home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Computer Club Elmshorn Atari PD
/
CCE_PD.iso
/
pc
/
0400
/
CCE_0423.ZIP
/
CCE_0423.PD
/
GPINCL13.ZOO
/
xrationa.h
< prev
next >
Wrap
C/C++ Source or Header
|
1992-10-01
|
7KB
|
267 lines
// This may look like C code, but it is really -*- C++ -*-
/*
Copyright (C) 1988 Free Software Foundation
written by Doug Lea (dl@rocky.oswego.edu)
This file is part of the GNU C++ Library. This library is free
software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _Rational_h
#ifdef __GNUG__
#pragma interface
#endif
#define _Rational_h 1
#include <xinteger.h>
#include <math.h>
class Rational
{
protected:
Integer num;
Integer den;
void normalize();
public:
Rational();
Rational(double);
Rational(long n);
Rational(long n, long d);
Rational(const Integer& n);
Rational(const Integer& n, const Integer& d);
Rational(const Rational&);
~Rational();
void operator = (const Rational& y);
friend int operator == (const Rational& x, const Rational& y);
friend int operator != (const Rational& x, const Rational& y);
friend int operator < (const Rational& x, const Rational& y);
friend int operator <= (const Rational& x, const Rational& y);
friend int operator > (const Rational& x, const Rational& y);
friend int operator >= (const Rational& x, const Rational& y);
friend Rational operator + (const Rational& x, const Rational& y);
friend Rational operator - (const Rational& x, const Rational& y);
friend Rational operator * (const Rational& x, const Rational& y);
friend Rational operator / (const Rational& x, const Rational& y);
void operator += (const Rational& y);
void operator -= (const Rational& y);
void operator *= (const Rational& y);
void operator /= (const Rational& y);
#ifdef __GNUG__
friend Rational operator <? (const Rational& x, const Rational& y); // min
friend Rational operator >? (const Rational& x, const Rational& y); // max
#endif
friend Rational operator - (const Rational& x);
// builtin Rational functions
void negate(); // x = -x
void invert(); // x = 1/x
friend int sign(const Rational& x); // -1, 0, or +1
friend Rational abs(const Rational& x); // absolute value
friend Rational sqr(const Rational& x); // square
friend Rational pow(const Rational& x, long y);
friend Rational pow(const Rational& x, const Integer& y);
const Integer& numerator() const;
const Integer& denominator() const;
// coercion & conversion
operator double() const;
friend Integer floor(const Rational& x);
friend Integer ceil(const Rational& x);
friend Integer trunc(const Rational& x);
friend Integer round(const Rational& x);
friend istream& operator >> (istream& s, Rational& y);
friend ostream& operator << (ostream& s, const Rational& y);
int fits_in_float() const;
int fits_in_double() const;
// procedural versions of operators
friend int compare(const Rational& x, const Rational& y);
friend void add(const Rational& x, const Rational& y, Rational& dest);
friend void sub(const Rational& x, const Rational& y, Rational& dest);
friend void mul(const Rational& x, const Rational& y, Rational& dest);
friend void div(const Rational& x, const Rational& y, Rational& dest);
// error detection
void error(const char* msg) const;
int OK() const;
};
typedef Rational RatTmp; // backwards compatibility
inline Rational::Rational() : num(&_ZeroRep), den(&_OneRep) {}
inline Rational::~Rational() {}
inline Rational::Rational(const Rational& y) :num(y.num), den(y.den) {}
inline Rational::Rational(const Integer& n) :num(n), den(&_OneRep) {}
inline Rational::Rational(const Integer& n, const Integer& d) :num(n),den(d)
{
normalize();
}
inline Rational::Rational(long n) :num(n), den(&_OneRep) { }
inline Rational::Rational(long n, long d) :num(n), den(d)
{
normalize();
}
inline void Rational::operator = (const Rational& y)
{
num = y.num; den = y.den;
}
inline int operator == (const Rational& x, const Rational& y)
{
return compare(x.num, y.num) == 0 && compare(x.den, y.den) == 0;
}
inline int operator != (const Rational& x, const Rational& y)
{
return compare(x.num, y.num) != 0 || compare(x.den, y.den) != 0;
}
inline int operator < (const Rational& x, const Rational& y)
{
return compare(x, y) < 0;
}
inline int operator <= (const Rational& x, const Rational& y)
{
return compare(x, y) <= 0;
}
inline int operator > (const Rational& x, const Rational& y)
{
return compare(x, y) > 0;
}
inline int operator >= (const Rational& x, const Rational& y)
{
return compare(x, y) >= 0;
}
inline int sign(const Rational& x)
{
return sign(x.num);
}
inline void Rational::negate()
{
num.negate();
}
inline void Rational::operator += (const Rational& y)
{
add(*this, y, *this);
}
inline void Rational::operator -= (const Rational& y)
{
sub(*this, y, *this);
}
inline void Rational::operator *= (const Rational& y)
{
mul(*this, y, *this);
}
inline void Rational::operator /= (const Rational& y)
{
div(*this, y, *this);
}
inline const Integer& Rational::numerator() const { return num; }
inline const Integer& Rational::denominator() const { return den; }
inline Rational::operator double() const { return ratio(num, den); }
#ifdef __GNUG__
inline Rational operator <? (const Rational& x, const Rational& y)
{
if (compare(x, y) <= 0) return x; else return y;
}
inline Rational operator >? (const Rational& x, const Rational& y)
{
if (compare(x, y) >= 0) return x; else return y;
}
#endif
#if defined(__GNUG__) && !defined(NO_NRV)
inline Rational operator + (const Rational& x, const Rational& y) return r
{
add(x, y, r);
}
inline Rational operator - (const Rational& x, const Rational& y) return r
{
sub(x, y, r);
}
inline Rational operator * (const Rational& x, const Rational& y) return r
{
mul(x, y, r);
}
inline Rational operator / (const Rational& x, const Rational& y) return r
{
div(x, y, r);
}
#else /* NO_NRV */
inline Rational operator + (const Rational& x, const Rational& y)
{
Rational r; add(x, y, r); return r;
}
inline Rational operator - (const Rational& x, const Rational& y)
{
Rational r; sub(x, y, r); return r;
}
inline Rational operator * (const Rational& x, const Rational& y)
{
Rational r; mul(x, y, r); return r;
}
inline Rational operator / (const Rational& x, const Rational& y)
{
Rational r; div(x, y, r); return r;
}
#endif
#endif