home *** CD-ROM | disk | FTP | other *** search
- /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
- Copyright (C) 1987, 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
-
- #include "config.h"
- #include "rtl.h"
- #include "tree.h"
- #include "flags.h"
- #include "insn-flags.h"
- #include "insn-codes.h"
- #include "expr.h"
- #include "insn-config.h"
- #include "recog.h"
- #include "reload.h"
- #include <ctype.h>
-
- /* Each optab contains info on how this target machine
- can perform a particular operation
- for all sizes and kinds of operands.
-
- The operation to be performed is often specified
- by passing one of these optabs as an argument.
-
- See expr.h for documentation of these optabs. */
-
- optab add_optab;
- optab sub_optab;
- optab smul_optab;
- optab smul_highpart_optab;
- optab umul_highpart_optab;
- optab smul_widen_optab;
- optab umul_widen_optab;
- optab sdiv_optab;
- optab sdivmod_optab;
- optab udiv_optab;
- optab udivmod_optab;
- optab smod_optab;
- optab umod_optab;
- optab flodiv_optab;
- optab ftrunc_optab;
- optab and_optab;
- optab ior_optab;
- optab xor_optab;
- optab ashl_optab;
- optab lshr_optab;
- optab ashr_optab;
- optab rotl_optab;
- optab rotr_optab;
- optab smin_optab;
- optab smax_optab;
- optab umin_optab;
- optab umax_optab;
-
- optab mov_optab;
- optab movstrict_optab;
-
- optab neg_optab;
- optab abs_optab;
- optab one_cmpl_optab;
- optab ffs_optab;
- optab sqrt_optab;
- optab sin_optab;
- optab cos_optab;
-
- optab cmp_optab;
- optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
- optab tst_optab;
-
- optab strlen_optab;
-
- /* Tables of patterns for extending one integer mode to another. */
- enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
-
- /* Tables of patterns for converting between fixed and floating point. */
- enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
- enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
- enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
-
- /* Contains the optab used for each rtx code. */
- optab code_to_optab[NUM_RTX_CODE + 1];
-
- /* SYMBOL_REF rtx's for the library functions that are called
- implicitly and not via optabs. */
-
- rtx extendsfdf2_libfunc;
- rtx extendsfxf2_libfunc;
- rtx extendsftf2_libfunc;
- rtx extenddfxf2_libfunc;
- rtx extenddftf2_libfunc;
-
- rtx truncdfsf2_libfunc;
- rtx truncxfsf2_libfunc;
- rtx trunctfsf2_libfunc;
- rtx truncxfdf2_libfunc;
- rtx trunctfdf2_libfunc;
-
- rtx memcpy_libfunc;
- rtx bcopy_libfunc;
- rtx memcmp_libfunc;
- rtx bcmp_libfunc;
- rtx memset_libfunc;
- rtx bzero_libfunc;
-
- rtx eqsf2_libfunc;
- rtx nesf2_libfunc;
- rtx gtsf2_libfunc;
- rtx gesf2_libfunc;
- rtx ltsf2_libfunc;
- rtx lesf2_libfunc;
-
- rtx eqdf2_libfunc;
- rtx nedf2_libfunc;
- rtx gtdf2_libfunc;
- rtx gedf2_libfunc;
- rtx ltdf2_libfunc;
- rtx ledf2_libfunc;
-
- rtx eqxf2_libfunc;
- rtx nexf2_libfunc;
- rtx gtxf2_libfunc;
- rtx gexf2_libfunc;
- rtx ltxf2_libfunc;
- rtx lexf2_libfunc;
-
- rtx eqtf2_libfunc;
- rtx netf2_libfunc;
- rtx gttf2_libfunc;
- rtx getf2_libfunc;
- rtx lttf2_libfunc;
- rtx letf2_libfunc;
-
- rtx floatsisf_libfunc;
- rtx floatdisf_libfunc;
- rtx floattisf_libfunc;
-
- rtx floatsidf_libfunc;
- rtx floatdidf_libfunc;
- rtx floattidf_libfunc;
-
- rtx floatsixf_libfunc;
- rtx floatdixf_libfunc;
- rtx floattixf_libfunc;
-
- rtx floatsitf_libfunc;
- rtx floatditf_libfunc;
- rtx floattitf_libfunc;
-
- rtx fixsfsi_libfunc;
- rtx fixsfdi_libfunc;
- rtx fixsfti_libfunc;
-
- rtx fixdfsi_libfunc;
- rtx fixdfdi_libfunc;
- rtx fixdfti_libfunc;
-
- rtx fixxfsi_libfunc;
- rtx fixxfdi_libfunc;
- rtx fixxfti_libfunc;
-
- rtx fixtfsi_libfunc;
- rtx fixtfdi_libfunc;
- rtx fixtfti_libfunc;
-
- rtx fixunssfsi_libfunc;
- rtx fixunssfdi_libfunc;
- rtx fixunssfti_libfunc;
-
- rtx fixunsdfsi_libfunc;
- rtx fixunsdfdi_libfunc;
- rtx fixunsdfti_libfunc;
-
- rtx fixunsxfsi_libfunc;
- rtx fixunsxfdi_libfunc;
- rtx fixunsxfti_libfunc;
-
- rtx fixunstfsi_libfunc;
- rtx fixunstfdi_libfunc;
- rtx fixunstfti_libfunc;
-
- /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
- gives the gen_function to make a branch to test that condition. */
-
- rtxfun bcc_gen_fctn[NUM_RTX_CODE];
-
- /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
- gives the insn code to make a store-condition insn
- to test that condition. */
-
- enum insn_code setcc_gen_code[NUM_RTX_CODE];
-
- static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx));
- static rtx widen_operand PROTO((rtx, enum machine_mode,
- enum machine_mode, int, int));
- static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode,
- int, int *));
- static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode,
- int));
- static rtx ftruncify PROTO((rtx));
- static optab init_optab PROTO((enum rtx_code));
- static void init_libfuncs PROTO((optab, int, int, char *, int));
- static void init_integral_libfuncs PROTO((optab, char *, int));
- static void init_floating_libfuncs PROTO((optab, char *, int));
- static void init_complex_libfuncs PROTO((optab, char *, int));
-
- /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
- the result of operation CODE applied to OP0 (and OP1 if it is a binary
- operation).
-
- If the last insn does not set TARGET, don't do anything, but return 1.
-
- If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
- don't add the REG_EQUAL note but return 0. Our caller can then try
- again, ensuring that TARGET is not one of the operands. */
-
- static int
- add_equal_note (seq, target, code, op0, op1)
- rtx seq;
- rtx target;
- enum rtx_code code;
- rtx op0, op1;
- {
- rtx set;
- int i;
- rtx note;
-
- if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
- && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
- || GET_CODE (seq) != SEQUENCE
- || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
- || GET_CODE (target) == ZERO_EXTRACT
- || (! rtx_equal_p (SET_DEST (set), target)
- /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
- SUBREG. */
- && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
- || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
- target))))
- return 1;
-
- /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
- besides the last insn. */
- if (reg_overlap_mentioned_p (target, op0)
- || (op1 && reg_overlap_mentioned_p (target, op1)))
- for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
- if (reg_set_p (target, XVECEXP (seq, 0, i)))
- return 0;
-
- if (GET_RTX_CLASS (code) == '1')
- note = gen_rtx (code, GET_MODE (target), copy_rtx (op0));
- else
- note = gen_rtx (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
-
- REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
- = gen_rtx (EXPR_LIST, REG_EQUAL, note,
- REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
-
- return 1;
- }
-
- /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
- says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
- not actually do a sign-extend or zero-extend, but can leave the
- higher-order bits of the result rtx undefined, for example, in the case
- of logical operations, but not right shifts. */
-
- static rtx
- widen_operand (op, mode, oldmode, unsignedp, no_extend)
- rtx op;
- enum machine_mode mode, oldmode;
- int unsignedp;
- int no_extend;
- {
- rtx result;
-
- /* If we must extend do so. If OP is either a constant or a SUBREG
- for a promoted object, also extend since it will be more efficient to
- do so. */
- if (! no_extend
- || GET_MODE (op) == VOIDmode
- || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
- return convert_modes (mode, oldmode, op, unsignedp);
-
- /* If MODE is no wider than a single word, we return a paradoxical
- SUBREG. */
- if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
- return gen_rtx (SUBREG, mode, force_reg (GET_MODE (op), op), 0);
-
- /* Otherwise, get an object of MODE, clobber it, and set the low-order
- part to OP. */
-
- result = gen_reg_rtx (mode);
- emit_insn (gen_rtx (CLOBBER, VOIDmode, result));
- emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
- return result;
- }
-
- /* Generate code to perform an operation specified by BINOPTAB
- on operands OP0 and OP1, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
- rtx
- expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
- enum machine_mode mode;
- optab binoptab;
- rtx op0, op1;
- rtx target;
- int unsignedp;
- enum optab_methods methods;
- {
- enum optab_methods next_methods
- = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
- ? OPTAB_WIDEN : methods);
- enum mode_class class;
- enum machine_mode wider_mode;
- register rtx temp;
- int commutative_op = 0;
- int shift_op = (binoptab->code == ASHIFT
- || binoptab->code == ASHIFTRT
- || binoptab->code == LSHIFTRT
- || binoptab->code == ROTATE
- || binoptab->code == ROTATERT);
- rtx entry_last = get_last_insn ();
- rtx last;
-
- class = GET_MODE_CLASS (mode);
-
- op0 = protect_from_queue (op0, 0);
- op1 = protect_from_queue (op1, 0);
- if (target)
- target = protect_from_queue (target, 1);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- op1 = force_not_mem (op1);
- }
-
- /* If subtracting an integer constant, convert this into an addition of
- the negated constant. */
-
- if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
- {
- op1 = negate_rtx (mode, op1);
- binoptab = add_optab;
- }
-
- /* If we are inside an appropriately-short loop and one operand is an
- expensive constant, force it into a register. */
- if (CONSTANT_P (op0) && preserve_subexpressions_p ()
- && rtx_cost (op0, binoptab->code) > 2)
- op0 = force_reg (mode, op0);
-
- if (CONSTANT_P (op1) && preserve_subexpressions_p ()
- && rtx_cost (op1, binoptab->code) > 2)
- op1 = force_reg (shift_op ? word_mode : mode, op1);
-
- /* Record where to delete back to if we backtrack. */
- last = get_last_insn ();
-
- /* If operation is commutative,
- try to make the first operand a register.
- Even better, try to make it the same as the target.
