home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
C/C++ Interactive Guide
/
c-cplusplus-interactive-guide.iso
/
c_ref
/
csource1
/
ast40dos
/
placalc.c
< prev
next >
Wrap
C/C++ Source or Header
|
1994-01-04
|
91KB
|
2,434 lines
/*
** Astrolog (Version 4.00) File: placalc.c
**
** IMPORTANT NOTICE: the graphics database and chart display routines
** used in this program are Copyright (C) 1991-1993 by Walter D. Pullen
** (cruiser1@stein.u.washington.edu). Permission is granted to freely
** use and distribute these routines provided one doesn't sell,
** restrict, or profit from them in any way. Modification is allowed
** provided these notices remain with any altered or edited versions of
** the program.
**
** The main planetary calculation routines used in this program have
** been Copyrighted and the core of this program is basically a
** conversion to C of the routines created by James Neely as listed in
** Michael Erlewine's 'Manual of Computer Programming for Astrologers',
** available from Matrix Software. The copyright gives us permission to
** use the routines for personal use but not to sell them or profit from
** them in any way.
**
** The PostScript code within the core graphics routines are programmed
** and Copyright (C) 1992-1993 by Brian D. Willoughby
** (brianw@sounds.wa.com). Conditions are identical to those above.
**
** The extended accurate ephemeris databases and formulas are from the
** calculation routines in the program "Placalc" and are programmed and
** Copyright (C) 1989,1991,1993 by Astrodienst AG and Alois Treindl
** (alois@azur.ch). The use of that source code is subject to
** regulations made by Astrodienst Zurich, and the code is not in the
** public domain. This copyright notice must not be changed or removed
** by any user of this program.
**
** Initial programming 8/28,30, 9/10,13,16,20,23, 10/3,6,7, 11/7,10,21/1991.
** X Window graphics initially programmed 10/23-29/1991.
** PostScript graphics initially programmed 11/29-30/1992.
** Last code change made 12/31/1993.
*/
#include "placalc.h"
#ifdef PLACALC
#ifdef ASTROLOG
/* Begin contents of placalc.c */
#endif
/*****************************************************
$Header: placalc.c,v 1.14 93/07/19 22:13:07 alois Exp $
---------------------------------------------------------------
| Copyright Astrodienst AG and Alois Treindl, 1989,1991,1993 |
| The use of this source code is subject to regulations made |
| by Astrodienst Zurich. The code is NOT in the public domain.|
| |
| This copyright notice must not be changed or removed |
| by any user of this program. |
---------------------------------------------------------------
Important changes:
11-jun-93 revision 1.12: fixed error which affected Mercury between -2100 and
-3100 (it jumped wildly).
*******************************************************/
#ifndef ASTROLOG
#include "placalc.h" /* includes ourdef.h */
#include "astrolib.h" /* includes ourdef.h */
#include "helconst.c" /* orbital elements and disturbations
for inner planets and moon */
#include "deltat.c"
#else /* ASTROLOG */
#ifdef ASTROLOG
/* Begin contents of helconst.c */
#endif
/***********************************************************
* $Header$
definition module for planetary elements
and disturbation coefficients
version HP-UX C for new version with stored outer planets
31-jul-88
by Alois Treindl
---------------------------------------------------------------
| Copyright Astrodienst Zurich AG and Alois Treindl, 1989. |
| The use of this source code is subject to regulations made |
| by Astrodienst Zurich. The code is NOT in the public domain.|
| |
| This copyright notice must not be changed or removed |
| by any user of this program. |
---------------------------------------------------------------
***********************************************************/
/* In the elements degrees were kept as the units for the constants. This
requires conversion to radians, when the actual calculations are performed.
This approach is not the most efficient, but safer for development.
Constant conversion could be done by writing all degree constants with
value * DEGTORAD */
# define TIDAL_26 TRUE /* decide wheter to use new or old lunar tidal
term; a consistent system of delta t must be
used */
# define MOON_TEST_CORR FALSE /* to include more lunar terms in longitude */
REAL8 ekld [4] = { 23.452294, -46.845, -.0059, 0.00181 };
/* ecliptic with epoch1900, Ekd(0..3) in basic */
struct eledata {
REAL8 axis, /* mean distance, in a.u., A(N) in basic */
period, /* days for one revolution, P(N) in basic */
epoch, /* relative juldate of epoch, Ep(N) in basic */
/* T = distance to epoch in jul.centuries 36525 day*/
lg0,lg1,lg2,lg3,/* deg(epoch), degree/day, seconds/T^2,seconds/T^3 */
/* Pd(N,0..2) in basic, lg3 was not present */
pe0,pe1,pe2,pe3,/* deg(epoch), seconds/T, seconds/T^2,seconds/T^3 */
/* Pd(N,3..5) in basic, pe3 was not present */
ex0,ex1,ex2, /* ecl(epoch), 1/T, 1/T^2 */
/* Pd(N,6..8) in basic */
kn0,kn1,kn2,kn3,/* node(epoch),seconds/T, seconds/T^2,seconds/T^3 */
/* Pd(N,9..11) in basic, kn3 was not present */
in0,in1,in2; /* incl(epoch),1/T, 1/T^2 */
/* Pd(N,12..14) in basic */
} pd [MARS + 1] = {
{/*earth*/ 1.00000023, 365.25636042, EPOCH1900,
99.696678, .9856473354, 1.089, 0,
101.220833, 6189.03, 1.63, 0.012,
0.01675104, -0.00004180, -0.000000126,
0, 0, 0, 0,
0, 0, 0},
/* note 29 June 88 by Alois: G.M.Clemence, Astronomical Journal
vol.53,p. 178 (1948) gives a correction to the perihel motion
of -4.78" T, giving 6184.25 for the linear Term above. We have
not yet applied this correction. It has been used in APAE 22,4
on the motion of mars and does make an official impression. */
{/*moon*/ 0.0025955307, 27.321661, EPOCH1900,
# if ! TIDAL_26
/* values from Improved Lunar Ephemeris, corresponding to tidal
term -22.44"/cy and consistent with delta t ~ 29.949 T*T
*/
270.4341638, 13.176396526808121, -4.08, 0.0068,
# endif
# if TIDAL_26
/* new values from Morrison 1979, with tidal term -26"/cy as
stated in A.E. 1986 onwards, consistent with delta t ~ 44.3 T*T
correction: -1.54" + 2.33" T - 1.78" T*T
*/
270.4337361, 13.176396544528099, -5.86, 0.0068,
# endif
334.329556, 14648522.52, -37.17, -0.045,
0.054900489, 0, 0,
259.183275, -6962911.23, 7.48 , 0.008,
5.145388889, 0, 0},
{/*mercury*/ .3870986, 87.969252, EPOCH1900,
178.179078, 4.0923770233, 1.084, 0,
75.89969722, 5599.76, 1.061, 0,
0.20561421, .00002046, -.000000030,
47.145944444, 4266.75, .626, 0,
7.0028805555, 6.699, -.066},
{/*venus*/ .72333162, 224.700726, EPOCH1900,
342.767053, 1.6021687039, 1.1148, 0,
130.16383333, 5068.93, -3.515, 0,
0.00682069, -.00004774, .000000091,
75.7796472223,3239.46, 1.476, 0,
3.3936305555, 3.621, .0035},
{/*mars*/ 1.5236914620, 686.9296097, EPOCH1900,
/* These are the corrected elements by Ross */
293.74762778, .524071163814, 1.1184, 0,
334.21820278, 6626.73, .4675, -0.0043,
0.09331290, .000092064, -.000000077,
48.786441667, 2775.57, -.005, -0.0192,
1.85033333, -2.430, .0454}
};
/*
* mimimum and maximum distances computed over 1000 years with plamimax,
* required for relative distances rgeo, where the distance is given
* as 100 when a planet is closest and as 0 when farthest from earth.
