define POINTER_SIZE 32
-
- /* all parameters line up on 32 boundaries */
-
- #define PARM_BOUNDARY 32
-
- /* stack should line up on 32 boundaries */
-
- #define STACK_BOUNDARY 32
-
- /* line functions up on 32 bits */
-
- #define FUNCTION_BOUNDARY 32
-
- /* the biggest alignment the tahoe needs in 32 bits */
-
- #define BIGGEST_ALIGNMENT 32
-
- /* we have to align after an 'int : 0' in a structure */
-
- #define EMPTY_FIELD_BOUNDARY 32
-
- #ifdef HCX_UX
- /* structures must be made of full words */
-
- #define STRUCTURE_SIZE_BOUNDARY 32
- #else
- /* structures must be made of full bytes */
-
- #define STRUCTURE_SIZE_BOUNDARY 8
- #endif
-
- /* tahoe is picky about data alignment */
-
- #define STRICT_ALIGNMENT 1
-
- /* keep things standard with pcc */
-
- #define PCC_BITFIELD_TYPE_MATTERS 1
-
- /* this section is borrowed from the vax version since the */
- /* formats are the same in both of the architectures */
-
- #define CHECK_FLOAT_VALUE(MODE, D, OVEFLOW) \
- if (OVERFLOW) \
- (D) = 1.7014117331926443e+38; \
- else if ((MODE) == SFmode) \
- { \
- if ((D) > 1.7014117331926443e+38) \
- (OVERFLOW) = 1, (D) = 1.7014117331926443e+38; \
- else if ((D) < -1.7014117331926443e+38) \
- (OVERFLOW) = 1, (D) = -1.7014117331926443e+38; \
- else if (((D) > 0) && ((D) < 2.9387358770557188e-39)) \
- (OVERFLOW) = 1, (D) = 0.0; \
- else if (((D) < 0) && ((D) > -2.9387358770557188e-39)) \
- (OVERFLOW) = 1, (D) = 0.0; \
- }
-
-
- /*
- * Register Usage
- */
-
- /* define 15 general regs plus one for the floating point reg (FPP) */
-
- #define FIRST_PSEUDO_REGISTER 17
-
- /* let the compiler know what the fp, sp and pc are */
-
- #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}
-
- /* lots of regs aren't guaranteed to return from a call. The FPP reg */
- /* must be included in these since it can't be saved by the reg mask */
-
- #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
-
- /* A single fp reg can handle any type of float.
- CPU regs hold just 32 bits. */
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- (REGNO != 16 ? ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) \
- : GET_MODE_NUNITS ((MODE)))
-
- /* any mode greater than 4 bytes (doubles) can only go in an even regs */
- /* and the FPP can only hold SFmode and DFmode */
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (REGNO != 16 \
- ? (GET_MODE_UNIT_SIZE (MODE) <= 4 ? 1 : (REGNO % 2 - 1)) \
- : ((MODE) == SFmode || (MODE) == DFmode \
- || (MODE) == SCmode || (MODE) == DCmode))
-
- /* if mode1 or mode2, but not both, are doubles then modes cannot be tied */
-
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (((MODE1) == DFmode || (MODE1) == DCmode) \
- == ((MODE2) == DFmode || (MODE2) == DCmode))
-
- /* return nonzero if register variable of mode MODE is not
- a priori a bad idea. Used only if defined. */
- #define MODE_OK_FOR_USERVAR(MODE) \
- ((MODE) == SImode)
-
- /* the program counter is reg 15 */
-
- #define PC_REGNUM 15
-
- /* the stack pointer is reg 14 */
-
- #define STACK_POINTER_REGNUM 14
-
- /* the frame pointer is reg 13 */
-
- #define FRAME_POINTER_REGNUM 13
-
- /* tahoe does require an fp */
-
- #define FRAME_POINTER_REQUIRED 1
-
- /* since tahoe doesn't have a argument pointer, make it the fp */
-
- #define ARG_POINTER_REGNUM 13
-
- /* this isn't currently used since C doesn't support this feature */
-
- #define STATIC_CHAIN_REGNUM 0
-
- /* we'll use reg 1 for structure passing cause the destination */
- /* of the eventual movblk requires it to be there anyway. */
-
- #define STRUCT_VALUE_REGNUM 1
-
-
- /*
- * Register Classes
- */
-
- /* tahoe has two types of regs. GENERAL_REGS are all the regs up */
- /* to number 15. FPP_REG is the special floating point processor */
- /* register class (only one reg). */
-
- enum reg_class {NO_REGS,GENERAL_REGS,FPP_REG,ALL_REGS,LIM_REG_CLASSES};
-
- /* defines the number of reg classes. */
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* this defines what the classes are officially named for debugging */