- Also try to make the last operand a constant. */
- if (GET_RTX_CLASS (binoptab->code) == 'c'
- || binoptab == smul_widen_optab
- || binoptab == umul_widen_optab
- || binoptab == smul_highpart_optab
- || binoptab == umul_highpart_optab)
- {
- commutative_op = 1;
-
- if (((target == 0 || GET_CODE (target) == REG)
- ? ((GET_CODE (op1) == REG
- && GET_CODE (op0) != REG)
- || target == op1)
- : rtx_equal_p (op1, target))
- || GET_CODE (op0) == CONST_INT)
- {
- temp = op1;
- op1 = op0;
- op0 = temp;
- }
- }
-
- /* If we can do it with a three-operand insn, do so. */
-
- if (methods != OPTAB_MUST_WIDEN
- && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) binoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- enum machine_mode mode1 = insn_operand_mode[icode][2];
- rtx pat;
- rtx xop0 = op0, xop1 = op1;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- /* If it is a commutative operator and the modes would match
- if we would swap the operands, we can save the conversions. */
- if (commutative_op)
- {
- if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
- && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
- {
- register rtx tmp;
-
- tmp = op0; op0 = op1; op1 = tmp;
- tmp = xop0; xop0 = xop1; xop1 = tmp;
- }
- }
-
- /* In case the insn wants input operands in modes different from
- the result, convert the operands. */
-
- if (GET_MODE (op0) != VOIDmode
- && GET_MODE (op0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- if (GET_MODE (xop1) != VOIDmode
- && GET_MODE (xop1) != mode1)
- xop1 = convert_to_mode (mode1, xop1, unsignedp);
-
- /* Now, if insn's predicates don't allow our operands, put them into
- pseudo regs. */
-
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, mode))
- temp = gen_reg_rtx (mode);
-
- pat = GEN_FCN (icode) (temp, xop0, xop1);
- if (pat)
- {
- /* If PAT is a multi-insn sequence, try to add an appropriate
- REG_EQUAL note to it. If we can't because TEMP conflicts with an
- operand, call ourselves again, this time without a target. */
- if (GET_CODE (pat) == SEQUENCE
- && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
- {
- delete_insns_since (last);
- return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
- unsignedp, methods);
- }
-
- emit_insn (pat);
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* If this is a multiply, see if we can do a widening operation that
- takes operands of this mode and makes a wider mode. */
-
- if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
- && (((unsignedp ? umul_widen_optab : smul_widen_optab)
- ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
- != CODE_FOR_nothing))
- {
- temp = expand_binop (GET_MODE_WIDER_MODE (mode),
- unsignedp ? umul_widen_optab : smul_widen_optab,
- op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
-
- if (temp != 0)
- {
- if (GET_MODE_CLASS (mode) == MODE_INT)
- return gen_lowpart (mode, temp);
- else
- return convert_to_mode (mode, temp, unsignedp);
- }
- }
-
- /* Look for a wider mode of the same class for which we think we
- can open-code the operation. Check for a widening multiply at the
- wider mode as well. */
-
- if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
- || (binoptab == smul_optab
- && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
- && (((unsignedp ? umul_widen_optab : smul_widen_optab)
- ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
- != CODE_FOR_nothing)))
- {
- rtx xop0 = op0, xop1 = op1;
- int no_extend = 0;
-
- /* For certain integer operations, we need not actually extend
- the narrow operands, as long as we will truncate
- the results to the same narrowness. */
-
- if ((binoptab == ior_optab || binoptab == and_optab
- || binoptab == xor_optab
- || binoptab == add_optab || binoptab == sub_optab
- || binoptab == smul_optab || binoptab == ashl_optab)
- && class == MODE_INT)
- no_extend = 1;
-
- xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
-
- /* The second operand of a shift must always be extended. */
- xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
- no_extend && binoptab != ashl_optab);
-
- temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
- unsignedp, OPTAB_DIRECT);
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* These can be done a word at a time. */
- if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx insns;
- rtx equiv_value;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. */
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* Do the actual arithmetic. */
- for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
- {
- rtx target_piece = operand_subword (target, i, 1, mode);
- rtx x = expand_binop (word_mode, binoptab,
- operand_subword_force (op0, i, mode),
- operand_subword_force (op1, i, mode),
- target_piece, unsignedp, next_methods);
-
- if (x == 0)
- break;
-
- if (target_piece != x)
- emit_move_insn (target_piece, x);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
- {
- if (binoptab->code != UNKNOWN)
- equiv_value
- = gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
- else
- equiv_value = 0;
-
- emit_no_conflict_block (insns, target, op0, op1, equiv_value);
- return target;
- }
- }
-
- /* Synthesize double word shifts from single word shifts. */
- if ((binoptab == lshr_optab || binoptab == ashl_optab
- || binoptab == ashr_optab)
- && class == MODE_INT
- && GET_CODE (op1) == CONST_INT
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- rtx insns, inter, equiv_value;
- rtx into_target, outof_target;
- rtx into_input, outof_input;
- int shift_count, left_shift, outof_word;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. */
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- shift_count = INTVAL (op1);
-
- /* OUTOF_* is the word we are shifting bits away from, and
- INTO_* is the word that we are shifting bits towards, thus
- they differ depending on the direction of the shift and
- WORDS_BIG_ENDIAN. */
-
- left_shift = binoptab == ashl_optab;
- outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
-
- outof_target = operand_subword (target, outof_word, 1, mode);
- into_target = operand_subword (target, 1 - outof_word, 1, mode);
-
- outof_input = operand_subword_force (op0, outof_word, mode);
- into_input = operand_subword_force (op0, 1 - outof_word, mode);
-
- if (shift_count >= BITS_PER_WORD)
- {
- inter = expand_binop (word_mode, binoptab,
- outof_input,
- GEN_INT (shift_count - BITS_PER_WORD),
- into_target, unsignedp, next_methods);
-
- if (inter != 0 && inter != into_target)
- emit_move_insn (into_target, inter);
-
- /* For a signed right shift, we must fill the word we are shifting
- out of with copies of the sign bit. Otherwise it is zeroed. */
- if (inter != 0 && binoptab != ashr_optab)
- inter = CONST0_RTX (word_mode);
- else if (inter != 0)
- inter = expand_binop (word_mode, binoptab,
- outof_input,
- GEN_INT (BITS_PER_WORD - 1),
- outof_target, unsignedp, next_methods);
-
- if (inter != 0 && inter != outof_target)
- emit_move_insn (outof_target, inter);
- }
- else
- {
- rtx carries;
- optab reverse_unsigned_shift, unsigned_shift;
-
- /* For a shift of less then BITS_PER_WORD, to compute the carry,
- we must do a logical shift in the opposite direction of the
- desired shift. */
-
- reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
-
- /* For a shift of less than BITS_PER_WORD, to compute the word
- shifted towards, we need to unsigned shift the orig value of
- that word. */
-
- unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
-
- carries = expand_binop (word_mode, reverse_unsigned_shift,
- outof_input,
- GEN_INT (BITS_PER_WORD - shift_count),
- 0, unsignedp, next_methods);
-
- if (carries == 0)
- inter = 0;
- else
- inter = expand_binop (word_mode, binoptab, outof_input,
- op1, outof_target, unsignedp, next_methods);
-
- if (inter != 0 && inter != outof_target)
- emit_move_insn (outof_target, inter);
-
- if (inter != 0)
- inter = expand_binop (word_mode, unsigned_shift, into_input,
- op1, 0, unsignedp, next_methods);
-
- if (inter != 0)
- inter = expand_binop (word_mode, ior_optab, carries, inter,
- into_target, unsignedp, next_methods);
-
- if (inter != 0 && inter != into_target)
- emit_move_insn (into_target, inter);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- if (inter != 0)
- {
- if (binoptab->code != UNKNOWN)
- equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
- else
- equiv_value = 0;
-
- emit_no_conflict_block (insns, target, op0, op1, equiv_value);
- return target;
- }
- }
-
- /* Synthesize double word rotates from single word shifts. */
- if ((binoptab == rotl_optab || binoptab == rotr_optab)
- && class == MODE_INT
- && GET_CODE (op1) == CONST_INT
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- rtx insns, equiv_value;
- rtx into_target, outof_target;
- rtx into_input, outof_input;
- rtx inter;
- int shift_count, left_shift, outof_word;
-
- /* If TARGET is the same as one of the operands, the REG_EQUAL note
- won't be accurate, so use a new target. */
- if (target == 0 || target == op0 || target == op1)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- shift_count = INTVAL (op1);
-
- /* OUTOF_* is the word we are shifting bits away from, and
- INTO_* is the word that we are shifting bits towards, thus
- they differ depending on the direction of the shift and
- WORDS_BIG_ENDIAN. */
-
- left_shift = (binoptab == rotl_optab);
- outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
-
- outof_target = operand_subword (target, outof_word, 1, mode);
- into_target = operand_subword (target, 1 - outof_word, 1, mode);
-
- outof_input = operand_subword_force (op0, outof_word, mode);
- into_input = operand_subword_force (op0, 1 - outof_word, mode);
-
- if (shift_count == BITS_PER_WORD)
- {
- /* This is just a word swap. */
- emit_move_insn (outof_target, into_input);
- emit_move_insn (into_target, outof_input);
- inter = const0_rtx;
- }
- else
- {
- rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
- rtx first_shift_count, second_shift_count;
- optab reverse_unsigned_shift, unsigned_shift;
-
- reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
- ? lshr_optab : ashl_optab);
-
- unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
- ? ashl_optab : lshr_optab);
-
- if (shift_count > BITS_PER_WORD)
- {
- first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
- second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
- }
- else
- {
- first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
- second_shift_count = GEN_INT (shift_count);
- }
-
- into_temp1 = expand_binop (word_mode, unsigned_shift,
- outof_input, first_shift_count,
- NULL_RTX, unsignedp, next_methods);
- into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
- into_input, second_shift_count,
- into_target, unsignedp, next_methods);
-
- if (into_temp1 != 0 && into_temp2 != 0)
- inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
- into_target, unsignedp, next_methods);
- else
- inter = 0;
-
- if (inter != 0 && inter != into_target)
- emit_move_insn (into_target, inter);
-
- outof_temp1 = expand_binop (word_mode, unsigned_shift,
- into_input, first_shift_count,
- NULL_RTX, unsignedp, next_methods);
- outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
- outof_input, second_shift_count,
- outof_target, unsignedp, next_methods);
-
- if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
- inter = expand_binop (word_mode, ior_optab,
- outof_temp1, outof_temp2,
- outof_target, unsignedp, next_methods);
-
- if (inter != 0 && inter != outof_target)
- emit_move_insn (outof_target, inter);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- if (inter != 0)
- {
- if (binoptab->code != UNKNOWN)
- equiv_value = gen_rtx (binoptab->code, mode, op0, op1);
- else
- equiv_value = 0;
-
- /* We can't make this a no conflict block if this is a word swap,
- because the word swap case fails if the input and output values
- are in the same register. */
- if (shift_count != BITS_PER_WORD)
- emit_no_conflict_block (insns, target, op0, op1, equiv_value);
- else
- emit_insns (insns);
-
-
- return target;
- }
- }
-
- /* These can be done a word at a time by propagating carries. */
- if ((binoptab == add_optab || binoptab == sub_optab)
- && class == MODE_INT
- && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
- && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx carry_tmp = gen_reg_rtx (word_mode);
- optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
- int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
- rtx carry_in, carry_out;
- rtx xop0, xop1;
-
- /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
- value is one of those, use it. Otherwise, use 1 since it is the
- one easiest to get. */
- #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
- int normalizep = STORE_FLAG_VALUE;
- #else
- int normalizep = 1;
- #endif
-
- /* Prepare the operands. */
- xop0 = force_reg (mode, op0);
- xop1 = force_reg (mode, op1);
-
- if (target == 0 || GET_CODE (target) != REG
- || target == xop0 || target == xop1)
- target = gen_reg_rtx (mode);
-
- /* Indicate for flow that the entire target reg is being set. */
- if (GET_CODE (target) == REG)
- emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
-
- /* Do the actual arithmetic. */
- for (i = 0; i < nwords; i++)
- {
- int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
- rtx target_piece = operand_subword (target, index, 1, mode);
- rtx op0_piece = operand_subword_force (xop0, index, mode);
- rtx op1_piece = operand_subword_force (xop1, index, mode);
- rtx x;
-
- /* Main add/subtract of the input operands. */
- x = expand_binop (word_mode, binoptab,
- op0_piece, op1_piece,
- target_piece, unsignedp, next_methods);
- if (x == 0)
- break;
-
- if (i + 1 < nwords)
- {
- /* Store carry from main add/subtract. */
- carry_out = gen_reg_rtx (word_mode);
- carry_out = emit_store_flag (carry_out,
- binoptab == add_optab ? LTU : GTU,
- x, op0_piece,
- word_mode, 1, normalizep);
- if (carry_out == 0)
- break;
- }
-
- if (i > 0)
- {
- /* Add/subtract previous carry to main result. */
- x = expand_binop (word_mode,
- normalizep == 1 ? binoptab : otheroptab,
- x, carry_in,
- target_piece, 1, next_methods);
- if (x == 0)
- break;
- else if (target_piece != x)
- emit_move_insn (target_piece, x);
-
- if (i + 1 < nwords)
- {
- /* THIS CODE HAS NOT BEEN TESTED. */
- /* Get out carry from adding/subtracting carry in. */
- carry_tmp = emit_store_flag (carry_tmp,
- binoptab == add_optab
- ? LTU : GTU,
- x, carry_in,
- word_mode, 1, normalizep);
-
- /* Logical-ior the two poss. carry together. */
- carry_out = expand_binop (word_mode, ior_optab,
- carry_out, carry_tmp,
- carry_out, 0, next_methods);
- if (carry_out == 0)
- break;
- }
- }
-
- carry_in = carry_out;
- }
-
- if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
- {
- rtx temp = emit_move_insn (target, target);
-
- REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
- gen_rtx (binoptab->code, mode,
- copy_rtx (xop0),
- copy_rtx (xop1)),
- REG_NOTES (temp));
- return target;
- }
- else
- delete_insns_since (last);
- }
-
- /* If we want to multiply two two-word values and have normal and widening
- multiplies of single-word values, we can do this with three smaller
- multiplications. Note that we do not make a REG_NO_CONFLICT block here
- because we are not operating on one word at a time.
-
- The multiplication proceeds as follows:
- _______________________
- [__op0_high_|__op0_low__]
- _______________________
- * [__op1_high_|__op1_low__]
- _______________________________________________
- _______________________
- (1) [__op0_low__*__op1_low__]
- _______________________
- (2a) [__op0_low__*__op1_high_]
- _______________________
- (2b) [__op0_high_*__op1_low__]
- _______________________
- (3) [__op0_high_*__op1_high_]
-
-
- This gives a 4-word result. Since we are only interested in the
- lower 2 words, partial result (3) and the upper words of (2a) and
- (2b) don't need to be calculated. Hence (2a) and (2b) can be
- calculated using non-widening multiplication.