*/
REAL8 rmima[CALC_N][2] = {
{ 0.98296342, 1.01704665},
{ 0.00238267, 0.00271861},
{ 0.54900496, 1.45169607},
{ 0.26411287, 1.73597885},
{ 0.37289847, 2.67626927},
{ 3.94877993, 6.45627627},
{ 7.99362824, 11.09276636},
{17.28622633, 21.10714104},
{28.81374786, 31.33507284},
{28.67716748, 50.29208774},
{ 0.00, 0.00259553}, /* nodes don't get a real value*/
{ 0.00, 0.00259553},
{ 7.36277475, 19.86585062}};
#define SDNUM 20
struct sdat { /* 0..19 mean anomalies of disturbing planets
Sd(0..19,0..1) in basic */
REAL8 sd0, /* mean anomaly at epoch 1850 */
sd1; /* degrees/year */
} sd [SDNUM] = {
114.50, 585.17493,
109.856, 191.39977,
148.031, 30.34583,
284.716, 12.21794,
114.508, 585.17656,
-0.56, 359.99213,
148.03, 30.34743,
284.72, 12.2196,
248.07, 1494.726615,
359.44, 359.993595,
109.86, 191.402867,
148.02, 30.348930,
114.503, 585.173715,
359.444, 359.989285,
148.021, 30.344620,
284.716, 12.21669,
148.0315, 30.34906264,
284.7158, 12.22117085,
220.1695, 4.284931111,
291.8024, 2.184704167
};
REAL8 sa [SDNUM];
struct kor {
int j, i;
REAL8 lampl; /* amplitude of disturbation in long, seconds of arc */
REAL8 lphase; /* phase of disturbation in long, degrees */
INT4 rampl; /* ampl. of disturbation in radius, 9th place of log */
REAL8 rphase; /* phase of disturbation in radius, degrees */
int k; /* index into disturbing planet anomaly table sa[] */
};
/* delta long = lampl * COS (lphase - arg) in seconds of arc
delta rad = rampl * COS (rphase - arg) in ninth place of log
arg = j * sa (k) + i * ma (this planet)
ma = mean anomaly
sa = mean anomaly of disturbing planet, where this
is taken from the aproximate value in sa[]
For the COS (phase - arg) it is good enough to compute
with 32 bit reals, because ampl and phase have only
four to five significant digits.
While saving constant space, it is costing execution time due
to float/double conversions.
*/
/* In basic, all correction terms for sun, mercury, venus and mars
were contained in one array K(0..142,0..6); Nk(N,0) contained
the index of the first term of planet N and Nk(N,1) the number
of terms for this planet. Here, we use a 0 in the first column
kor.j to indicate the end of the table for a planet.
K(*) was a basic INTEGER array, therefore the amplitudes and phases
had to be expressed as
K(i,2) = ampl. of longitude in 0.001 seconds of arc
K(i,3) = phase of longitude in 0.01 degrees
K(i,4) = ampl. of radius in 9th place of log
K(i,5) = phase of radius in 0.01 degrees.
Here we have converted the amplitude of long. to seconds of arc
and the phases to degrees.
*/
struct kor earthkor[] = { /* 11-jul-88 all terms to 0.020" longitude */
/* j i lampl lphase rampl rphase k */
-1, 1, 0.013, 243, 28, 335, 8, /* mercury */
-1, 3, 0.015, 357, 18, 267, 8,
-1, 4, 0.023, 326, 5, 239, 8,
-1, 0, 0.075, 296.6, 94, 205.0, 0, /* Venus */
-1, 1, 4.838, 299.10, 2359, 209.08, 0,
-1, 2, 0.074, 207.9, 69, 348.5, 0,
-1, 3, 0.009, 249, 16, 330, 0,
-2, 1, .116, 148.90, 160, 58.40, 0,
-2, 2, 5.526, 148.31, 6842, 58.32, 0,
-2, 3, 2.497, 315.94, 869, 226.70, 0,
-2, 4, 0.044, 311.4, 52, 38.8, 0,
-3, 2, 0.013, 176, 21, 90, 0,
-3, 3, .666, 177.71, 1045, 87.57, 0,
-3, 4, 1.559, -14.75, 1497, 255.25, 0,
-3, 5, 1.024, 318.15, 194, 49.50, 0,
-3, 6, 0.017, 315, 19, 43, 0,
-4, 4, .210, 206.20, 376, 116.28, 0,
-4, 5, .144, 195.40, 196, 105.20, 0,
-4, 6, .152, -16.20, 94, 254.80, 0,
-5, 5, 0.084, 235.6, 163, 145.4, 0,
-5, 6, 0.037, 221.8, 59, 132.2, 0,
-5, 7, .123, 195.30, 141, 105.40, 0,
-5, 8, .154, -.40, 26, 270.00, 0,
-6, 6, 0.038, 264.1, 80, 174.3, 0,
-6, 7, 0.014, 253, 25, 164, 0,
-6, 8, 0.01, 230, 14, 135, 0,
-6, 9, 0.014, 12, 12, 284, 0,
-7, 7, 0.020, 294, 42, 203.5, 0,
-7, 8, 0.006, 279, 12, 194, 0,
-8, 8, 0.011, 322, 24, 234, 0,
-8, 12, 0.042, 259.2, 44, 169.7, 0,
-8, 14, 0.032, 48.8, 33, 138.7, 0,
-9, 9, 0.006, 351, 13, 261, 0,
1, -1, .273, 217.70, 150, 127.70, 1, /* mars */