-
- #define REG_CLASS_NAMES \
- {"NO_REGS","GENERAL_REGS","FPP_REG","ALL_REGS"}
-
- /* set general regs to be the first 16 regs and the fpp reg to be 17th */
-
- #define REG_CLASS_CONTENTS {0,0xffff,0x10000,0x1ffff}
-
- /* register class for the fpp reg is FPP_REG, all others are GENERAL_REGS */
-
- #define REGNO_REG_CLASS(REGNO) (REGNO == 16 ? FPP_REG : GENERAL_REGS)
-
- /* only general registers can be used as a base reg */
-
- #define BASE_REG_CLASS GENERAL_REGS
-
- /* only general registers can be used to index */
-
- #define INDEX_REG_CLASS GENERAL_REGS
-
- /* 'a' as a constraint in the md file means the FFP_REG class */
-
- #define REG_CLASS_FROM_LETTER(C) (C == 'a' ? FPP_REG : NO_REGS)
-
- /* any general reg but the fpp can be a base reg */
-
- #define REGNO_OK_FOR_BASE_P(regno) \
- ((regno) < FIRST_PSEUDO_REGISTER - 1 || reg_renumber[regno] >= 0)
-
- /* any general reg except the pc and fpp can be an index reg */
-
- #define REGNO_OK_FOR_INDEX_P(regno) \
- ((regno) < FIRST_PSEUDO_REGISTER - 2 || reg_renumber[regno] >= 0)
-
- /* if your loading a floating point constant, it can't be done */
- /* through a register. Force it to be a memory constant. */
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) == CONST_DOUBLE) ? NO_REGS : CLASS)
-
- /* for the fpp reg, all modes fit; for any others, you need two for doubles */
-
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- (CLASS != FPP_REG ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
-
- /* we don't define any special constant sizes so all should fail */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
-
- /* we don't define any special double sizes so all should fail */
-
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
-
-
- /*
- * Describing Stack Layout
- */
-
- /* tahoe stack grows from high to low memory */
-
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if longjmp restores from saved registers
- rather than from what setjmp saved. */
- #define LONGJMP_RESTORE_FROM_STACK
-
- /* tahoe call frames grow from high to low memory on the stack */
-
- #define FRAME_GROWS_DOWNWARD
-
- /* the tahoe fp points to the *top* of the frame instead of the */
- /* bottom, so we have to make this offset a constant large enough */
- /* to jump over the biggest frame possible. */
-
- #define STARTING_FRAME_OFFSET -52
-
- /* tahoe always pushes 4 bytes unless it's a double in which case */
- /* it pushes a full 8 bytes. */
-
- #define PUSH_ROUNDING(BYTES) (BYTES <= 4 ? 4 : 8)
-
- /* the first parameter in a function is at the fp + 4 */
-
- #define FIRST_PARM_OFFSET(FNDECL) 4
-
- /* the tahoe return function takes care of everything on the stack */
-
- #define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE)
-
- /* function values for all types are returned in register 0 */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
-
- /* library routines also return things in reg 0 */
-
- #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
-
- /* Tahoe doesn't return structures in a reentrant way */
-
- #define PCC_STATIC_STRUCT_RETURN
-
- /* we only return values from a function in reg 0 */
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-
- /* we never pass args through a register */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
-
- /* int is fine to hold the argument summary in FUNCTION_ARG */
-
- #define CUMULATIVE_ARGS int
-
- /* we just set CUM to 0 before the FUNCTION_ARG call. No matter what */
- /* we make it, FUNCTION_ARG will return 0 anyway */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
- ((CUM) = 0)
-
- /* all modes push their size rounded to the nearest word boundary */
- /* except block which is the size of the block rounded up */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM) += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3))
-
- /* this is always false since we never pass params in regs */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* this code calculates the register entry mask and sets up */