-
- (1), however, needs to be calculated with an unsigned widening
- multiplication. If this operation is not directly supported we
- try using a signed widening multiplication and adjust the result.
- This adjustment works as follows:
-
- If both operands are positive then no adjustment is needed.
-
- If the operands have different signs, for example op0_low < 0 and
- op1_low >= 0, the instruction treats the most significant bit of
- op0_low as a sign bit instead of a bit with significance
- 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
- with 2**BITS_PER_WORD - op0_low, and two's complements the
- result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
- the result.
-
- Similarly, if both operands are negative, we need to add
- (op0_low + op1_low) * 2**BITS_PER_WORD.
-
- We use a trick to adjust quickly. We logically shift op0_low right
- (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
- op0_high (op1_high) before it is used to calculate 2b (2a). If no
- logical shift exists, we do an arithmetic right shift and subtract
- the 0 or -1. */
-
- if (binoptab == smul_optab
- && class == MODE_INT
- && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
- && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
- && ((umul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)
- || (smul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)))
- {
- int low = (WORDS_BIG_ENDIAN ? 1 : 0);
- int high = (WORDS_BIG_ENDIAN ? 0 : 1);
- rtx op0_high = operand_subword_force (op0, high, mode);
- rtx op0_low = operand_subword_force (op0, low, mode);
- rtx op1_high = operand_subword_force (op1, high, mode);
- rtx op1_low = operand_subword_force (op1, low, mode);
- rtx product = 0;
- rtx op0_xhigh;
- rtx op1_xhigh;
-
- /* If the target is the same as one of the inputs, don't use it. This
- prevents problems with the REG_EQUAL note. */
- if (target == op0 || target == op1)
- target = 0;
-
- /* Multiply the two lower words to get a double-word product.
- If unsigned widening multiplication is available, use that;
- otherwise use the signed form and compensate. */
-
- if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
- target, 1, OPTAB_DIRECT);
-
- /* If we didn't succeed, delete everything we did so far. */
- if (product == 0)
- delete_insns_since (last);
- else
- op0_xhigh = op0_high, op1_xhigh = op1_high;
- }
-
- if (product == 0
- && smul_widen_optab->handlers[(int) mode].insn_code
- != CODE_FOR_nothing)
- {
- rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
- product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
- target, 1, OPTAB_DIRECT);
- op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
- NULL_RTX, 1, next_methods);
- if (op0_xhigh)
- op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
- op0_xhigh, op0_xhigh, 0, next_methods);
- else
- {
- op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
- NULL_RTX, 0, next_methods);
- if (op0_xhigh)
- op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
- op0_xhigh, op0_xhigh, 0,
- next_methods);
- }
-
- op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
- NULL_RTX, 1, next_methods);
- if (op1_xhigh)
- op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
- op1_xhigh, op1_xhigh, 0, next_methods);
- else
- {
- op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
- NULL_RTX, 0, next_methods);
- if (op1_xhigh)
- op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
- op1_xhigh, op1_xhigh, 0,
- next_methods);
- }
- }
-
- /* If we have been able to directly compute the product of the
- low-order words of the operands and perform any required adjustments
- of the operands, we proceed by trying two more multiplications
- and then computing the appropriate sum.
-
- We have checked above that the required addition is provided.
- Full-word addition will normally always succeed, especially if
- it is provided at all, so we don't worry about its failure. The
- multiplication may well fail, however, so we do handle that. */
-
- if (product && op0_xhigh && op1_xhigh)
- {
- rtx product_high = operand_subword (product, high, 1, mode);
- rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
- NULL_RTX, 0, OPTAB_DIRECT);
-
- if (temp != 0)
- temp = expand_binop (word_mode, add_optab, temp, product_high,
- product_high, 0, next_methods);
-
- if (temp != 0 && temp != product_high)
- emit_move_insn (product_high, temp);
-
- if (temp != 0)
- temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
- NULL_RTX, 0, OPTAB_DIRECT);
-
- if (temp != 0)
- temp = expand_binop (word_mode, add_optab, temp,
- product_high, product_high,
- 0, next_methods);
-
- if (temp != 0 && temp != product_high)
- emit_move_insn (product_high, temp);
-
- if (temp != 0)
- {
- temp = emit_move_insn (product, product);
- REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL,
- gen_rtx (MULT, mode, copy_rtx (op0),
- copy_rtx (op1)),
- REG_NOTES (temp));
-
- return product;
- }
- }
-
- /* If we get here, we couldn't do it for some reason even though we
- originally thought we could. Delete anything we've emitted in
- trying to do it. */
-
- delete_insns_since (last);
- }
-
- /* We need to open-code the complex type operations: '+, -, * and /' */
-
- /* At this point we allow operations between two similar complex
- numbers, and also if one of the operands is not a complex number
- but rather of MODE_FLOAT or MODE_INT. However, the caller
- must make sure that the MODE of the non-complex operand matches
- the SUBMODE of the complex operand. */
-
- if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
- {
- rtx real0 = 0, imag0 = 0;
- rtx real1 = 0, imag1 = 0;
- rtx realr, imagr, res;
- rtx seq;
- rtx equiv_value;
- int ok = 0;
-
- /* Find the correct mode for the real and imaginary parts */
- enum machine_mode submode
- = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
- class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
- 0);
-
- if (submode == BLKmode)
- abort ();
-
- if (! target)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- realr = gen_realpart (submode, target);
- imagr = gen_imagpart (submode, target);
-
- if (GET_MODE (op0) == mode)
- {
- real0 = gen_realpart (submode, op0);
- imag0 = gen_imagpart (submode, op0);
- }
- else
- real0 = op0;
-
- if (GET_MODE (op1) == mode)
- {
- real1 = gen_realpart (submode, op1);
- imag1 = gen_imagpart (submode, op1);
- }
- else
- real1 = op1;
-
- if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
- abort ();
-
- switch (binoptab->code)
- {
- case PLUS:
- /* (a+ib) + (c+id) = (a+c) + i(b+d) */
- case MINUS:
- /* (a+ib) - (c+id) = (a-c) + i(b-d) */
- res = expand_binop (submode, binoptab, real0, real1,
- realr, unsignedp, methods);
-
- if (res == 0)
- break;
- else if (res != realr)
- emit_move_insn (realr, res);
-
- if (imag0 && imag1)
- res = expand_binop (submode, binoptab, imag0, imag1,
- imagr, unsignedp, methods);
- else if (imag0)
- res = imag0;
- else if (binoptab->code == MINUS)
- res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
- else
- res = imag1;
-
- if (res == 0)
- break;
- else if (res != imagr)
- emit_move_insn (imagr, res);
-
- ok = 1;
- break;
-
- case MULT:
- /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
-
- if (imag0 && imag1)
- {
- rtx temp1, temp2;
-
- /* Don't fetch these from memory more than once. */
- real0 = force_reg (submode, real0);
- real1 = force_reg (submode, real1);
- imag0 = force_reg (submode, imag0);
- imag1 = force_reg (submode, imag1);
-
- temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
- unsignedp, methods);
-
- temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
- unsignedp, methods);
-
- if (temp1 == 0 || temp2 == 0)
- break;
-
- res = expand_binop (submode, sub_optab, temp1, temp2,
- realr, unsignedp, methods);
-
- if (res == 0)
- break;
- else if (res != realr)
- emit_move_insn (realr, res);
-
- temp1 = expand_binop (submode, binoptab, real0, imag1,
- NULL_RTX, unsignedp, methods);
-
- temp2 = expand_binop (submode, binoptab, real1, imag0,
- NULL_RTX, unsignedp, methods);
-
- if (temp1 == 0 || temp2 == 0)
- res = expand_binop (submode, add_optab, temp1, temp2,
- imagr, unsignedp, methods);
-
- if (res == 0)
- break;
- else if (res != imagr)
- emit_move_insn (imagr, res);
-
- ok = 1;
- }
- else
- {
- /* Don't fetch these from memory more than once. */
- real0 = force_reg (submode, real0);
- real1 = force_reg (submode, real1);
-
- res = expand_binop (submode, binoptab, real0, real1,
- realr, unsignedp, methods);
- if (res == 0)
- break;
- else if (res != realr)
- emit_move_insn (realr, res);
-
- if (imag0 != 0)
- res = expand_binop (submode, binoptab,
- real1, imag0, imagr, unsignedp, methods);
- else
- res = expand_binop (submode, binoptab,
- real0, imag1, imagr, unsignedp, methods);
-
- if (res == 0)
- break;
- else if (res != imagr)
- emit_move_insn (imagr, res);
-
- ok = 1;
- }
- break;
-
- case DIV:
- /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
-
- if (imag1 == 0)
- {
- /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
-
- /* Don't fetch these from memory more than once. */
- real1 = force_reg (submode, real1);
-
- /* Simply divide the real and imaginary parts by `c' */
- if (class == MODE_COMPLEX_FLOAT)
- res = expand_binop (submode, binoptab, real0, real1,
- realr, unsignedp, methods);
- else
- res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
- real0, real1, realr, unsignedp);
-
- if (res == 0)
- break;
- else if (res != realr)
- emit_move_insn (realr, res);
-
- if (class == MODE_COMPLEX_FLOAT)
- res = expand_binop (submode, binoptab, imag0, real1,
- imagr, unsignedp, methods);
- else
- res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
- imag0, real1, imagr, unsignedp);
-
- if (res == 0)
- break;
- else if (res != imagr)
- emit_move_insn (imagr, res);
-
- ok = 1;
- }
- else
- {
- /* Divisor is of complex type:
- X/(a+ib) */
- rtx divisor;
- rtx real_t, imag_t;
- rtx lhs, rhs;
- rtx temp1, temp2;
-
- /* Don't fetch these from memory more than once. */
- real0 = force_reg (submode, real0);
- real1 = force_reg (submode, real1);
-
- if (imag0 != 0)
- imag0 = force_reg (submode, imag0);
-
- imag1 = force_reg (submode, imag1);
-
- /* Divisor: c*c + d*d */
- temp1 = expand_binop (submode, smul_optab, real1, real1,
- NULL_RTX, unsignedp, methods);
-
- temp2 = expand_binop (submode, smul_optab, imag1, imag1,
- NULL_RTX, unsignedp, methods);
-
- if (temp1 == 0 || temp2 == 0)
- break;
-
- divisor = expand_binop (submode, add_optab, temp1, temp2,
- NULL_RTX, unsignedp, methods);
- if (divisor == 0)
- break;
-
- if (imag0 == 0)
- {
- /* ((a)(c-id))/divisor */
- /* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */
-
- /* Calculate the dividend */
- real_t = expand_binop (submode, smul_optab, real0, real1,
- NULL_RTX, unsignedp, methods);
-
- imag_t = expand_binop (submode, smul_optab, real0, imag1,
- NULL_RTX, unsignedp, methods);
-
- if (real_t == 0 || imag_t == 0)
- break;
-
- imag_t = expand_unop (submode, neg_optab, imag_t,
- NULL_RTX, unsignedp);
- }
- else
- {
- /* ((a+ib)(c-id))/divider */
- /* Calculate the dividend */
- temp1 = expand_binop (submode, smul_optab, real0, real1,
- NULL_RTX, unsignedp, methods);
-
- temp2 = expand_binop (submode, smul_optab, imag0, imag1,
- NULL_RTX, unsignedp, methods);
-
- if (temp1 == 0 || temp2 == 0)
- break;
-
- real_t = expand_binop (submode, add_optab, temp1, temp2,
- NULL_RTX, unsignedp, methods);
-
- temp1 = expand_binop (submode, smul_optab, imag0, real1,
- NULL_RTX, unsignedp, methods);
-
- temp2 = expand_binop (submode, smul_optab, real0, imag1,
- NULL_RTX, unsignedp, methods);
-
- if (temp1 == 0 || temp2 == 0)
- break;
-
- imag_t = expand_binop (submode, sub_optab, temp1, temp2,
- NULL_RTX, unsignedp, methods);
-
- if (real_t == 0 || imag_t == 0)
- break;
- }
-
- if (class == MODE_COMPLEX_FLOAT)
- res = expand_binop (submode, binoptab, real_t, divisor,
- realr, unsignedp, methods);
- else
- res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
- real_t, divisor, realr, unsignedp);
-
- if (res == 0)
- break;
- else if (res != realr)
- emit_move_insn (realr, res);
-
- if (class == MODE_COMPLEX_FLOAT)
- res = expand_binop (submode, binoptab, imag_t, divisor,
- imagr, unsignedp, methods);
- else
- res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
- imag_t, divisor, imagr, unsignedp);
-
- if (res == 0)
- break;
- else if (res != imagr)
- emit_move_insn (imagr, res);
-
- ok = 1;
- }
- break;
-
- default:
- abort ();
- }
-
- seq = get_insns ();
- end_sequence ();
-
- if (ok)
- {
- if (binoptab->code != UNKNOWN)
- equiv_value
- = gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1));
- else
- equiv_value = 0;
-
- emit_no_conflict_block (seq, target, op0, op1, equiv_value);
-
- return target;
- }
- }
-
- /* It can't be open-coded in this mode.