1, 0, 0.048, 260.3, 28, 347, 1,
2, -3, 0.041, 346, 52, 255.4, 1,
2, -2, 2.043, 343.89, 2057, 253.83, 1,
2, -1, 1.770, 200.40, 151, 295.00, 1,
2, 0, 0.028, 148, 31, 234.3, 1,
3, -3, .129, 294.20, 168, 203.50, 1,
3, -2, .425, -21.12, 215, 249.00, 1,
4, -4, 0.034, 71, 49, 339.7, 1,
4, -3, .500, 105.18, 478, 15.17, 1,
4, -2, .585, -25.94, 105, 65.90, 1,
5, -4, 0.085, 54.6, 107, 324.6, 1,
5, -3, .204, 100.80, 89, 11.00, 1,
6, -5, 0.020, 186, 30, 95.7, 1,
6, -4, .154, 227.40, 139, 137.30, 1,
6, -3, .101, 96.30, 27, 188.00, 1,
7, -5, 0.049, 176.5, 60, 86.2, 1,
7, -4, .106, 222.70, 38, 132.90, 1,
8, -5, 0.052, 348.9, 45, 259.7, 1,
8, -4, 0.021, 215.2, 8, 310, 1,
8, -6, 0.010, 307, 15, 217, 1,
9, -6, 0.028, 298, 34, 208.1, 1,
9, -5, 0.062, 346, 17, 257, 1,
10, -6, 0.019, 111, 15, 23, 1,
11, -7, 0.017, 59, 20, 330, 1,
11, -6, 0.044, 105.9, 9, 21, 1,
13, -8, 0.013, 184, 15, 94, 1,
13, -7, 0.045, 227.8, 5, 143, 1,
15, -9, 0.021, 309, 22, 220, 1,
17, -9, 0.026, 113, 0, 0, 1,
1, -2, .163, 198.60, 208, 112.00, 2, /* jupiter */
1, -1, 7.208, 179.53, 7067, 89.55, 2,
1, 0, 2.600, 263.22, 244, -21.40, 2,
1, 1, 0.073, 276.3, 80, 6.5, 2,
2, -3, 0.069, 80.8, 103, 350.5, 2,
2, -2, 2.731, 87.15, 4026, -2.89, 2,
2, -1, 1.610, 109.49, 1459, 19.47, 2,
2, 0, 0.073, 252.6, 8, 263, 2,
3, -3, .164, 170.50, 281, 81.20, 2,
3, -2, .556, 82.65, 803, -7.44, 2,
3, -1, .210, 98.50, 174, 8.60, 2,
4, -4, 0.016, 259, 29, 170, 2,
4, -3, 0.044, 168.2, 74, 79.9, 2,
4, -2, 0.080, 77.7, 113, 347.7, 2,
4, -1, 0.023, 93, 17, 3, 2,
5, -2, 0.009, 71, 14, 343, 2,
1, -2, 0.011, 105, 15, 11, 3, /* saturn */
1, -1, .419, 100.58, 429, 10.60, 3,
1, 0, .320, 269.46, 8, -7.00, 3,
2, -2, .108, 290.60, 162, 200.60, 3,
2, -1, .112, 293.60, 112, 203.10, 3,
3, -2, 0.021, 289, 32, 200.1, 3,
3, -1, 0.017, 291, 17, 201, 3,
ENDMARK
};
struct kor mercurykor[] = {
1, -1, .711, 35.47, 491, 305.28, 4,
2, -3, .552, 161.15, 712, 71.12, 4,
2, -2, 2.100, 161.15, 2370, 71.19, 4,
2, -1, 3.724, 160.69, 899, 70.49, 4,
2, 0, .729, 159.76, 763, 250.00, 4,
3, -3, .431, 105.37, 541, 15.53, 4,
3, -2, 1.329, 104.78, 1157, 14.84, 4,
3, -1, .539, 278.95, 14, 282.00, 4,
4, -2, .484, 226.40, 234, 136.02, 4,
5, -4, .685, -10.43, 849, 259.51, 4,
5, -3, 2.810, -10.14, 2954, 259.92, 4,
5, -2, 7.356, -12.22, 282, 255.43, 4,
5, -1, 1.471, -12.30, 1550, 77.75, 4,
5, 0, .375, -12.29, 472, 77.70, 4,
2, -1, .443, 218.48, 256, 128.36, 5,
4, -2, .374, 151.81, 397, 61.63, 5,
4, -1, .808, 145.93, 13, 35.00, 5,
1, -1, .697, 181.07, 708, 91.38, 6,
1, 0, .574, 236.72, 75, 265.40, 6,
2, -2, .938, 36.98, 1185, 306.97, 6,
2, -1, 3.275, 37.00, 3268, 306.99, 6,
2, 0, .499, 31.91, 371, 126.90, 6,
3, -1, .353, 25.84, 347, 295.76, 6,
2, -1, .380, 239.87, 0, 0, 7,
ENDMARK
};
struct kor venuskor[] = {
-1, 2, .264, -19.20, 175, 251.10, 8,
-2, 5, .361, 167.68, 55, 77.20, 8,
1, -1, 4.889, 119.11, 2246, 29.11, 9,
2, -2, 11.261, 148.23, 9772, 58.21, 9,
3, -3, 7.128, -2.57, 8271, 267.42, 9,
3, -2, 3.446, 135.91, 737, 47.37, 9,
4, -4, 1.034, 26.54, 1426, 296.49, 9,
4, -3, .677, 165.32, 445, 75.70, 9,
5, -5, .330, 56.88, 510, -33.36, 9,
5, -4, 1.575, 193.93, 1572, 104.21, 9,
5, -3, 1.439, 138.08, 162, 229.90, 9,
6, -6, .143, 84.40, 236, -5.80, 9,
6, -5, .205, 44.20, 256, 314.20, 9,
6, -4, .176, 164.30, 70, 75.70, 9,
8, -5, .231, 180.00, 25, 75.00, 9,
3, -2, .673, 221.62, 717, 131.60, 10,
3, -1, 1.208, 237.57, 29, 149.00, 10,
1, -1, 2.966, 208.09, 2991, 118.09, 11,
1, 0, 1.563, 268.31, 91, -7.60, 11,
2, -2, .889, 145.16, 1335, 55.17, 11,
2, -1, .480, 171.01, 464, 80.95, 11,
3, -2, .169, 144.20, 250, 54.00, 11,
ENDMARK
};
struct kor marskor[] = {
-1, 1, .115, 65.84, 684, 156.14, 12,
-1, 2, .623, 246.03, 812, 155.77, 12,
-1, 3, 6.368, 57.60, 556, -32.06, 12,
-1, 4, .588, 57.24, 616, 147.28, 12,
-2, 5, .138, 39.18, 157, 309.39, 12,
-2, 6, .459, 217.58, 82, 128.10, 12,