- /* the stack pointer for the function. The stack is set down */
- /* far enough from the fp to jump over any push regs and local */
- /* vars. This is a problem since the tahoe has the fp pointing */
- /* to the top of the frame and the compiler must know the off- */
- /* set off the fp to the local vars. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) \
- { register int regno; \
- register int mask = 0; \
- extern char call_used_regs[]; \
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER-1; regno++) \
- if (regs_ever_live[regno] && !call_used_regs[regno]) \
- mask |= 1 << regno; \
- fprintf (FILE, "\t.word 0x%x\n", mask); \
- if (SIZE != 0) fprintf (FILE, "\tsubl3 $%d,fp,sp\n", (SIZE) - STARTING_FRAME_OFFSET); }
-
- /* Zero out global variable in case it was used in this function. */
- #define FUNCTION_EPILOGUE(FILE, SIZE) \
- { extern rtx tahoe_reg_conversion_loc; \
- tahoe_reg_conversion_loc = 0; \
- }
-
- #ifdef HCX_UX
-
- /* to call the profiler, the address of the counter var is placed */
- /* on the stack and then passed into mcount this way */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tpushal LP%d\n\tcallf $8,mcount\n", (LABELNO));
-
- #else
-
- /* to call the profiler, push the variable value onto the stack */
- /* and call mcount like a regular function. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tpushl $LP%d\n\tcallf $8,mcount\n", (LABELNO));
-
- #endif
-
- /* all stack handling at the end of a function is handled by the */
- /* return command. */
-
- #define EXIT_IGNORE_STACK 1
-
- /*
- * Library Subroutine Names
- */
-
- /* udiv is a valid C library routine in libc.a, so we call that */
-
- #define UDIVSI3_LIBCALL "*udiv"
-
- /* urem is a valid C library routine in libc.a, so we call that */
- /* but not so on hcx/ux */
-
- #ifdef HCX_UX
- #undef UMODSI3_LIBCALL
- #else
- #define UMODSI3_LIBCALL "*urem"
- #endif
-
-
- /*
- * Addressing Modes
- */
-
- /* constant addresses can be treated exactly the same as normal constants */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
- || GET_CODE (X) == HIGH)
-
- /* we can have as many as two regs in any given address */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* The following is all the code for GO_IF_LEGITIMATE_ADDRESS */
- /* most of this taken directly from the vax tm file since the */
- /* tahoe and vax addressing modes are nearly identical. */
-
- /* Is x an indirectable address? */
-
- #define INDIRECTABLE_ADDRESS_P(X) \
- (CONSTANT_ADDRESS_P (X) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || (GET_CODE (X) == PLUS \
- && GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && CONSTANT_ADDRESS_P (XEXP (X, 1))))
-
- /* If x is a non-indexed-address, go to ADDR. */
-
- #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
- { register rtx xfoob = (X); \
- if (GET_CODE (xfoob) == REG) goto ADDR; \
- if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
- xfoob = XEXP (X, 0); \
- if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
- goto ADDR; \
- if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && GET_CODE (xfoob) == REG && REGNO (xfoob) == 14) \
- goto ADDR; }
-
- /* Is PROD an index term in mode MODE. */
-
- #define INDEX_TERM_P(PROD, MODE) \
- (GET_MODE_SIZE (MODE) == 1 \
- ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
- : (GET_CODE (PROD) == MULT \
- && \
- (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
- ((GET_CODE (xfoo0) == CONST_INT \
- && INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
- && GET_CODE (xfoo1) == REG \
- && REG_OK_FOR_INDEX_P (xfoo1)) \
- || \
- (GET_CODE (xfoo1) == CONST_INT \
- && INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
- && GET_CODE (xfoo0) == REG \
- && REG_OK_FOR_INDEX_P (xfoo0))))))
-
- /* Is the addition to the index a reg? */
-
- #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
- { register rtx xfooa; \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && (xfooa = XEXP (X, 1), \