- Use a library call if one is available and caller says that's ok. */
-
- if (binoptab->handlers[(int) mode].libfunc
- && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
- {
- rtx insns;
- rtx funexp = binoptab->handlers[(int) mode].libfunc;
- rtx op1x = op1;
- enum machine_mode op1_mode = mode;
- rtx value;
-
- start_sequence ();
-
- if (shift_op)
- {
- op1_mode = word_mode;
- /* Specify unsigned here,
- since negative shift counts are meaningless. */
- op1x = convert_to_mode (word_mode, op1, 1);
- }
-
- if (GET_MODE (op0) != mode)
- op0 = convert_to_mode (mode, op0, unsignedp);
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
- NULL_RTX, 1, mode, 2,
- op0, mode, op1x, op1_mode);
-
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (mode);
- emit_libcall_block (insns, target, value,
- gen_rtx (binoptab->code, mode, op0, op1));
-
- return target;
- }
-
- delete_insns_since (last);
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
- || methods == OPTAB_MUST_WIDEN))
- {
- /* Caller says, don't even try. */
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Compute the value of METHODS to pass to recursive calls.
- Don't allow widening to be tried recursively. */
-
- methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
-
- /* Look for a wider mode of the same class for which it appears we can do
- the operation. */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((binoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || (methods == OPTAB_LIB
- && binoptab->handlers[(int) wider_mode].libfunc))
- {
- rtx xop0 = op0, xop1 = op1;
- int no_extend = 0;
-
- /* For certain integer operations, we need not actually extend
- the narrow operands, as long as we will truncate
- the results to the same narrowness. */
-
- if ((binoptab == ior_optab || binoptab == and_optab
- || binoptab == xor_optab
- || binoptab == add_optab || binoptab == sub_optab
- || binoptab == smul_optab || binoptab == ashl_optab)
- && class == MODE_INT)
- no_extend = 1;
-
- xop0 = widen_operand (xop0, wider_mode, mode,
- unsignedp, no_extend);
-
- /* The second operand of a shift must always be extended. */
- xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
- no_extend && binoptab != ashl_optab);
-
- temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
- unsignedp, methods);
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Expand a binary operator which has both signed and unsigned forms.
- UOPTAB is the optab for unsigned operations, and SOPTAB is for
- signed operations.
-
- If we widen unsigned operands, we may use a signed wider operation instead
- of an unsigned wider operation, since the result would be the same. */
-
- rtx
- sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
- enum machine_mode mode;
- optab uoptab, soptab;
- rtx op0, op1, target;
- int unsignedp;
- enum optab_methods methods;
- {
- register rtx temp;
- optab direct_optab = unsignedp ? uoptab : soptab;
- struct optab wide_soptab;
-
- /* Do it without widening, if possible. */
- temp = expand_binop (mode, direct_optab, op0, op1, target,
- unsignedp, OPTAB_DIRECT);
- if (temp || methods == OPTAB_DIRECT)
- return temp;
-
- /* Try widening to a signed int. Make a fake signed optab that
- hides any signed insn for direct use. */
- wide_soptab = *soptab;
- wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
- wide_soptab.handlers[(int) mode].libfunc = 0;
-
- temp = expand_binop (mode, &wide_soptab, op0, op1, target,
- unsignedp, OPTAB_WIDEN);
-
- /* For unsigned operands, try widening to an unsigned int. */
- if (temp == 0 && unsignedp)
- temp = expand_binop (mode, uoptab, op0, op1, target,
- unsignedp, OPTAB_WIDEN);
- if (temp || methods == OPTAB_WIDEN)
- return temp;
-
- /* Use the right width lib call if that exists. */
- temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
- if (temp || methods == OPTAB_LIB)
- return temp;
-
- /* Must widen and use a lib call, use either signed or unsigned. */
- temp = expand_binop (mode, &wide_soptab, op0, op1, target,
- unsignedp, methods);
- if (temp != 0)
- return temp;
- if (unsignedp)
- return expand_binop (mode, uoptab, op0, op1, target,
- unsignedp, methods);
- return 0;
- }
-
- /* Generate code to perform an operation specified by BINOPTAB
- on operands OP0 and OP1, with two results to TARG1 and TARG2.
- We assume that the order of the operands for the instruction
- is TARG0, OP0, OP1, TARG1, which would fit a pattern like
- [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
-
- Either TARG0 or TARG1 may be zero, but what that means is that
- that result is not actually wanted. We will generate it into
- a dummy pseudo-reg and discard it. They may not both be zero.
-
- Returns 1 if this operation can be performed; 0 if not. */
-
- int
- expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
- optab binoptab;
- rtx op0, op1;
- rtx targ0, targ1;
- int unsignedp;
- {
- enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
- enum mode_class class;
- enum machine_mode wider_mode;
- rtx entry_last = get_last_insn ();
- rtx last;
-
- class = GET_MODE_CLASS (mode);
-
- op0 = protect_from_queue (op0, 0);
- op1 = protect_from_queue (op1, 0);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- op1 = force_not_mem (op1);
- }
-
- /* If we are inside an appropriately-short loop and one operand is an
- expensive constant, force it into a register. */
- if (CONSTANT_P (op0) && preserve_subexpressions_p ()
- && rtx_cost (op0, binoptab->code) > 2)
- op0 = force_reg (mode, op0);
-
- if (CONSTANT_P (op1) && preserve_subexpressions_p ()
- && rtx_cost (op1, binoptab->code) > 2)
- op1 = force_reg (mode, op1);
-
- if (targ0)
- targ0 = protect_from_queue (targ0, 1);
- else
- targ0 = gen_reg_rtx (mode);
- if (targ1)
- targ1 = protect_from_queue (targ1, 1);
- else
- targ1 = gen_reg_rtx (mode);
-
- /* Record where to go back to if we fail. */
- last = get_last_insn ();
-
- if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) binoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- enum machine_mode mode1 = insn_operand_mode[icode][2];
- rtx pat;
- rtx xop0 = op0, xop1 = op1;
-
- /* In case this insn wants input operands in modes different from the
- result, convert the operands. */
- if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
- xop1 = convert_to_mode (mode1, xop1, unsignedp);
-
- /* Now, if insn doesn't accept these operands, put them into pseudos. */
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
- xop1 = copy_to_mode_reg (mode1, xop1);
-
- /* We could handle this, but we should always be called with a pseudo
- for our targets and all insns should take them as outputs. */
- if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
- || ! (*insn_operand_predicate[icode][3]) (targ1, mode))
- abort ();
-
- pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
- if (pat)
- {
- emit_insn (pat);
- return 1;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (binoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- register rtx t0 = gen_reg_rtx (wider_mode);
- register rtx t1 = gen_reg_rtx (wider_mode);
-
- if (expand_twoval_binop (binoptab,
- convert_modes (wider_mode, mode, op0,
- unsignedp),
- convert_modes (wider_mode, mode, op1,
- unsignedp),
- t0, t1, unsignedp))
- {
- convert_move (targ0, t0, unsignedp);
- convert_move (targ1, t1, unsignedp);
- return 1;
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Generate code to perform an operation specified by UNOPTAB
- on operand OP0, with result having machine-mode MODE.
-
- UNSIGNEDP is for the case where we have to widen the operands
- to perform the operation. It says to use zero-extension.
-
- If TARGET is nonzero, the value
- is generated there, if it is convenient to do so.
- In all cases an rtx is returned for the locus of the value;
- this may or may not be TARGET. */
-
- rtx
- expand_unop (mode, unoptab, op0, target, unsignedp)
- enum machine_mode mode;
- optab unoptab;
- rtx op0;
- rtx target;
- int unsignedp;
- {
- enum mode_class class;
- enum machine_mode wider_mode;
- register rtx temp;
- rtx last = get_last_insn ();
- rtx pat;
-
- class = GET_MODE_CLASS (mode);
-
- op0 = protect_from_queue (op0, 0);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- }
-
- if (target)
- target = protect_from_queue (target, 1);
-
- if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) unoptab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- rtx xop0 = op0;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- if (GET_MODE (xop0) != VOIDmode
- && GET_MODE (xop0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- /* Now, if insn doesn't accept our operand, put it into a pseudo. */
-
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, mode))
- temp = gen_reg_rtx (mode);
-
- pat = GEN_FCN (icode) (temp, xop0);
- if (pat)
- {
- if (GET_CODE (pat) == SEQUENCE
- && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
- {
- delete_insns_since (last);
- return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
- }
-
- emit_insn (pat);
-
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we open-code it in a wider mode? */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
- {
- rtx xop0 = op0;
-
- /* For certain operations, we need not actually extend
- the narrow operand, as long as we will truncate the
- results to the same narrowness. */
-
- xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
- (unoptab == neg_optab
- || unoptab == one_cmpl_optab)
- && class == MODE_INT);
-
- temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
- unsignedp);
-
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* These can be done a word at a time. */
- if (unoptab == one_cmpl_optab
- && class == MODE_INT
- && GET_MODE_SIZE (mode) > UNITS_PER_WORD
- && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
- {
- int i;
- rtx insns;
-
- if (target == 0 || target == op0)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- /* Do the actual arithmetic. */
- for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
- {
- rtx target_piece = operand_subword (target, i, 1, mode);
- rtx x = expand_unop (word_mode, unoptab,
- operand_subword_force (op0, i, mode),
- target_piece, unsignedp);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- emit_no_conflict_block (insns, target, op0, NULL_RTX,
- gen_rtx (unoptab->code, mode, copy_rtx (op0)));
- return target;
- }
-
- /* Open-code the complex negation operation. */
- else if (unoptab == neg_optab
- && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
- {
- rtx target_piece;
- rtx x;
- rtx seq;
-
- /* Find the correct mode for the real and imaginary parts */
- enum machine_mode submode
- = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
- class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
- 0);
-
- if (submode == BLKmode)
- abort ();
-
- if (target == 0)
- target = gen_reg_rtx (mode);
-
- start_sequence ();
-
- target_piece = gen_imagpart (submode, target);
- x = expand_unop (submode, unoptab,
- gen_imagpart (submode, op0),
- target_piece, unsignedp);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
-
- target_piece = gen_realpart (submode, target);
- x = expand_unop (submode, unoptab,
- gen_realpart (submode, op0),
- target_piece, unsignedp);
- if (target_piece != x)
- emit_move_insn (target_piece, x);
-
- seq = get_insns ();
- end_sequence ();
-
- emit_no_conflict_block (seq, target, op0, 0,
- gen_rtx (unoptab->code, mode, copy_rtx (op0)));
- return target;
- }
-
- /* Now try a library call in this mode. */
- if (unoptab->handlers[(int) mode].libfunc)
- {
- rtx insns;
- rtx funexp = unoptab->handlers[(int) mode].libfunc;
- rtx value;
-
- start_sequence ();
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
- NULL_RTX, 1, mode, 1, op0, mode);
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (mode);
- emit_libcall_block (insns, target, value,
- gen_rtx (unoptab->code, mode, op0));
-
- return target;
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((unoptab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || unoptab->handlers[(int) wider_mode].libfunc)
- {
- rtx xop0 = op0;
-
- /* For certain operations, we need not actually extend
- the narrow operand, as long as we will truncate the
- results to the same narrowness. */
-
- xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
- (unoptab == neg_optab
- || unoptab == one_cmpl_optab)
- && class == MODE_INT);
-
- temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
- unsignedp);
-
- if (temp)
- {
- if (class != MODE_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (mode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (mode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
- }
-
- return 0;
- }
-
- /* Emit code to compute the absolute value of OP0, with result to
- TARGET if convenient. (TARGET may be 0.) The return value says
- where the result actually is to be found.
-
- MODE is the mode of the operand; the mode of the result is
- different but can be deduced from MODE.