-1, -1, .106, 33.60, 141, 303.45, 13,
-1, 0, .873, 34.34, 1112, 304.05, 13,
-1, 1, 8.559, 35.10, 6947, 304.45, 13,
-1, 2, 13.966, 20.50, 2875, 113.20, 13,
-1, 3, 1.487, 22.18, 1619, 112.38, 13,
-1, 4, .175, 22.46, 225, 112.15, 13,
-2, 2, .150, 18.96, 484, 266.42, 13,
-2, 3, 7.355, 158.64, 6412, 68.62, 13,
-2, 4, 4.905, 154.09, 1985, 244.70, 13,
-2, 5, .489, 154.39, 543, 244.50, 13,
-3, 3, .216, 111.06, 389, 21.10, 13,
-3, 4, .355, 110.64, 587, 19.17, 13,
-3, 5, 2.641, 280.58, 2038, 190.60, 13,
-3, 6, .970, 276.06, 587, 6.75, 13,
-3, 7, .100, 276.20, 116, 6.40, 13,
-4, 5, .152, 232.48, 259, 142.60, 13,
-4, 6, .264, 230.47, 387, 139.75, 13,
-4, 7, 1.156, 41.64, 749, 312.67, 13,
-4, 8, .259, 37.92, 205, 128.80, 13,
-5, 8, .172, -8.99, 234, 260.70, 13,
-5, 9, .575, 164.48, 308, 74.60, 13,
-6, 10, .115, 113.70, 145, 23.53, 13,
-6, 11, .363, 285.69, 144, 196.00, 13,
-7, 13, .353, 48.83, 85, 319.10, 13,
-8, 15, 1.553, 170.14, 110, 81.00, 13,
-8, 16, .148, 170.74, 154, 259.94, 13,
-9, 17, .193, 293.70, 23, 22.80, 13,
1, -3, .382, 46.48, 521, 316.25, 14,
1, -2, 3.144, 46.78, 3894, 316.39, 14,
1, -1, 25.384, 48.96, 23116, 318.87, 14,
1, 0, 3.732, -17.62, 1525, 117.81, 14,
1, 1, .474, -34.60, 531, 59.67, 14,
2, -4, .265, 192.88, 396, 103.12, 14,
2, -3, 2.108, 192.72, 3042, 102.89, 14,
2, -2, 16.035, 191.90, 22144, 101.99, 14,
2, -1, 21.869, 188.35, 16624, 98.33, 14,
2, 0, 1.461, 189.66, 1478, 279.04, 14,
2, 1, .167, 191.04, 224, 280.81, 14,
3, -4, .206, 167.11, 338, 76.13, 14,
3, -3, 1.309, 168.27, 2141, 76.24, 14,
3, -2, 2.607, 228.41, 3437, 139.74, 14,
3, -1, 3.174, 207.20, 1915, 115.83, 14,
3, 0, .232, 207.78, 240, 298.06, 14,
4, -4, .178, 127.25, 322, 36.16, 14,
4, -3, .241, 200.69, 389, 110.02, 14,
4, -2, .330, 267.57, 413, 179.86, 14,
4, -1, .416, 221.88, 184, 128.17, 14,
1, -2, .155, -38.20, 191, 231.58, 15,
1, -1, 1.351, -34.10, 1345, 235.85, 15,
1, 0, .884, 288.05, 111, 39.90, 15,
1, 1, .132, 284.88, 144, 15.67, 15,
2, -2, .620, 35.15, 869, 305.30, 15,
2, -1, 1.768, 32.50, 1661, 302.51, 15,
2, 0, .125, 18.73, 103, 119.90, 15,
3, -2, .141, 47.59, 199, 318.06, 15,
3, -1, .281, 40.95, 248, 310.75, 15,
ENDMARK
};
#define NUM_MOON_CORR 93
/* moon correction data; revised 30-jul-88: all long. to 0.3" */
struct m45dat {
int i0,i1,i2,i3;
REAL8 lng,lat,par;
} m45 [NUM_MOON_CORR] = {
/* l, l', F, D, Long, Lat, Par),*/
{ 0, 0, 0, 4, 13.902, 14.06, 0.2607},
{ 0, 0, 0, 2, 2369.912, 2373.36, 28.2333},
{ 1, 0, 0, 4, 1.979, 6.98, 0.0433},
{ 1, 0, 0, 2, 191.953, 192.72, 3.0861},
{ 1, 0, 0, 0, 22639.500, 22609.1, 186.5398},
{ 1, 0, 0, -2, -4586.465, -4578.13, 34.3117},
{ 1, 0, 0, -4, -38.428, -38.64, 0.6008},
{ 1, 0, 0, -6, -0.393, -1.43, 0.0086},
{ 0, 1, 0, 4, -0.289, -1.59, -0.0053},
{ 0, 1, 0, 2, -24.420, -25.10, -0.3000},
{ 0, 1, 0, 0, -668.146, -126.98, -0.3997},
{ 0, 1, 0, -2, -165.145, -165.06, 1.9178},
{ 0, 1, 0, -4, -1.877, -6.46, 0.0339},
{ 0, 0, 0, 3, 0.403, -4.01, 0.0023},
{ 0, 0, 0, 1, -125.154, -112.79, -0.9781},
{ 2, 0, 0, 4, 0.213, 1.02, 0.0054},
{ 2, 0, 0, 2, 14.387, 14.78, 0.2833},
{ 2, 0, 0, 0, 769.016, 767.96, 10.1657},
{ 2, 0, 0, -2, -211.656, -152.53, -0.3039},
{ 2, 0, 0, -4, -30.773, -34.07, 0.3722},
{ 2, 0, 0, -6, -0.570, -1.40, 0.0109},
{ 1, 1, 0, 2, -2.921, -11.75, -0.0484},
{ 1, 1, 0, 0, -109.673, -115.18, -0.9490},
{ 1, 1, 0, -2, -205.962, -182.36, 1.4437},
{ 1, 1, 0, -4, -4.391, -9.66, 0.0673},
{ 1, -1, 0, 4, 0.283, 1.53, 0.0060},
{ 1, -1, 0, 2, 14.577, 31.70, 0.2302},
{ 1, -1, 0, 0, 147.687, 138.76, 1.1528},
{ 1, -1, 0, -2, 28.475, 23.59, -0.2257},
{ 1, -1, 0, -4, 0.636, 2.27, -0.0102},
{ 0, 2, 0, 2, -0.189, -1.68, -0.0028},
{ 0, 2, 0, 0, -7.486, -0.66, -0.0086},
{ 0, 2, 0, -2, -8.096, -16.35, 0.0918},
{ 0, 0, 2, 2, -5.741, -0.04, -0.0009},
{ 0, 0, 2, 0, -411.608, -0.2, -0.0124},
{ 0, 0, 2, -2, -55.173, -52.14, -0.1052},
{ 0, 0, 2, -4, 0.025, -1.67, 0.0031},
{ 1, 0, 0, 1, -8.466, -13.51, -0.1093},