- INDEX_TERM_P (xfooa, MODE))) \
- goto ADDR; \
- if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
- && (xfooa = XEXP (X, 0), \
- INDEX_TERM_P (xfooa, MODE))) \
- goto ADDR; } }
-
- /* Is the rtx X a valid memory address for operand of mode MODE? */
- /* If it is, go to ADDR */
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { register rtx xfoo, xfoo0, xfoo1; \
- GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { xfoo = XEXP (X, 0); \
- if (INDEX_TERM_P (xfoo, MODE)) \
- { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
- xfoo = XEXP (X, 1); \
- if (INDEX_TERM_P (xfoo, MODE)) \
- { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
- if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
- { if (GET_CODE (XEXP (X, 1)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- goto ADDR; \
- GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
- if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
- { if (GET_CODE (XEXP (X, 0)) == REG \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- goto ADDR; \
- GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
-
- /* Register 16 can never be used for index or base */
-
- #ifndef REG_OK_STRICT
- #define REG_OK_FOR_INDEX_P(X) (REGNO(X) != 16)
- #define REG_OK_FOR_BASE_P(X) (REGNO(X) != 16)
- #else
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
- #endif
-
- /* Addressing is too simple to allow optimizing here */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
-
- /* Post_inc and pre_dec always adds 4 */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- { if (GET_CODE(ADDR) == POST_INC || GET_CODE(ADDR) == PRE_DEC) \
- goto LABEL; \
- if (GET_CODE (ADDR) == PLUS) \
- { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
- && GET_CODE (XEXP (ADDR, 1)) == REG); \
- else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
- && GET_CODE (XEXP (ADDR, 0)) == REG); \
- else goto LABEL; }}
-
- /* Double's are not legitimate as immediate operands */
-
- #define LEGITIMATE_CONSTANT_P(X) \
- (GET_CODE (X) != CONST_DOUBLE)
-
-
- /*
- * Miscellaneous Parameters
- */
-
- /* the elements in the case jump table are all words */
-
- #define CASE_VECTOR_MODE HImode
-
- /* each of the table elements in a case are relative to the jump address */
-
- #define CASE_VECTOR_PC_RELATIVE
-
- /* tahoe case instructions just fall through to the next instruction */
- /* if not satisfied. It doesn't support a default action */
-
- #define CASE_DROPS_THROUGH
-
- /* the standard answer is given here and work ok */
-
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* in a general div case, it's easiest to use TRUNC_DIV_EXPR */
-
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* the standard seems to be leaving char's as signed so we left it */
- /* this way even though we think they should be unsigned! */
-
- #define DEFAULT_SIGNED_CHAR 1
-
- /* the most we can move without cutting down speed is 4 bytes */
-
- #define MOVE_MAX 4
-
- /* our int is 32 bits */
-
- #define INT_TYPE_SIZE 32
-
- /* byte access isn't really slower than anything else */
-
- #define SLOW_BYTE_ACCESS 0
-
- /* zero extension is more than one instruction so try to avoid it */
-
- #define SLOW_ZERO_EXTEND
-
- /* any bits higher than the low 4 are ignored in the shift count */
- /* so don't bother zero extending or sign extending them */
-
- #define SHIFT_COUNT_TRUNCATED 1
-
- /* we don't need to officially convert from one fixed type to another */
- /* in order to use it as that type. We can just assume it's the same */
-
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* pass chars as ints */
-
- #define PROMOTE_PROTOTYPES
-
- /* pointers can be represented by an si mode expression */
-
- #define Pmode SImode
-
- /* function addresses are made by specifying a byte address */
-
- #define FUNCTION_MODE QImode
-
- /* Define this if addresses of constant functions
- shouldn't be put through pseudo regs where they can be cse'd.