-
- UNSIGNEDP is relevant for complex integer modes. */
-
- rtx
- expand_complex_abs (mode, op0, target, unsignedp)
- enum machine_mode mode;
- rtx op0;
- rtx target;
- int unsignedp;
- {
- enum mode_class class = GET_MODE_CLASS (mode);
- enum machine_mode wider_mode;
- register rtx temp;
- rtx entry_last = get_last_insn ();
- rtx last;
- rtx pat;
-
- /* Find the correct mode for the real and imaginary parts. */
- enum machine_mode submode
- = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
- class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
- 0);
-
- if (submode == BLKmode)
- abort ();
-
- op0 = protect_from_queue (op0, 0);
-
- if (flag_force_mem)
- {
- op0 = force_not_mem (op0);
- }
-
- last = get_last_insn ();
-
- if (target)
- target = protect_from_queue (target, 1);
-
- if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) abs_optab->handlers[(int) mode].insn_code;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- rtx xop0 = op0;
-
- if (target)
- temp = target;
- else
- temp = gen_reg_rtx (submode);
-
- if (GET_MODE (xop0) != VOIDmode
- && GET_MODE (xop0) != mode0)
- xop0 = convert_to_mode (mode0, xop0, unsignedp);
-
- /* Now, if insn doesn't accept our operand, put it into a pseudo. */
-
- if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
- xop0 = copy_to_mode_reg (mode0, xop0);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, submode))
- temp = gen_reg_rtx (submode);
-
- pat = GEN_FCN (icode) (temp, xop0);
- if (pat)
- {
- if (GET_CODE (pat) == SEQUENCE
- && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
- {
- delete_insns_since (last);
- return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
- }
-
- emit_insn (pat);
-
- return temp;
- }
- else
- delete_insns_since (last);
- }
-
- /* It can't be done in this mode. Can we open-code it in a wider mode? */
-
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
- {
- rtx xop0 = op0;
-
- xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
- temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
-
- if (temp)
- {
- if (class != MODE_COMPLEX_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (submode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (submode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- /* Open-code the complex absolute-value operation
- if we can open-code sqrt. Otherwise it's not worth while. */
- if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
- {
- rtx real, imag, total;
-
- real = gen_realpart (submode, op0);
- imag = gen_imagpart (submode, op0);
-
- /* Square both parts. */
- real = expand_mult (submode, real, real, NULL_RTX, 0);
- imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
-
- /* Sum the parts. */
- total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
- 0, OPTAB_LIB_WIDEN);
-
- /* Get sqrt in TARGET. Set TARGET to where the result is. */
- target = expand_unop (submode, sqrt_optab, total, target, 0);
- if (target == 0)
- delete_insns_since (last);
- else
- return target;
- }
-
- /* Now try a library call in this mode. */
- if (abs_optab->handlers[(int) mode].libfunc)
- {
- rtx insns;
- rtx funexp = abs_optab->handlers[(int) mode].libfunc;
- rtx value;
-
- start_sequence ();
-
- /* Pass 1 for NO_QUEUE so we don't lose any increments
- if the libcall is cse'd or moved. */
- value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
- NULL_RTX, 1, submode, 1, op0, mode);
- insns = get_insns ();
- end_sequence ();
-
- target = gen_reg_rtx (submode);
- emit_libcall_block (insns, target, value,
- gen_rtx (abs_optab->code, mode, op0));
-
- return target;
- }
-
- /* It can't be done in this mode. Can we do it in a wider mode? */
-
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((abs_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || abs_optab->handlers[(int) wider_mode].libfunc)
- {
- rtx xop0 = op0;
-
- xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
-
- temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
-
- if (temp)
- {
- if (class != MODE_COMPLEX_INT)
- {
- if (target == 0)
- target = gen_reg_rtx (submode);
- convert_move (target, temp, 0);
- return target;
- }
- else
- return gen_lowpart (submode, temp);
- }
- else
- delete_insns_since (last);
- }
- }
-
- delete_insns_since (entry_last);
- return 0;
- }
-
- /* Generate an instruction whose insn-code is INSN_CODE,
- with two operands: an output TARGET and an input OP0.
- TARGET *must* be nonzero, and the output is always stored there.
- CODE is an rtx code such that (CODE OP0) is an rtx that describes
- the value that is stored into TARGET. */
-
- void
- emit_unop_insn (icode, target, op0, code)
- int icode;
- rtx target;
- rtx op0;
- enum rtx_code code;
- {
- register rtx temp;
- enum machine_mode mode0 = insn_operand_mode[icode][1];
- rtx pat;
-
- temp = target = protect_from_queue (target, 1);
-
- op0 = protect_from_queue (op0, 0);
-
- if (flag_force_mem)
- op0 = force_not_mem (op0);
-
- /* Now, if insn does not accept our operands, put them into pseudos. */
-
- if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
- op0 = copy_to_mode_reg (mode0, op0);
-
- if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
- || (flag_force_mem && GET_CODE (temp) == MEM))
- temp = gen_reg_rtx (GET_MODE (temp));
-
- pat = GEN_FCN (icode) (temp, op0);
-
- if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
- add_equal_note (pat, temp, code, op0, NULL_RTX);
-
- emit_insn (pat);
-
- if (temp != target)
- emit_move_insn (target, temp);
- }
-
- /* Emit code to perform a series of operations on a multi-word quantity, one
- word at a time.
-
- Such a block is preceded by a CLOBBER of the output, consists of multiple
- insns, each setting one word of the output, and followed by a SET copying
- the output to itself.
-
- Each of the insns setting words of the output receives a REG_NO_CONFLICT
- note indicating that it doesn't conflict with the (also multi-word)
- inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
- notes.
-
- INSNS is a block of code generated to perform the operation, not including
- the CLOBBER and final copy. All insns that compute intermediate values
- are first emitted, followed by the block as described above. Only
- INSNs are allowed in the block; no library calls or jumps may be
- present.
-
- TARGET, OP0, and OP1 are the output and inputs of the operations,
- respectively. OP1 may be zero for a unary operation.
-
- EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
- on the last insn.
-
- If TARGET is not a register, INSNS is simply emitted with no special
- processing.
-
- The final insn emitted is returned. */
-
- rtx
- emit_no_conflict_block (insns, target, op0, op1, equiv)
- rtx insns;
- rtx target;
- rtx op0, op1;
- rtx equiv;
- {
- rtx prev, next, first, last, insn;
-
- if (GET_CODE (target) != REG || reload_in_progress)
- return emit_insns (insns);
-
- /* First emit all insns that do not store into words of the output and remove
- these from the list. */
- for (insn = insns; insn; insn = next)
- {
- rtx set = 0;
- int i;
-
- next = NEXT_INSN (insn);
-
- if (GET_CODE (insn) != INSN)
- abort ();
-
- if (GET_CODE (PATTERN (insn)) == SET)
- set = PATTERN (insn);
- else if (GET_CODE (PATTERN (insn)) == PARALLEL)
- {
- for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
- if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
- {
- set = XVECEXP (PATTERN (insn), 0, i);
- break;
- }
- }
-
- if (set == 0)
- abort ();
-
- if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
- {
- if (PREV_INSN (insn))
- NEXT_INSN (PREV_INSN (insn)) = next;
- else
- insns = next;
-
- if (next)
- PREV_INSN (next) = PREV_INSN (insn);
-
- add_insn (insn);
- }
- }
-
- prev = get_last_insn ();
-
- /* Now write the CLOBBER of the output, followed by the setting of each
- of the words, followed by the final copy. */
- if (target != op0 && target != op1)
- emit_insn (gen_rtx (CLOBBER, VOIDmode, target));
-
- for (insn = insns; insn; insn = next)
- {
- next = NEXT_INSN (insn);
- add_insn (insn);
-
- if (op1 && GET_CODE (op1) == REG)
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1,
- REG_NOTES (insn));
-
- if (op0 && GET_CODE (op0) == REG)
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0,
- REG_NOTES (insn));
- }
-
- if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
- != CODE_FOR_nothing)
- {
- last = emit_move_insn (target, target);
- if (equiv)
- REG_NOTES (last)
- = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last));
- }
- else
- last = get_last_insn ();
-
- if (prev == 0)
- first = get_insns ();
- else
- first = NEXT_INSN (prev);
-
- /* Encapsulate the block so it gets manipulated as a unit. */
- REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
- REG_NOTES (first));
- REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
-
- return last;
- }
-
- /* Emit code to make a call to a constant function or a library call.
-
- INSNS is a list containing all insns emitted in the call.
- These insns leave the result in RESULT. Our block is to copy RESULT
- to TARGET, which is logically equivalent to EQUIV.
-
- We first emit any insns that set a pseudo on the assumption that these are
- loading constants into registers; doing so allows them to be safely cse'ed
- between blocks. Then we emit all the other insns in the block, followed by
- an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
- note with an operand of EQUIV.
-
- Moving assignments to pseudos outside of the block is done to improve
- the generated code, but is not required to generate correct code,
- hence being unable to move an assignment is not grounds for not making
- a libcall block. There are two reasons why it is safe to leave these
- insns inside the block: First, we know that these pseudos cannot be
- used in generated RTL outside the block since they are created for
- temporary purposes within the block. Second, CSE will not record the
- values of anything set inside a libcall block, so we know they must
- be dead at the end of the block.
-
- Except for the first group of insns (the ones setting pseudos), the
- block is delimited by REG_RETVAL and REG_LIBCALL notes. */
-
- void
- emit_libcall_block (insns, target, result, equiv)
- rtx insns;
- rtx target;
- rtx result;
- rtx equiv;
- {
- rtx prev, next, first, last, insn;
-
- /* First emit all insns that set pseudos. Remove them from the list as
- we go. Avoid insns that set pseudos which were referenced in previous
- insns. These can be generated by move_by_pieces, for example,
- to update an address. Similarly, avoid insns that reference things
- set in previous insns. */
-
- for (insn = insns; insn; insn = next)
- {
- rtx set = single_set (insn);
-
- next = NEXT_INSN (insn);
-
- if (set != 0 && GET_CODE (SET_DEST (set)) == REG
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
- && (insn == insns
- || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
- && ! reg_used_between_p (SET_DEST (set), insns, insn)
- && ! modified_in_p (SET_SRC (set), insns)
- && ! modified_between_p (SET_SRC (set), insns, insn))))
- {
- if (PREV_INSN (insn))
- NEXT_INSN (PREV_INSN (insn)) = next;
- else
- insns = next;
-
- if (next)
- PREV_INSN (next) = PREV_INSN (insn);
-
- add_insn (insn);
- }
- }
-
- prev = get_last_insn ();
-
- /* Write the remaining insns followed by the final copy. */
-
- for (insn = insns; insn; insn = next)
- {
- next = NEXT_INSN (insn);
-
- add_insn (insn);
- }
-
- last = emit_move_insn (target, result);
- REG_NOTES (last) = gen_rtx (EXPR_LIST,
- REG_EQUAL, copy_rtx (equiv), REG_NOTES (last));
-
- if (prev == 0)
- first = get_insns ();
- else
- first = NEXT_INSN (prev);
-
- /* Encapsulate the block so it gets manipulated as a unit. */
- REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last,
- REG_NOTES (first));
- REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last));
- }
-
- /* Generate code to store zero in X. */
-
- void
- emit_clr_insn (x)
- rtx x;
- {
- emit_move_insn (x, const0_rtx);
- }
-
- /* Generate code to store 1 in X
- assuming it contains zero beforehand. */
-
- void
- emit_0_to_1_insn (x)
- rtx x;
- {
- emit_move_insn (x, const1_rtx);
- }
-
- /* Generate code to compare X with Y
- so that the condition codes are set.
-
- MODE is the mode of the inputs (in case they are const_int).
- UNSIGNEDP nonzero says that X and Y are unsigned;
- this matters if they need to be widened.
-
- If they have mode BLKmode, then SIZE specifies the size of both X and Y,
- and ALIGN specifies the known shared alignment of X and Y.
-
- COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
- It is ignored for fixed-point and block comparisons;
- it is used only for floating-point comparisons. */
-
- void
- emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
- rtx x, y;
- enum rtx_code comparison;
- rtx size;
- enum machine_mode mode;
- int unsignedp;
- int align;
- {
- enum mode_class class;
- enum machine_mode wider_mode;
-
- class = GET_MODE_CLASS (mode);
-
- /* They could both be VOIDmode if both args are immediate constants,
- but we should fold that at an earlier stage.