{ 1, 0, 0, -1, 18.609, 3.59, 0.0118},
{ 1, 0, 0, -3, 3.215, 5.44, -0.0386},
{ 0, 1, 0, 1, 18.023, 17.93, 0.1494},
{ 0, 1, 0, -1, 0.560, 0.32, -0.0037},
{ 3, 0, 0, 2, 1.060, 2.96, 0.0243},
{ 3, 0, 0, 0, 36.124, 50.64, 0.6215},
{ 3, 0, 0, -2, -13.193, -16.40, -0.1187},
{ 3, 0, 0, -4, -1.187, -0.74, 0.0074},
{ 3, 0, 0, -6, -0.293, -0.31, 0.0046},
{ 2, 1, 0, 2, -0.290, -1.45, -0.0051},
{ 2, 1, 0, 0, -7.649, -10.56, -0.1038},
{ 2, 1, 0, -2, -8.627, -7.59, -0.0192},
{ 2, 1, 0, -4, -2.740, -2.54, 0.0324},
{ 2, -1, 0, 2, 1.181, 3.32, 0.0213},
{ 2, -1, 0, 0, 9.703, 11.67, 0.1268},
{ 2, -1, 0, -2, -2.494, -1.17, -0.0017},
{ 2, -1, 0, -4, 0.360, 0.20, -0.0043},
{ 1, 2, 0, 0, -1.167, -1.25, -0.0106},
{ 1, 2, 0, -2, -7.412, -6.12, 0.0484},
{ 1, 2, 0, -4, -0.311, -0.65, 0.0044},
{ 1, -2, 0, 2, 0.757, 1.82, 0.0112},
{ 1, -2, 0, 0, 2.580, 2.32, 0.0196},
{ 1, -2, 0, -2, 2.533, 2.40, -0.0212},
{ 0, 3, 0, -2, -0.344, -0.57, 0.0036},
{ 1, 0, 2, 2, -0.992, -0.02, 0},
{ 1, 0, 2, 0, -45.099, -0.02, -0.0010},
{ 1, 0, 2, -2, -0.179, -9.52, -0.0833},
{ 1, 0, -2, 2, -6.382, -3.37, -0.0481},
{ 1, 0, -2, 0, 39.528, 85.13, -0.7136},
{ 1, 0, -2, -2, 9.366, 0.71, -0.0112},
{ 0, 1, 2, 0, 0.415, 0.10, 0.0013},
{ 0, 1, 2, -2, -2.152, -2.26, -0.0066},
{ 0, 1, -2, 2, -1.440, -1.30, 0.0014},
{ 0, 1, -2, -2, 0.384, 0.0, 0.0},
{ 2, 0, 0, 1, -0.586, -1.20, -0.0100},
{ 2, 0, 0, -1, 1.750, 2.01, 0.0155},
{ 2, 0, 0, -3, 1.225, 0.91, -0.0088},
{ 1, 1, 0, 1, 1.267, 1.52, 0.0164},
{ 1, -1, 0, -1, -1.089, 0.55, 0},
{ 0, 0, 2, -1, 0.584, 8.84, 0.0071},
{ 4, 0, 0, 0, 1.938, 3.60, 0.0401},
{ 4, 0, 0, -2, -0.952, -1.58, -0.0130},
{ 3, 1, 0, 0, -0.551, 0.94, -0.0097},
{ 3, 1, 0, -2, -0.482, -0.57, -0.0045},
{ 3, -1, 0, 0, 0.681, 0.96, 0.0115},
{ 2, 0, 2, 0, -3.996, 0, 0.0004},
{ 2, 0, 2, -2, 0.557, -0.75, -0.0090},
{ 2, 0, -2, 2, -0.459, -0.38, -0.0053},
{ 2, 0, -2, 0, -1.298, 0.74, 0.0004},
{ 2, 0, -2, -2, 0.538, 1.14, -0.0141},
{ 1, 1, -2, -2, 0.426, 0.07, -0.0006},
{ 1, -1, 2, 0, -0.304, 0.03, 0.0003},
{ 1, -1, -2, 2, -0.372, -0.19, -0.0027},
{ 0, 0, 4, 0, 0.418, 0, 0},
{ 2, -1, 0, -1, -0.352, -0.37, -0.0028}
};
# if MOON_TEST_CORR
/* moon additional correction terms */
struct m5dat {
REAL8 lng;
int i0,i1,i2,i3;
} m5 [] = {
/* lng, l, l', F, D, */
0.127, 0, 0, 0, 6,
-0.151, 0, 2, 0, -4,
-0.085, 0, 0, 2, 4,
0.150, 0, 1, 0, 3,
-0.091, 2, 1, 0, -6,
-0.103, 0, 3, 0, 0,
-0.301, 1, 0, 2, -4,
0.202, 1, 0, -2, -4,
0.137, 1, 1, 0, -1,
0.233, 1, 1, 0, -3,
-0.122, 1, -1, 0, 1,
-0.276, 1, -1, 0, -3,
0.255, 0, 0, 2, 1,
0.254, 0, 0, 2, -3,
-0.100, 3, 1, 0, -4,
-0.183, 3, -1, 0, -2,
-0.297, 2, 2, 0, -2,
-0.161, 2, 2, 0, -4,
0.197, 2, -2, 0, 0,
0.254, 2, -2, 0, -2,
-0.250, 1, 3, 0, -2,
-0.123, 2, 0, 2, 2,
0.173, 2, 0, -2, -4,
0.263, 1, 1, 2, 0,
0.130, 3, 0, 0, -1,
0.113, 5, 0, 0, 0,
0.092, 3, 0, 2, -2,
0, 99, 0, 0, 0 /* end mark */
};
# endif /* MOON_TEST_CORR */
#ifdef ASTROLOG
/* End contents of helconst.c */
#endif
#ifdef ASTROLOG
/* Begin contents of deltat.c */
#endif
/*****************************************************
$Header: deltat.c,v 1.10 93/01/27 14:37:06 alois Exp $
deltat.c
deltat(t): returns delta t (in julian days) from universal time t
is included by users
ET = UT + deltat
---------------------------------------------------------------
| Copyright Astrodienst Zurich AG and Alois Treindl, 1989. |
| The use of this source code is subject to regulations made |
| by Astrodienst Zurich. The code is NOT in the public domain.|
| |
| This copyright notice must not be changed or removed |
| by any user of this program. |
---------------------------------------------------------------
******************************************************/
double deltat (double jd_ad) /* Astrodienst relative julian date */
{
double floor();
static short int dt[] = { /* in centiseconds */
/* dt from 1637 to 2000, as tabulated in A.E.