- On the tahoe a call with a constant address is much faster than one with a
- register. */
-
- #define NO_FUNCTION_CSE
-
- /* specify the costs of various sorts of constants,
- and also indicate that multiplication is cheap on this machine. */
-
- #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
- case CONST_INT: \
- /* Constant zero is super cheap due to clr instruction. */ \
- if (RTX == const0_rtx) return 0; \
- if ((unsigned) INTVAL (RTX) < 077) return 1; \
- if (INTVAL (RTX) <= 127 && INTVAL (RTX) >= -128) return 2; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5; \
- case MULT: \
- total = 2;
-
-
- /*
- * Condition Code Information
- */
-
- /* Nonzero if the results of the previous comparison are
- in the floating point condition code register. */
-
- #define CC_UNCHANGED 04000
-
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- { if (cc_status.flags & CC_UNCHANGED) \
- /* Happens for cvtld and a few other insns. */ \
- cc_status.flags &= ~CC_UNCHANGED; \
- else if (GET_CODE (EXP) == SET) \
- { if (GET_CODE (SET_SRC (EXP)) == CALL) \
- CC_STATUS_INIT; \
- else if (GET_CODE (SET_DEST (EXP)) != PC) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (EXP); \
- cc_status.value2 = SET_SRC (EXP); } } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET \
- && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
- { cc_status.flags = 0; \
- cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
- cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
- /* PARALLELs whose first element sets the PC are aob, sob insns. \
- They do change the cc's. So drop through and forget the cc's. */ \
- else CC_STATUS_INIT; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
- cc_status.value2 = 0; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
- && cc_status.value2 \
- && GET_CODE (cc_status.value2) == MEM) \
- cc_status.value2 = 0; }
- /* Actual condition, one line up, should be that value2's address
- depends on value1, but that is too much of a pain. */
-
-
- /*
- * Output of Assembler Code
- */
-
- /* print which tahoe version compiled this code and print a directive */
- /* to the gnu assembler to say that the following is normal assembly */
-
- #ifdef HCX_UX
- #define ASM_FILE_START(FILE) \
- { fprintf (FILE, "#gcc hcx 1.0\n\n"); \
- output_file_directive ((FILE), main_input_filename);} while (0)
- #else
- #define ASM_FILE_START(FILE) fprintf (FILE, "#gcc tahoe 1.0\n#NO_APP\n");
- #endif
-
- /* the instruction that turns on the APP for the gnu assembler */
-
- #define ASM_APP_ON "#APP\n"
-
- /* the instruction that turns off the APP for the gnu assembler */
-
- #define ASM_APP_OFF "#NO_APP\n"
-
- /* what to output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP ".text"
-
- /* what to output before writable data. */
-
- #define DATA_SECTION_ASM_OP ".data"
-
- /* this is what we call each of the regs. notice that the FPP reg is */
- /* called "ac". This should never get used due to the way we've set */
- /* up FPP instructions in the md file. But we call it "ac" here to */
- /* fill the list. */
-
- #define REGISTER_NAMES \
- {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
- "r9", "r10", "r11", "r12", "fp", "sp", "pc", "ac"}
-
- #ifdef HCX_UX
- /* allow generation of sdb info in the assembly */
- #define SDB_DEBUGGING_INFO
- #else
- /* allow generation of dbx info in the assembly */
-
- #define DBX_DEBUGGING_INFO
-
- /* our dbx doesn't support this */
-
- #define DBX_NO_XREFS
-
- /* we don't want symbols broken up */
-
- #define DBX_CONTIN_LENGTH 0
-
- /* this'll really never be used, but we'll leave it at this */
-
- #define DBX_CONTIN_CHAR '?'