- With no special code here, this will call abort,
- reminding the programmer to implement such folding. */
-
- if (mode != BLKmode && flag_force_mem)
- {
- x = force_not_mem (x);
- y = force_not_mem (y);
- }
-
- /* If we are inside an appropriately-short loop and one operand is an
- expensive constant, force it into a register. */
- if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
- x = force_reg (mode, x);
-
- if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
- y = force_reg (mode, y);
-
- /* Don't let both operands fail to indicate the mode. */
- if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
- x = force_reg (mode, x);
-
- /* Handle all BLKmode compares. */
-
- if (mode == BLKmode)
- {
- emit_queue ();
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
-
- if (size == 0)
- abort ();
- #ifdef HAVE_cmpstrqi
- if (HAVE_cmpstrqi
- && GET_CODE (size) == CONST_INT
- && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
- {
- enum machine_mode result_mode
- = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
- rtx result = gen_reg_rtx (result_mode);
- emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
- emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
- result_mode, 0, 0);
- }
- else
- #endif
- #ifdef HAVE_cmpstrhi
- if (HAVE_cmpstrhi
- && GET_CODE (size) == CONST_INT
- && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
- {
- enum machine_mode result_mode
- = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
- rtx result = gen_reg_rtx (result_mode);
- emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
- emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
- result_mode, 0, 0);
- }
- else
- #endif
- #ifdef HAVE_cmpstrsi
- if (HAVE_cmpstrsi)
- {
- enum machine_mode result_mode
- = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
- rtx result = gen_reg_rtx (result_mode);
- size = protect_from_queue (size, 0);
- emit_insn (gen_cmpstrsi (result, x, y,
- convert_to_mode (SImode, size, 1),
- GEN_INT (align)));
- emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
- result_mode, 0, 0);
- }
- else
- #endif
- {
- #ifdef TARGET_MEM_FUNCTIONS
- emit_library_call (memcmp_libfunc, 0,
- TYPE_MODE (integer_type_node), 3,
- XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
- size, Pmode);
- #else
- emit_library_call (bcmp_libfunc, 0,
- TYPE_MODE (integer_type_node), 3,
- XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
- size, Pmode);
- #endif
- emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)),
- const0_rtx, comparison, NULL_RTX,
- TYPE_MODE (integer_type_node), 0, 0);
- }
- return;
- }
-
- /* Handle some compares against zero. */
-
- if (y == CONST0_RTX (mode)
- && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) tst_optab->handlers[(int) mode].insn_code;
-
- emit_queue ();
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
-
- /* Now, if insn does accept these operands, put them into pseudos. */
- if (! (*insn_operand_predicate[icode][0])
- (x, insn_operand_mode[icode][0]))
- x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
-
- emit_insn (GEN_FCN (icode) (x));
- return;
- }
-
- /* Handle compares for which there is a directly suitable insn. */
-
- if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
- {
- int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
-
- emit_queue ();
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
-
- /* Now, if insn doesn't accept these operands, put them into pseudos. */
- if (! (*insn_operand_predicate[icode][0])
- (x, insn_operand_mode[icode][0]))
- x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
-
- if (! (*insn_operand_predicate[icode][1])
- (y, insn_operand_mode[icode][1]))
- y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
-
- emit_insn (GEN_FCN (icode) (x, y));
- return;
- }
-
- /* Try widening if we can find a direct insn that way. */
-
- if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
- {
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if (cmp_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- {
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
- x = convert_modes (wider_mode, mode, x, unsignedp);
- y = convert_modes (wider_mode, mode, y, unsignedp);
- emit_cmp_insn (x, y, comparison, NULL_RTX,
- wider_mode, unsignedp, align);
- return;
- }
- }
- }
-
- /* Handle a lib call just for the mode we are using. */
-
- if (cmp_optab->handlers[(int) mode].libfunc
- && class != MODE_FLOAT)
- {
- rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
- /* If we want unsigned, and this mode has a distinct unsigned
- comparison routine, use that. */
- if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
- libfunc = ucmp_optab->handlers[(int) mode].libfunc;
-
- emit_library_call (libfunc, 1,
- word_mode, 2, x, mode, y, mode);
-
- /* Integer comparison returns a result that must be compared against 1,
- so that even if we do an unsigned compare afterward,
- there is still a value that can represent the result "less than". */
-
- emit_cmp_insn (hard_libcall_value (word_mode), const1_rtx,
- comparison, NULL_RTX, word_mode, unsignedp, 0);
- return;
- }
-
- if (class == MODE_FLOAT)
- emit_float_lib_cmp (x, y, comparison);
-
- else
- abort ();
- }
-
- /* Nonzero if a compare of mode MODE can be done straightforwardly
- (without splitting it into pieces). */
-
- int
- can_compare_p (mode)
- enum machine_mode mode;
- {
- do
- {
- if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
- return 1;
- mode = GET_MODE_WIDER_MODE (mode);
- } while (mode != VOIDmode);
-
- return 0;
- }
-
- /* Emit a library call comparison between floating point X and Y.
- COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
-
- void
- emit_float_lib_cmp (x, y, comparison)
- rtx x, y;
- enum rtx_code comparison;
- {
- enum machine_mode mode = GET_MODE (x);
- rtx libfunc = 0;
-
- if (mode == SFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqsf2_libfunc;
- break;
-
- case NE:
- libfunc = nesf2_libfunc;
- break;
-
- case GT:
- libfunc = gtsf2_libfunc;
- break;
-
- case GE:
- libfunc = gesf2_libfunc;
- break;
-
- case LT:
- libfunc = ltsf2_libfunc;
- break;
-
- case LE:
- libfunc = lesf2_libfunc;
- break;
- }
- else if (mode == DFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqdf2_libfunc;
- break;
-
- case NE:
- libfunc = nedf2_libfunc;
- break;
-
- case GT:
- libfunc = gtdf2_libfunc;
- break;
-
- case GE:
- libfunc = gedf2_libfunc;
- break;
-
- case LT:
- libfunc = ltdf2_libfunc;
- break;
-
- case LE:
- libfunc = ledf2_libfunc;
- break;
- }
- else if (mode == XFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqxf2_libfunc;
- break;
-
- case NE:
- libfunc = nexf2_libfunc;
- break;
-
- case GT:
- libfunc = gtxf2_libfunc;
- break;
-
- case GE:
- libfunc = gexf2_libfunc;
- break;
-
- case LT:
- libfunc = ltxf2_libfunc;
- break;
-
- case LE:
- libfunc = lexf2_libfunc;
- break;
- }
- else if (mode == TFmode)
- switch (comparison)
- {
- case EQ:
- libfunc = eqtf2_libfunc;
- break;
-
- case NE:
- libfunc = netf2_libfunc;
- break;
-
- case GT:
- libfunc = gttf2_libfunc;
- break;
-
- case GE:
- libfunc = getf2_libfunc;
- break;
-
- case LT:
- libfunc = lttf2_libfunc;
- break;
-
- case LE:
- libfunc = letf2_libfunc;
- break;
- }
- else
- {
- enum machine_mode wider_mode;
-
- for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
- wider_mode = GET_MODE_WIDER_MODE (wider_mode))
- {
- if ((cmp_optab->handlers[(int) wider_mode].insn_code
- != CODE_FOR_nothing)
- || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
- {
- x = protect_from_queue (x, 0);
- y = protect_from_queue (y, 0);
- x = convert_to_mode (wider_mode, x, 0);
- y = convert_to_mode (wider_mode, y, 0);
- emit_float_lib_cmp (x, y, comparison);
- return;
- }
- }
- abort ();
- }
-
- if (libfunc == 0)
- abort ();
-
- emit_library_call (libfunc, 1,
- word_mode, 2, x, mode, y, mode);
-
- emit_cmp_insn (hard_libcall_value (word_mode), const0_rtx, comparison,
- NULL_RTX, word_mode, 0, 0);
- }
-
- /* Generate code to indirectly jump to a location given in the rtx LOC. */
-
- void
- emit_indirect_jump (loc)
- rtx loc;
- {
- if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
- (loc, Pmode)))
- loc = copy_to_mode_reg (Pmode, loc);
-
- emit_jump_insn (gen_indirect_jump (loc));
- emit_barrier ();
- }
-
- /* These three functions generate an insn body and return it
- rather than emitting the insn.
-
- They do not protect from queued increments,
- because they may be used 1) in protect_from_queue itself
- and 2) in other passes where there is no queue. */
-
- /* Generate and return an insn body to add Y to X. */
-
- rtx
- gen_add2_insn (x, y)
- rtx x, y;
- {
- int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
- || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
- || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
- abort ();
-
- return (GEN_FCN (icode) (x, x, y));
- }
-
- int
- have_add2_insn (mode)
- enum machine_mode mode;
- {
- return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
- }
-
- /* Generate and return an insn body to subtract Y from X. */
-
- rtx
- gen_sub2_insn (x, y)
- rtx x, y;
- {
- int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
-
- if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
- || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
- || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
- abort ();
-
- return (GEN_FCN (icode) (x, x, y));
- }
-
- int
- have_sub2_insn (mode)
- enum machine_mode mode;
- {
- return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
- }
-
- /* Generate the body of an instruction to copy Y into X.
- It may be a SEQUENCE, if one insn isn't enough. */
-
- rtx
- gen_move_insn (x, y)
- rtx x, y;
- {
- register enum machine_mode mode = GET_MODE (x);
- enum insn_code insn_code;
- rtx seq;
-
- if (mode == VOIDmode)
- mode = GET_MODE (y);
-
- insn_code = mov_optab->handlers[(int) mode].insn_code;
-
- /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
- find a mode to do it in. If we have a movcc, use it. Otherwise,
- find the MODE_INT mode of the same width. */
-
- if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
- {
- enum machine_mode tmode = VOIDmode;
- rtx x1 = x, y1 = y;
-
- if (mode != CCmode
- && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
- tmode = CCmode;
- else
- for (tmode = QImode; tmode != VOIDmode;
- tmode = GET_MODE_WIDER_MODE (tmode))
- if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
- break;
-
- if (tmode == VOIDmode)
- abort ();
-
- /* Get X and Y in TMODE. We can't use gen_lowpart here because it
- may call change_address which is not appropriate if we were
- called when a reload was in progress. We don't have to worry
- about changing the address since the size in bytes is supposed to
- be the same. Copy the MEM to change the mode and move any
- substitutions from the old MEM to the new one. */
-
- if (reload_in_progress)
- {
- x = gen_lowpart_common (tmode, x1);
- if (x == 0 && GET_CODE (x1) == MEM)
- {
- x = gen_rtx (MEM, tmode, XEXP (x1, 0));
- RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
- MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1);
- MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1);
- copy_replacements (x1, x);
- }
-
- y = gen_lowpart_common (tmode, y1);
- if (y == 0 && GET_CODE (y1) == MEM)
- {
- y = gen_rtx (MEM, tmode, XEXP (y1, 0));
- RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
- MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1);
- MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1);
- copy_replacements (y1, y);
- }
- }
- else
- {
- x = gen_lowpart (tmode, x);
- y = gen_lowpart (tmode, y);
- }
-
- insn_code = mov_optab->handlers[(int) tmode].insn_code;
- return (GEN_FCN (insn_code) (x, y));
- }
-
- start_sequence ();
- emit_move_insn_1 (x, y);
- seq = gen_sequence ();
- end_sequence ();
- return seq;
- }
-
- /* Return the insn code used to extend FROM_MODE to TO_MODE.
- UNSIGNEDP specifies zero-extension instead of sign-extension. If
- no such operation exists, CODE_FOR_nothing will be returned. */
-
- enum insn_code
- can_extend_p (to_mode, from_mode, unsignedp)
- enum machine_mode to_mode, from_mode;
- int unsignedp;
- {
- return extendtab[(int) to_mode][(int) from_mode][unsignedp];
- }
-
- /* Generate the body of an insn to extend Y (with mode MFROM)
- into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
-
- rtx
- gen_extend_insn (x, y, mto, mfrom, unsignedp)
- rtx x, y;
- enum machine_mode mto, mfrom;
- int unsignedp;
- {
- return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
- }
-
- /* can_fix_p and can_float_p say whether the target machine
- can directly convert a given fixed point type to
- a given floating point type, or vice versa.
- The returned value is the CODE_FOR_... value to use,
- or CODE_FOR_nothing if these modes cannot be directly converted.
-
- *TRUNCP_PTR is set to 1 if it is necessary to output
- an explicit FTRUNC insn before the fix insn; otherwise 0. */
-
- static enum insn_code
- can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
- enum machine_mode fltmode, fixmode;
- int unsignedp;
- int *truncp_ptr;
- {
- *truncp_ptr = 0;
- if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
- return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
-
- if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
- {
- *truncp_ptr = 1;
- return fixtab[(int) fltmode][(int) fixmode][unsignedp];
- }
- return CODE_FOR_nothing;
- }
-
- static enum insn_code
- can_float_p (fltmode, fixmode, unsignedp)
- enum machine_mode fixmode, fltmode;
- int unsignedp;
- {
- return floattab[(int) fltmode][(int) fixmode][unsignedp];
- }
-
- /* Generate code to convert FROM to floating point
- and store in TO. FROM must be fixed point and not VOIDmode.