the values 1620 - 1636 are not taken, as they fit
badly the parabola 25.5 t*t for the next range. The
best crossing point to switch to the parabola is
1637, where we have fitted the value for continuity */
6780, 6500, 6300,
6200, 6000, 5800, 5700, 5500,
5400, 5300, 5100, 5000, 4900,
4800, 4700, 4600, 4500, 4400,
4300, 4200, 4100, 4000, 3800, /* 1655 - 59 */
3700, 3600, 3500, 3400, 3300,
3200, 3100, 3000, 2800, 2700,
2600, 2500, 2400, 2300, 2200,
2100, 2000, 1900, 1800, 1700,
1600, 1500, 1400, 1400, 1300,
1200, 1200, 1100, 1100, 1000,
1000, 1000, 900, 900, 900,
900, 900, 900, 900, 900,
900, 900, 900, 900, 900, /* 1700 - 1704 */
900, 900, 900, 1000, 1000,
1000, 1000, 1000, 1000, 1000,
1000, 1000, 1100, 1100, 1100,
1100, 1100, 1100, 1100, 1100,
1100, 1100, 1100, 1100, 1100,
1100, 1100, 1100, 1100, 1200, /* 1730 - 1734 */
1200, 1200, 1200, 1200, 1200,
1200, 1200, 1200, 1200, 1300,
1300, 1300, 1300, 1300, 1300,
1300, 1400, 1400, 1400, 1400,
1400, 1400, 1400, 1500, 1500,
1500, 1500, 1500, 1500, 1500, /* 1760 - 1764 */
1600, 1600, 1600, 1600, 1600,
1600, 1600, 1600, 1600, 1600,
1700, 1700, 1700, 1700, 1700,
1700, 1700, 1700, 1700, 1700,
1700, 1700, 1700, 1700, 1700,
1700, 1700, 1600, 1600, 1600, /* 1790 - 1794 */
1600, 1500, 1500, 1400, 1400,
1370, 1340, 1310, 1290, 1270, /* 1800 - 1804 */
1260, 1250, 1250, 1250, 1250,
1250, 1250, 1250, 1250, 1250,
1250, 1250, 1240, 1230, 1220,
1200, 1170, 1140, 1110, 1060,
1020, 960, 910, 860, 800,
750, 700, 660, 630, 600, /* 1830 - 1834 */
580, 570, 560, 560, 560,
570, 580, 590, 610, 620,
630, 650, 660, 680, 690,
710, 720, 730, 740, 750,
760, 770, 770, 780, 780,
788, 782, 754, 697, 640, /* 1860 - 1864 */
602, 541, 410, 292, 182,
161, 10, -102, -128, -269,
-324, -364, -454, -471, -511,
-540, -542, -520, -546, -546,
-579, -563, -564, -580, -566,
-587, -601, -619, -664, -644, /* 1890 - 1894 */
-647, -609, -576, -466, -374,
-272, -154, -2, 124, 264,
386, 537, 614, 775, 913,
1046, 1153, 1336, 1465, 1601,
1720, 1824, 1906, 2025, 2095,
2116, 2225, 2241, 2303, 2349, /* 1920 - 1924 */
2362, 2386, 2449, 2434, 2408,
2402, 2400, 2387, 2395, 2386,
2393, 2373, 2392, 2396, 2402,
2433, 2483, 2530, 2570, 2624,
2677, 2728, 2778, 2825, 2871,
2915, 2957, 2997, 3036, 3072, /* 1950 - 1954 */
3107, 3135, 3168, 3218, 3268,
3315, 3359, 3400, 3447, 3503,
3573, 3654, 3743, 3829, 3920,
4018, 4117, 4223, 4337, 4449,
4548, 4646, 4752, 4853, 4959,
5054, 5138, 5217, 5296, 5379, /* 1980 - 1984 */
5434, 5487, 5532, 5582, 5630, /* 1985 - 89 from AE 1991 */
5686, 5757, 5900, 5900, 6000, /* AE 1993 and extrapol */
6050, 6100, 6150, 6200, 6250, /* 1995 - 1999 */
6300}; /* 2000 */
double yr, cy, delta;
long iyr, i;
yr = (jd_ad + 18262) / 365.25 + 100.0; /* year relative 1800 */
cy = yr / 100;
iyr = (long) (floor (yr) + 1800); /* truncated to integer, rel 0 */
# if TIDAL_26 /* Stephenson formula only when 26" tidal
term in lunar motion */
if ( iyr >= 1637 && iyr < 2000 ) {
i = iyr - 1637;
delta = dt[i] * 0.01 + (dt[i+1] - dt[i]) * (yr - floor (yr)) * 0.01;
} else if (iyr >= 2000 ) { /* parabola, fitted at value[2000] */
delta = 25.5 * cy * cy - 25.5 * 4 + 63.00;
} else if (iyr >= 948) { /* from 948 - 1637 use parabola */
delta = 25.5 * cy * cy;
} else { /* before 984 use other parabola */
delta = 1361.7 + 320 * cy + 44.3 * cy * cy; /* fits at 948 */
}
# else /* use Clemence value + 5 sec before 1690, new dt afterwards */
cy -= 1; /* epoch 1900 */
if ( iyr >= 1690 && iyr < 2000 ) {
i = iyr - 1637;
delta = dt[i] * 0.01 + (dt[i+1] - dt[i]) * (yr - floor (yr)) * 0.01;
} else if (iyr >= 2000 ) { /* parabola, fitted at value[2000] */
delta = 29.949 * cy * cy - 29.949 * 4 + 63.0;
} else {
delta = 5 + 24.349 + 72.3165 * cy + 29.949 * cy * cy; /* fits at 1690 */
}
# endif
return (delta / 86400.0);
}
#ifdef ASTROLOG
/* End contents of deltat.c */
#endif
#ifdef ASTROLOG
/* Begin contents of d2l.c */
#endif
/*******************************************
$Header: d2l.c,v 1.9 91/11/16 16:24:20 alois Exp $
********************************************/
/*************************************
double to long with rounding, no overflow check
*************************************/
long d2l (double x)
{
if (x >=0)
return ((long) (x + 0.5));
else
return (- (long) (0.5 - x));
}
#ifdef ASTROLOG
/* End contents of d2l.c */
#endif
#ifdef ASTROLOG
/* Begin contents of csec.c */
#endif
/*
* $Header$
*
* A collection of useful functions for centisec calculations.