-
- #endif /* HCX_UX */
-
- /* registers are called the same thing in dbx anything else */
- /* This is necessary even if we generate SDB output */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* labels are the label followed by a colon and a newline */
- /* must be a statement, so surround it in a null loop */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
-
- /* use the .globl directive to make labels global for the linker */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
- do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
-
- /* output a label by appending an underscore to it */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- fprintf (FILE, "_%s", NAME)
-
- /* use the standard format for printing internal labels */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
-
- /* a * is used for label indirection in unix assembly */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "*%s%d", PREFIX, NUM)
-
- /* outputting a double is easy cause we only have one kind */
-
- #ifdef HCX_UX
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
- #else
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- { \
- union { int i[2]; double d;} temp; \
- temp.d = (VALUE); \
- if (TARGET_HEX_FLOAT) \
- fprintf ((FILE), "\t.long 0x%x,0x%x # %.20e\n", \
- temp.i[0], temp.i[1], temp.d); \
- else \
- fprintf (FILE, "\t.dfloat 0d%.20e\n", temp.d); \
- }
- #endif
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #ifdef HCX_UX
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
- #else
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- { \
- union { int i; float f;} temp; \
- temp.f = (float) (VALUE); \
- if (TARGET_HEX_FLOAT) \
- fprintf ((FILE), "\t.long 0x%x # %.20e\n", \
- temp.i, temp.f); \
- else \
- fprintf (FILE, "\t.float 0f%.20e\n", temp.f); \
- }
- #endif
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, "\t.long "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, "\t.word "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, "\t.byte "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #ifdef HCX_UX
- /* This is how to output an assembler line for an ASCII string. */
-
- #define ASM_OUTPUT_ASCII(FILE, p, size) \
- do { register int i; \
- fprintf ((FILE), "\t.ascii \""); \
- for (i = 0; i < (size); i++) \
- { \
- register int c = (p)[i]; \
- if (c == '\'' || c == '\\') \
- putc ('\\', (FILE)); \
- if (c >= ' ' && c < 0177 && c != '\"') \
- putc (c, (FILE)); \
- else \
- { \
- fprintf ((FILE), "\\%03o", c); \
- } \
- } \
- fprintf ((FILE), "\"\n"); } while (0)
- #endif
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
-
- /* this is the insn to push a register onto the stack */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
-
- /* this is the insn to pop a register from the stack */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
-
- /* this is required even thought tahoe doesn't support it */
- /* cause the C code expects it to be defined */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, "\t.long L%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative. */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #ifdef HCX_UX
- #define CASE_ALIGNMENT 2
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG)!=0) fprintf ((FILE), "\t.align %d\n", 1<<(LOG))
- #else
- #define CASE_ALIGNMENT 1
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- LOG ? fprintf (FILE, "\t.align %d\n", (LOG)) : 0
- #endif
-
- /* This is how to skip over some space */
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %u\n", (SIZE))
-
- /* This defines common variables across files */
-
- #ifdef HCX_UX
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (SIZE)))
- #else
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".comm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
- #endif
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #ifdef HCX_UX
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( fputs ("\t.bss ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u,4\n", (SIZE),(ROUNDED)))
- #else
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- ( fputs (".lcomm ", (FILE)), \
- assemble_name ((FILE), (NAME)), \
- fprintf ((FILE), ",%u\n", (ROUNDED)))
- #endif
-
- /* code to generate a label */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
- sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
-
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 012
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 015
-
- /* Print an instruction operand X on file FILE.
- CODE is the code from the %-spec that requested printing this operand;
- if `%z3' was used to print operand 3, then CODE is 'z'.
- On the Vax, the only code used is `#', indicating that either
- `d' or `g' should be printed, depending on whether we're using dfloat
- or gfloat. */
- /* Print an operand. Some difference from the vax code,
- since the tahoe can't support immediate floats and doubles.
-
- %@ means print the proper alignment operand for aligning after a casesi.
- This depends on the assembler syntax.
- This is 1 for our assembler, since .align is logarithmic.
-
- %s means the number given is supposed to be a shift value, but on
- the tahoe it should be converted to a number that can be used as a
- multiplicative constant (cause multiplication is a whole lot faster
- than shifting). So make the number 2^n instead. */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '@')
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- { if (CODE == '@') \
- putc ('0' + CASE_ALIGNMENT, FILE); \
- else if (CODE == 's') \
- fprintf (FILE, "$%d", 1 << INTVAL(X)); \
- else if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_names[REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else { putc ('$', FILE); output_addr_const (FILE, X); }}
-
- /* When the operand is an address, call print_operand_address to */
- /* do the work from output-tahoe.c. */
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- print_operand_address (FILE, ADDR)
-
- /* This is for G++ */
-
- #define CRT0_DUMMIES
- #define DOT_GLOBAL_START
- #ifdef HCX_UX
- #define NO_GNU_LD /* because of COFF format */
- #define LINK_SPEC "-L/usr/staff/lib"
- #endif
-