- UNSIGNEDP nonzero means regard FROM as unsigned.
- Normally this is done by correcting the final value
- if it is negative. */
-
- void
- expand_float (to, from, unsignedp)
- rtx to, from;
- int unsignedp;
- {
- enum insn_code icode;
- register rtx target = to;
- enum machine_mode fmode, imode;
-
- /* Crash now, because we won't be able to decide which mode to use. */
- if (GET_MODE (from) == VOIDmode)
- abort ();
-
- /* Look for an insn to do the conversion. Do it in the specified
- modes if possible; otherwise convert either input, output or both to
- wider mode. If the integer mode is wider than the mode of FROM,
- we can do the conversion signed even if the input is unsigned. */
-
- for (imode = GET_MODE (from); imode != VOIDmode;
- imode = GET_MODE_WIDER_MODE (imode))
- for (fmode = GET_MODE (to); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- {
- int doing_unsigned = unsignedp;
-
- icode = can_float_p (fmode, imode, unsignedp);
- if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
- icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
-
- if (icode != CODE_FOR_nothing)
- {
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (imode != GET_MODE (from))
- from = convert_to_mode (imode, from, unsignedp);
-
- if (fmode != GET_MODE (to))
- target = gen_reg_rtx (fmode);
-
- emit_unop_insn (icode, target, from,
- doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
-
- if (target != to)
- convert_move (to, target, 0);
- return;
- }
- }
-
- #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
-
- /* Unsigned integer, and no way to convert directly.
- Convert as signed, then conditionally adjust the result. */
- if (unsignedp)
- {
- rtx label = gen_label_rtx ();
- rtx temp;
- REAL_VALUE_TYPE offset;
-
- emit_queue ();
-
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- /* Look for a usable floating mode FMODE wider than the source and at
- least as wide as the target. Using FMODE will avoid rounding woes
- with unsigned values greater than the signed maximum value. */
-
- for (fmode = GET_MODE (to); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
- && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
- break;
-
- if (fmode == VOIDmode)
- {
- /* There is no such mode. Pretend the target is wide enough. */
- fmode = GET_MODE (to);
-
- /* Avoid double-rounding when TO is narrower than FROM. */
- if ((significand_size (fmode) + 1)
- < GET_MODE_BITSIZE (GET_MODE (from)))
- {
- rtx temp1;
- rtx neglabel = gen_label_rtx ();
-
- /* Don't use TARGET if it isn't a register, is a hard register,
- or is the wrong mode. */
- if (GET_CODE (target) != REG
- || REGNO (target) < FIRST_PSEUDO_REGISTER
- || GET_MODE (target) != fmode)
- target = gen_reg_rtx (fmode);
-
- imode = GET_MODE (from);
- do_pending_stack_adjust ();
-
- /* Test whether the sign bit is set. */
- emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, imode, 0, 0);
- emit_jump_insn (gen_blt (neglabel));
-
- /* The sign bit is not set. Convert as signed. */
- expand_float (target, from, 0);
- emit_jump_insn (gen_jump (label));
-
- /* The sign bit is set.
- Convert to a usable (positive signed) value by shifting right
- one bit, while remembering if a nonzero bit was shifted
- out; i.e., compute (from & 1) | (from >> 1). */
-
- emit_label (neglabel);
- temp = expand_binop (imode, and_optab, from, const1_rtx,
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
- NULL_RTX, 1);
- temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
- OPTAB_LIB_WIDEN);
- expand_float (target, temp, 0);
-
- /* Multiply by 2 to undo the shift above. */
- target = expand_binop (fmode, add_optab, target, target,
- target, 0, OPTAB_LIB_WIDEN);
- do_pending_stack_adjust ();
- emit_label (label);
- goto done;
- }
- }
-
- /* If we are about to do some arithmetic to correct for an
- unsigned operand, do it in a pseudo-register. */
-
- if (GET_MODE (to) != fmode
- || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
- target = gen_reg_rtx (fmode);
-
- /* Convert as signed integer to floating. */
- expand_float (target, from, 0);
-
- /* If FROM is negative (and therefore TO is negative),
- correct its value by 2**bitwidth. */
-
- do_pending_stack_adjust ();
- emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0);
- emit_jump_insn (gen_bge (label));
-
- /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
- Rather than setting up a dconst_dot_5, let's hope SCO
- fixes the bug. */
- offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
- temp = expand_binop (fmode, add_optab, target,
- CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
- target, 0, OPTAB_LIB_WIDEN);
- if (temp != target)
- emit_move_insn (target, temp);
-
- do_pending_stack_adjust ();
- emit_label (label);
- goto done;
- }
- #endif
-
- /* No hardware instruction available; call a library rotine to convert from
- SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
- {
- rtx libfcn;
- rtx insns;
- rtx value;
-
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
- from = convert_to_mode (SImode, from, unsignedp);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- if (GET_MODE (to) == SFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsisf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatdisf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattisf_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (to) == DFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsidf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatdidf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattidf_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (to) == XFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsixf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatdixf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattixf_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (to) == TFmode)
- {
- if (GET_MODE (from) == SImode)
- libfcn = floatsitf_libfunc;
- else if (GET_MODE (from) == DImode)
- libfcn = floatditf_libfunc;
- else if (GET_MODE (from) == TImode)
- libfcn = floattitf_libfunc;
- else
- abort ();
- }
- else
- abort ();
-
- start_sequence ();
-
- value = emit_library_call_value (libfcn, NULL_RTX, 1,
- GET_MODE (to),
- 1, from, GET_MODE (from));
- insns = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insns, target, value,
- gen_rtx (FLOAT, GET_MODE (to), from));
- }
-
- done:
-
- /* Copy result to requested destination
- if we have been computing in a temp location. */
-
- if (target != to)
- {
- if (GET_MODE (target) == GET_MODE (to))
- emit_move_insn (to, target);
- else
- convert_move (to, target, 0);
- }
- }
-
- /* expand_fix: generate code to convert FROM to fixed point
- and store in TO. FROM must be floating point. */
-
- static rtx
- ftruncify (x)
- rtx x;
- {
- rtx temp = gen_reg_rtx (GET_MODE (x));
- return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
- }
-
- void
- expand_fix (to, from, unsignedp)
- register rtx to, from;
- int unsignedp;
- {
- enum insn_code icode;
- register rtx target = to;
- enum machine_mode fmode, imode;
- int must_trunc = 0;
- rtx libfcn = 0;
-
- /* We first try to find a pair of modes, one real and one integer, at
- least as wide as FROM and TO, respectively, in which we can open-code
- this conversion. If the integer mode is wider than the mode of TO,
- we can do the conversion either signed or unsigned. */
-
- for (imode = GET_MODE (to); imode != VOIDmode;
- imode = GET_MODE_WIDER_MODE (imode))
- for (fmode = GET_MODE (from); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- {
- int doing_unsigned = unsignedp;
-
- icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
- if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
- icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
-
- if (icode != CODE_FOR_nothing)
- {
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (fmode != GET_MODE (from))
- from = convert_to_mode (fmode, from, 0);
-
- if (must_trunc)
- from = ftruncify (from);
-
- if (imode != GET_MODE (to))
- target = gen_reg_rtx (imode);
-
- emit_unop_insn (icode, target, from,
- doing_unsigned ? UNSIGNED_FIX : FIX);
- if (target != to)
- convert_move (to, target, unsignedp);
- return;
- }
- }
-
- #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
- /* For an unsigned conversion, there is one more way to do it.
- If we have a signed conversion, we generate code that compares
- the real value to the largest representable positive number. If if
- is smaller, the conversion is done normally. Otherwise, subtract
- one plus the highest signed number, convert, and add it back.
-
- We only need to check all real modes, since we know we didn't find
- anything with a wider integer mode. */
-
- if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
- for (fmode = GET_MODE (from); fmode != VOIDmode;
- fmode = GET_MODE_WIDER_MODE (fmode))
- /* Make sure we won't lose significant bits doing this. */
- if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
- && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
- &must_trunc))
- {
- int bitsize;
- REAL_VALUE_TYPE offset;
- rtx limit, lab1, lab2, insn;
-
- bitsize = GET_MODE_BITSIZE (GET_MODE (to));
- offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
- limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
- lab1 = gen_label_rtx ();
- lab2 = gen_label_rtx ();
-
- emit_queue ();
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- if (fmode != GET_MODE (from))
- from = convert_to_mode (fmode, from, 0);
-
- /* See if we need to do the subtraction. */
- do_pending_stack_adjust ();
- emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0);
- emit_jump_insn (gen_bge (lab1));
-
- /* If not, do the signed "fix" and branch around fixup code. */
- expand_fix (to, from, 0);
- emit_jump_insn (gen_jump (lab2));
- emit_barrier ();
-
- /* Otherwise, subtract 2**(N-1), convert to signed number,
- then add 2**(N-1). Do the addition using XOR since this
- will often generate better code. */
- emit_label (lab1);
- target = expand_binop (GET_MODE (from), sub_optab, from, limit,
- NULL_RTX, 0, OPTAB_LIB_WIDEN);
- expand_fix (to, target, 0);
- target = expand_binop (GET_MODE (to), xor_optab, to,
- GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
- to, 1, OPTAB_LIB_WIDEN);
-
- if (target != to)
- emit_move_insn (to, target);
-
- emit_label (lab2);
-
- /* Make a place for a REG_NOTE and add it. */
- insn = emit_move_insn (to, to);
- REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
- gen_rtx (UNSIGNED_FIX, GET_MODE (to),
- copy_rtx (from)),
- REG_NOTES (insn));
-
- return;
- }
- #endif
-
- /* We can't do it with an insn, so use a library call. But first ensure
- that the mode of TO is at least as wide as SImode, since those are the
- only library calls we know about. */
-
- if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
- {
- target = gen_reg_rtx (SImode);
-
- expand_fix (target, from, unsignedp);
- }
- else if (GET_MODE (from) == SFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (from) == DFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (from) == XFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
- else
- abort ();
- }
- else if (GET_MODE (from) == TFmode)
- {
- if (GET_MODE (to) == SImode)
- libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
- else if (GET_MODE (to) == DImode)
- libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
- else if (GET_MODE (to) == TImode)
- libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
- else
- abort ();
- }
- else
- abort ();
-
- if (libfcn)
- {
- rtx insns;
-
- to = protect_from_queue (to, 1);
- from = protect_from_queue (from, 0);
-
- if (flag_force_mem)
- from = force_not_mem (from);
-
- start_sequence ();
-
- emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from));
- insns = get_insns ();
- end_sequence ();
-
- emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)),
- gen_rtx (unsignedp ? FIX : UNSIGNED_FIX,
- GET_MODE (to), from));
- }
-
- if (GET_MODE (to) == GET_MODE (target))
- emit_move_insn (to, target);
- else
- convert_move (to, target, 0);
- }
-
- static optab
- init_optab (code)
- enum rtx_code code;
- {
- int i;
- optab op = (optab) xmalloc (sizeof (struct optab));
- op->code = code;
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- op->handlers[i].insn_code = CODE_FOR_nothing;
- op->handlers[i].libfunc = 0;
- }
-
- if (code != UNKNOWN)
- code_to_optab[(int) code] = op;
-
- return op;
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab. Each entry is set equal to a string consisting of a leading
- pair of underscores followed by a generic operation name followed by
- a mode name (downshifted to lower case) followed by a single character
- representing the number of operands for the given operation (which is
- usually one of the characters '2', '3', or '4').
-
- OPTABLE is the table in which libfunc fields are to be initialized.
- FIRST_MODE is the first machine mode index in the given optab to
- initialize.
- LAST_MODE is the last machine mode index in the given optab to
- initialize.
- OPNAME is the generic (string) name of the operation.
- SUFFIX is the character which specifies the number of operands for
- the given generic operation.