---------------------------------------------------------------
| Copyright Astrodienst Zurich AG and Alois Treindl, 1991. |
| The use of this source code is subject to regulations made |
| by Astrodienst Zurich. The code is NOT in the public domain.|
| |
| This copyright notice must not be changed or removed |
| by any user of this program. |
---------------------------------------------------------------
*******************************************************/
#ifndef ASTROLOG
#include "ourdef.h"
#include "astrolib.h"
#include "housasp.h"
#endif
/************************************
normalize argument into interval [0..DEG360]
*************************************/
centisec csnorm(centisec p)
{
if (p < 0)
do { p += DEG360; } while (p < 0);
else if (p >= DEG360)
do { p -= DEG360; } while (p >= DEG360);
return (p);
}
double degnorm(double p)
{
if (p < 0)
do { p += 360.0; } while (p < 0);
else if (p >= 360.0)
do { p -= 360.0; } while (p >= 360.0);
return (p);
}
/************************************
distance in centisecs p1 - p2
normalized to [0..360[
**************************************/
centisec difcsn (centisec p1, centisec p2)
{
return (csnorm(p1 - p2));
}
double difdegn (double p1, double p2)
{
return (degnorm(p1 - p2));
}
/************************************
distance in centisecs p1 - p2
normalized to [-180..180[
**************************************/
centisec difcs2n (centisec p1, centisec p2)
{ centisec dif;
dif = csnorm(p1 - p2);
if (dif >= DEG180) return (dif - DEG360);
return (dif);
}
double difdeg2n (double p1, double p2)
{ double dif;
dif = degnorm(p1 - p2);
if (dif >= 180.0) return (dif - 360.0);
return (dif);
}
/*************************************
round second, but at 29.5959 always down
*************************************/
centisec roundsec(centisec x)
{
centisec t;
t = (x + 50) / 100 *100L; /* round to seconds */
if (t > x && t % DEG30 == 0) /* was rounded up to next sign */
t = x / 100 * 100L; /* round last second of sign downwards */
return (t);
}
/******************************/
double dcos(centisec x)
{
return (COS8 (CSTORAD * x));
}
/******************************/
double dsin(centisec x)
{
return (SIN8 (CSTORAD * x));
}
/******************************/
double dtan(centisec x)
{
return (TAN8 (CSTORAD * x));
}
/******************************/
centisec datan(double x)
{
return (d2l (RADTOCS * ATAN8 (x)) );
}
/******************************/
centisec dasin(double x)
{
return (d2l (RADTOCS * ASIN8 (x)));
}
#ifdef ASTROLOG
/* End contents of csec.c */
#endif
#endif /* ASTROLOG */
#include <string.h>
#ifndef ASTROLOG
#ifndef DIR_GLUE
# if MSDOS
# define DIR_GLUE "\\"
# else
# define DIR_GLUE "/"
# endif
#endif
#else
#define DIR_GLUE ""
#endif /* ASTROLOG */
/************************************************************
externally accessible globals, defined as extern in placalc.h
************************************************************/
REAL8 meanekl, ekl, nut;
struct elements el [MARS + 1];
/*
* The global variable ephe_path indicates where the ephemeris files
* LRZ5_xx and CHI_xx are stored.
* By default it is set to the #defined EPHE_PATH, but the user of the
* placalc module can change it to any other location before he
* starts calling calc().
*/
char *ephe_path = EPHE_PATH;
/*
* If there occurs an internal error in placalc, a message is
* written to stderr or into the string variable placalc_err_text.
* By default it is written to stderr, but if placalc_err_text is
* not a NULL pointer, it is written to the string variable.
* The user must set this pointer to a string of at least 160 bytes long,
* if he/she wants to use it.
*/
char *placalc_err_text = NULL;
#ifndef ASTROLOG
/**********************************************************
function nacalc ()
calculates an array of planet longitudes and speeds,
as needed for complete nathan data records.
The function knows itself how many planets and in which mode
they have to be calculated for Nathan.
return OK or ERR
The returned positions are in centiseconds, our standard
coordinate format for fast mathematics with planetary positions.
This function is just a template of how the calc() package
can be used.
**********************************************************/
int nacalc (REAL8 jd_ad, /* universal time relative julian date */
centisec *plon, /* returned longitudes */
centisec *pspe /* returned speeds, if not NULL pointer */
)
{
int planet, flag;
REAL8 rlng, rrad, rlat, rspeed;
int result = OK;
flag = CALC_BIT_SPEED; /* same, with speed */
jd_ad += deltat( jd_ad ); /* ET = UT + Delta_T */
for (planet = SUN; planet <= TRUE_NODE; planet++) {
if (calc (planet, jd_ad, flag, &rlng, &rrad, &rlat, &rspeed) == OK) {
plon [planet] = d2l (rlng * DEG);
if (pspe != NULL) pspe [planet] = d2l (rspeed * DEG);
} else {
plon [planet] = -1;
if (pspe != NULL) pspe [planet] = 0;
result = ERR;
}
}
planet = TRUE_NODE + 1; /* CHIRON may not be TRUE_NODE + 1 */
if (calc (CHIRON, jd_ad, flag, &rlng, &rrad, &rlat, &rspeed) == OK) {
plon [planet] = d2l (rlng * DEG);
if (pspe != NULL) pspe [planet] = d2l (rspeed * DEG);
} else {
plon [planet] = -1;
if (pspe != NULL) pspe [planet] = 0;
result = ERR;
}
return result;
} /* end nacalc */
#endif /* !ASTROLOG */
#ifdef ASTROLOG
/* Given an object index and a Julian Day time, get its zodiac and */
/* declination position (planetary longitude and latitude) of the object */
/* and its velocity and distance from the Earth or Sun. This basically */
/* just calls the Placalc calculation function to actually do it, but as */
/* this is the one routine called from Astrolog, this is the one routine */
/* which has knowledge of and uses both Astrolog and Placalc definitions, */
/* and does things such as translation to Placalc indices and formats. */
int PlacalcPlanet(ind, jd, helio, planet, planetalt, ret, space)
int ind, helio;
double jd;
real *planet, *planetalt, *ret, *space;
{
int iplanet, flag;
REAL8 jd_ad, rlng, rrad, rlat, rspeed;
if (ind <= _PLU) /* Convert Astrolog object index to Placalc index. */
iplanet = ind-1;
else if (ind == _CHI)
iplanet = CHIRON;
else if (ind == _NOD)
#ifdef TRUENODE
iplanet = TRUE_NODE;
#else
iplanet = MEAN_NODE;
#endif
else
return FALSE;
jd_ad = jd - JUL_OFFSET;
flag = helio ? CALC_BIT_SPEED | CALC_BIT_HELIO : CALC_BIT_SPEED;
jd_ad += deltat(jd_ad);
if (calc(iplanet, jd_ad, flag, &rlng, &rrad, &rlat, &rspeed) == OK) {
*planet = rlng;
*planetalt = rlat;
*ret = rspeed;
*space = rrad;
return TRUE;
}
return FALSE;
}
#endif /* ASTROLOG */
#ifndef ASTROLOG
/******************************************************************
* calculation server
* delivers positions in string format which can be sent easily
* over a communication line to the calculation client.