- */
-
- static void
- init_libfuncs (optable, first_mode, last_mode, opname, suffix)
- register optab optable;
- register int first_mode;
- register int last_mode;
- register char *opname;
- register char suffix;
- {
- register int mode;
- register unsigned opname_len = strlen (opname);
-
- for (mode = first_mode; (int) mode <= (int) last_mode;
- mode = (enum machine_mode) ((int) mode + 1))
- {
- register char *mname = mode_name[(int) mode];
- register unsigned mname_len = strlen (mname);
- register char *libfunc_name
- = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1);
- register char *p;
- register char *q;
-
- p = libfunc_name;
- *p++ = '_';
- *p++ = '_';
- for (q = opname; *q; )
- *p++ = *q++;
- for (q = mname; *q; q++)
- *p++ = tolower (*q);
- *p++ = suffix;
- *p++ = '\0';
- optable->handlers[(int) mode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, libfunc_name);
- }
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all integer mode operations. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
- static void
- init_integral_libfuncs (optable, opname, suffix)
- register optab optable;
- register char *opname;
- register char suffix;
- {
- init_libfuncs (optable, SImode, TImode, opname, suffix);
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all real mode operations. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
- static void
- init_floating_libfuncs (optable, opname, suffix)
- register optab optable;
- register char *opname;
- register char suffix;
- {
- init_libfuncs (optable, SFmode, TFmode, opname, suffix);
- }
-
- /* Initialize the libfunc fields of an entire group of entries in some
- optab which correspond to all complex floating modes. The parameters
- have the same meaning as similarly named ones for the `init_libfuncs'
- routine. (See above). */
-
- static void
- init_complex_libfuncs (optable, opname, suffix)
- register optab optable;
- register char *opname;
- register char suffix;
- {
- init_libfuncs (optable, SCmode, TCmode, opname, suffix);
- }
-
- /* Call this once to initialize the contents of the optabs
- appropriately for the current target machine. */
-
- void
- init_optabs ()
- {
- int i, j;
- enum insn_code *p;
-
- /* Start by initializing all tables to contain CODE_FOR_nothing. */
-
- for (p = fixtab[0][0];
- p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
- p++)
- *p = CODE_FOR_nothing;
-
- for (p = fixtrunctab[0][0];
- p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
- p++)
- *p = CODE_FOR_nothing;
-
- for (p = floattab[0][0];
- p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
- p++)
- *p = CODE_FOR_nothing;
-
- for (p = extendtab[0][0];
- p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
- p++)
- *p = CODE_FOR_nothing;
-
- for (i = 0; i < NUM_RTX_CODE; i++)
- setcc_gen_code[i] = CODE_FOR_nothing;
-
- add_optab = init_optab (PLUS);
- sub_optab = init_optab (MINUS);
- smul_optab = init_optab (MULT);
- smul_highpart_optab = init_optab (UNKNOWN);
- umul_highpart_optab = init_optab (UNKNOWN);
- smul_widen_optab = init_optab (UNKNOWN);
- umul_widen_optab = init_optab (UNKNOWN);
- sdiv_optab = init_optab (DIV);
- sdivmod_optab = init_optab (UNKNOWN);
- udiv_optab = init_optab (UDIV);
- udivmod_optab = init_optab (UNKNOWN);
- smod_optab = init_optab (MOD);
- umod_optab = init_optab (UMOD);
- flodiv_optab = init_optab (DIV);
- ftrunc_optab = init_optab (UNKNOWN);
- and_optab = init_optab (AND);
- ior_optab = init_optab (IOR);
- xor_optab = init_optab (XOR);
- ashl_optab = init_optab (ASHIFT);
- ashr_optab = init_optab (ASHIFTRT);
- lshr_optab = init_optab (LSHIFTRT);
- rotl_optab = init_optab (ROTATE);
- rotr_optab = init_optab (ROTATERT);
- smin_optab = init_optab (SMIN);
- smax_optab = init_optab (SMAX);
- umin_optab = init_optab (UMIN);
- umax_optab = init_optab (UMAX);
- mov_optab = init_optab (UNKNOWN);
- movstrict_optab = init_optab (UNKNOWN);
- cmp_optab = init_optab (UNKNOWN);
- ucmp_optab = init_optab (UNKNOWN);
- tst_optab = init_optab (UNKNOWN);
- neg_optab = init_optab (NEG);
- abs_optab = init_optab (ABS);
- one_cmpl_optab = init_optab (NOT);
- ffs_optab = init_optab (FFS);
- sqrt_optab = init_optab (SQRT);
- sin_optab = init_optab (UNKNOWN);
- cos_optab = init_optab (UNKNOWN);
- strlen_optab = init_optab (UNKNOWN);
-
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- {
- movstr_optab[i] = CODE_FOR_nothing;
-
- #ifdef HAVE_SECONDARY_RELOADS
- reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
- #endif
- }
-
- /* Fill in the optabs with the insns we support. */
- init_all_optabs ();
-
- #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
- /* This flag says the same insns that convert to a signed fixnum
- also convert validly to an unsigned one. */
- for (i = 0; i < NUM_MACHINE_MODES; i++)
- for (j = 0; j < NUM_MACHINE_MODES; j++)
- fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
- #endif
-
- #ifdef EXTRA_CC_MODES
- init_mov_optab ();
- #endif
-
- /* Initialize the optabs with the names of the library functions. */
- init_integral_libfuncs (add_optab, "add", '3');
- init_floating_libfuncs (add_optab, "add", '3');
- init_integral_libfuncs (sub_optab, "sub", '3');
- init_floating_libfuncs (sub_optab, "sub", '3');
- init_integral_libfuncs (smul_optab, "mul", '3');
- init_floating_libfuncs (smul_optab, "mul", '3');
- init_integral_libfuncs (sdiv_optab, "div", '3');
- init_integral_libfuncs (udiv_optab, "udiv", '3');
- init_integral_libfuncs (sdivmod_optab, "divmod", '4');
- init_integral_libfuncs (udivmod_optab, "udivmod", '4');
- init_integral_libfuncs (smod_optab, "mod", '3');
- init_integral_libfuncs (umod_optab, "umod", '3');
- init_floating_libfuncs (flodiv_optab, "div", '3');
- init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
- init_integral_libfuncs (and_optab, "and", '3');
- init_integral_libfuncs (ior_optab, "ior", '3');
- init_integral_libfuncs (xor_optab, "xor", '3');
- init_integral_libfuncs (ashl_optab, "ashl", '3');
- init_integral_libfuncs (ashr_optab, "ashr", '3');
- init_integral_libfuncs (lshr_optab, "lshr", '3');
- init_integral_libfuncs (rotl_optab, "rotl", '3');
- init_integral_libfuncs (rotr_optab, "rotr", '3');
- init_integral_libfuncs (smin_optab, "min", '3');
- init_floating_libfuncs (smin_optab, "min", '3');
- init_integral_libfuncs (smax_optab, "max", '3');
- init_floating_libfuncs (smax_optab, "max", '3');
- init_integral_libfuncs (umin_optab, "umin", '3');
- init_integral_libfuncs (umax_optab, "umax", '3');
- init_integral_libfuncs (neg_optab, "neg", '2');
- init_floating_libfuncs (neg_optab, "neg", '2');
- init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
- init_integral_libfuncs (ffs_optab, "ffs", '2');
-
- /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
- init_integral_libfuncs (cmp_optab, "cmp", '2');
- init_integral_libfuncs (ucmp_optab, "ucmp", '2');
- init_floating_libfuncs (cmp_optab, "cmp", '2');
-
- #ifdef MULSI3_LIBCALL
- smul_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL);
- #endif
- #ifdef MULDI3_LIBCALL
- smul_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL);
- #endif
- #ifdef MULTI3_LIBCALL
- smul_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL);
- #endif
-
- #ifdef DIVSI3_LIBCALL
- sdiv_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL);
- #endif
- #ifdef DIVDI3_LIBCALL
- sdiv_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL);
- #endif
- #ifdef DIVTI3_LIBCALL
- sdiv_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL);
- #endif
-
- #ifdef UDIVSI3_LIBCALL
- udiv_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL);
- #endif
- #ifdef UDIVDI3_LIBCALL
- udiv_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL);
- #endif
- #ifdef UDIVTI3_LIBCALL
- udiv_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL);
- #endif
-
-
- #ifdef MODSI3_LIBCALL
- smod_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL);
- #endif
- #ifdef MODDI3_LIBCALL
- smod_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL);
- #endif
- #ifdef MODTI3_LIBCALL
- smod_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL);
- #endif
-
-
- #ifdef UMODSI3_LIBCALL
- umod_optab->handlers[(int) SImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL);
- #endif
- #ifdef UMODDI3_LIBCALL
- umod_optab->handlers[(int) DImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL);
- #endif
- #ifdef UMODTI3_LIBCALL
- umod_optab->handlers[(int) TImode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL);
- #endif
-
- /* Define library calls for quad FP instructions */
- #ifdef ADDTF3_LIBCALL
- add_optab->handlers[(int) TFmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, ADDTF3_LIBCALL);
- #endif
- #ifdef SUBTF3_LIBCALL
- sub_optab->handlers[(int) TFmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, SUBTF3_LIBCALL);
- #endif
- #ifdef MULTF3_LIBCALL
- smul_optab->handlers[(int) TFmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, MULTF3_LIBCALL);
- #endif
- #ifdef DIVTF3_LIBCALL
- flodiv_optab->handlers[(int) TFmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, DIVTF3_LIBCALL);
- #endif
- #ifdef SQRTTF2_LIBCALL
- sqrt_optab->handlers[(int) TFmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, SQRTTF2_LIBCALL);
- #endif
-
- /* Use cabs for DC complex abs, since systems generally have cabs.
- Don't define any libcall for SCmode, so that cabs will be used. */
- abs_optab->handlers[(int) DCmode].libfunc
- = gen_rtx (SYMBOL_REF, Pmode, "cabs");
-
- /* The ffs function operates on `int'. */
- #ifndef INT_TYPE_SIZE
- #define INT_TYPE_SIZE BITS_PER_WORD
- #endif
- ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)] .libfunc
- = gen_rtx (SYMBOL_REF, Pmode, "ffs");
-
- extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2");
- extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2");
- extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2");
- extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2");
- extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2");
-
- truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2");
- truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2");
- trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2");
- truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2");
- trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2");
-
- memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy");
- bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy");
- memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp");
- bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp");
- memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset");
- bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero");
-
- eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2");
- nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2");
- gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2");
- gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2");
- ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2");
- lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2");
-
- eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2");
- nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2");
- gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2");
- gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2");
- ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2");
- ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2");
-
- eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2");
- nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2");
- gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2");
- gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2");
- ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2");
- lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2");
-
- eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2");
- netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2");
- gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2");
- getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2");
- lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2");
- letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2");
-
- /* Define library calls for quad FP instructions */
- #ifdef EQTF2_LIBCALL
- eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EQTF2_LIBCALL);
- #endif
- #ifdef NETF2_LIBCALL
- netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, NETF2_LIBCALL);
- #endif
- #ifdef GTTF2_LIBCALL
- gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GTTF2_LIBCALL);
- #endif
- #ifdef GETF2_LIBCALL
- getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, GETF2_LIBCALL);
- #endif
- #ifdef LTTF2_LIBCALL
- lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LTTF2_LIBCALL);
- #endif
- #ifdef LETF2_LIBCALL
- letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, LETF2_LIBCALL);
- #endif
-
- floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf");
- floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf");
- floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf");
-
- floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf");
- floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf");
- floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf");
-
- floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf");
- floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf");
- floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf");
-
- floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf");
- floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf");
- floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf");
-
- fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi");
- fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi");
- fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti");
-
- fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi");
- fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi");
- fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti");
-
- fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi");
- fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi");
- fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti");
-
- fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi");
- fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi");
- fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti");
-
- fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi");
- fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi");
- fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti");
-
- fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi");
- fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi");
- fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti");
-
- fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi");
- fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi");
- fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti");
-
- fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi");
- fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi");
- fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti");
-
- /* Define library calls for quad FP instructions */
- #ifdef TRUNCTFSF2_LIBCALL
- trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFSF2_LIBCALL);
- #endif
- #ifdef TRUNCTFDF2_LIBCALL
- trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, TRUNCTFDF2_LIBCALL);
- #endif
- #ifdef EXTENDSFTF2_LIBCALL
- extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDSFTF2_LIBCALL);
- #endif
- #ifdef EXTENDDFTF2_LIBCALL
- extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, EXTENDDFTF2_LIBCALL);
- #endif
- #ifdef FLOATSITF2_LIBCALL
- floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, FLOATSITF2_LIBCALL);
- #endif
- #ifdef FIX_TRUNCTFSI2_LIBCALL
- fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIX_TRUNCTFSI2_LIBCALL);
- #endif
- #ifdef FIXUNS_TRUNCTFSI2_LIBCALL
- fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, FIXUNS_TRUNCTFSI2_LIBCALL);
- #endif
-
- #ifdef INIT_TARGET_OPTABS
- /* Allow the target to add more libcalls or rename some, etc. */
- INIT_TARGET_OPTABS;
- #endif
- }
-
- #ifdef BROKEN_LDEXP
-
- /* SCO 3.2 apparently has a broken ldexp. */
-
- double
- ldexp(x,n)
- double x;
- int n;
- {
- if (n > 0)
- while (n--)
- x *= 2;
-
- return x;
- }
- #endif /* BROKEN_LDEXP */
-