******************************************************************/
int calcserv(int id, /* request id, random number to prevent phase err */
REAL8 jd_ad, /* time as relative Astrodienst julian date */
int flag, /* a set of CALC_BIT_ bitflags */
int plalist,/* bit list of planets to be computed, 0 = all */
char *so) /* output string, MUST BE LONG ENOUGH (800 bytes)*/
{
int p, planet, so_len;
REAL8 rlng, rrad, rlat, rspeed, rau[CALC_N];
centisec lcs[CALC_N], lpcs[CALC_N], betcs[CALC_N];
#ifndef ASTROLOG
int rgeo[CALC_N];
#endif
char s[MAXCHAR];
if (plalist == 0) plalist = CALC_ALL_PLANET_BITS;
/*
* flag determines whether deltat is added to t;
* if CALC_BIT_EPHE is set, jd_ad is considered as ephemeris time,
* otherwise as universal time.
*/
if ((flag & CALC_BIT_EPHE) == 0) {
jd_ad += deltat (jd_ad);
}
for (p = SUN; p < CALC_N; p++) {
if (! check_bit(plalist, p)) continue;
if (calc (p, jd_ad, flag, &rlng, &rrad, &rlat, &rspeed) == OK) {
lcs [p] = d2l (rlng * DEG);
lpcs [p] = d2l (rspeed * DEG);
betcs [p] = d2l (rlat * DEG);
rau [p] = rrad;
} else {
sprintf(so,"error at planet %d", p);
return ( ERR);
}
}
/*
* format comma separated list: id,teph,flag,plalist,ekl,nut
* REAL8 is given with 8 digits precision after decimal point,
* all angles are given in centiseconds.
* then for each requested planet: longitude (csec)
* then for each requested planet, if wanted: speed (csec/day)
* then for each requested planet, if wanted: latitude (csec)
* then for each requested planet, if wanted: rgeo (units 0..999)
* then for each requested planet, if wanted: rau (A.U.)
*/
sprintf (so, "%d,%.8lf,%d,%d,%ld,%ld", id, jd_ad, flag, plalist,
d2l(ekl * DEG), d2l (nut * DEG) );
so_len = strlen (so);
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%ld", lcs[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
if (flag & CALC_BIT_SPEED) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%ld", lpcs[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
}
if (flag & CALC_BIT_BETA) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%ld", betcs[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
}
if (flag & CALC_BIT_RGEO) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%ld", rel_geo(planet,rau[planet]));
strcat (so + so_len, s);
so_len += strlen (s);
}
}
if (flag & CALC_BIT_RAU) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%.8lf", rau[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
}
return (OK);
} /* end calcserv */
#endif /* !ASTROLOG */
/******************************************************************
function calc():
This is the main routine for computing a planets position.
The function has several modes, which are controlled by bits in
the parameter 'flag'. The normal mode (flag == 0) computes
a planets apparent geocentric position in ecliptic coordinates relative to
the true equinox of date, without speed
Explanation of the arguments: see the functions header.
Returns OK or ERR (if some planet out of time range). OK and ERR are
defined in ourdef.h and must not be confused with TRUE and FALSE.
OK and ERR are of type int, not of type BOOLEAN.
Bits used in flag:
CALC_BIT_HELIO 0 = geocentric, 1 = heliocentric
CALC_BIT_NOAPP 0 = apparent positions, 1 = true positions
CALC_BIT_NONUT 0 = do nutation (true equinox of date)
1 = don't do nutation (mean equinox of date).
CALC_BIT_SPEED 0 = don't calc speed,
1 = calc speed, takes quite long for moon
(is observed only for moon, with other
planets speed is cheap)
Side effects and local memory:
For doing heliocentric positions the fucntion must know the
earth's position for the desired time t. It remembers the earth
position so it does not have to recompute it each time a planet
position is wanted for the same time t.
It calls helup(t), which leaves as a side effect the global
variables meanekl, ekl and nut for the time t.
Functions called by calc():
helup(t)
hel(t)
moon(t)
togeo()
Time range:
The function can be used savely in the time range 5000 BC to
3000 AD. The stored ephemeris is available only for this time
range, so Jupiter ... Pluto cannot be computed outside. The
function will return results for the other planets also outside
of this time range, but they become meaningless pretty soon
before 5000 BC, because Newcombs time series expansions for the
elements will not work anymore.
******************************************************************/
int calc(int planet, /* planet index as defined in placalc.h,
SUN = 0, MOON = 1 etc.
planet == -1 calc calculates only nut and ecl */
REAL8 jd_ad, /* relative Astrodienst Juldate, ephemeris time.
Astrodienst Juldate is relative 31 Dec 1949, noon. */
int flag, /* See definition of flag bits above */
REAL8 *alng,
REAL8 *arad,
REAL8 *alat,
REAL8 *alngspeed)
/* pointers to the return variables:
alng = ecliptic longitude in degrees
arad = radius vector in AU (astronomic units)
alat = ecliptic latitude in degrees
alngspeed = speed of planet in degrees per day
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The precision of the speed is quite limited.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
For Sun, Mercury, Venus and Mars we take only the speed from
the undisturbed Kepler orbit. For the Moon there is no
reasonable undisturbed orbit and we derive the speed from
its position at t + dt and t - dt. We need these
moon positions anyway for the true node calculation.
For the outer planets and Chiron we derive the precise
speed from the stored ephemeris by high order inter-
polation; the precision is limited for the geocentric
case due to the limited precision of the earth's/sun's
speed.
Applications who need precise speeds should
get them by calling calc() with slightly different times.
*/
/*
* Comment 7 May 1991 by Alois Treindl:
* Center of Earth versus Barycenter Earth-Moon:
* Brown's theory of the moon gives the moon's coordinates relative
* to the center of the earth. Newcomb's theory of the Sun gives the
* coordinates of the earth's center relative to the center of the Sun.
* This is what we need.
*
* How about the Mean Lunar Node?
* The orbital elements of the Sun in Newcomb's theory are given
* relative to the barycenter Earth-Moon; the reduction to geocentric
* is only applied after doing the Kepler ellipse calculation.
* Are the Lunar elements also relative to the barycenter??
* If yes:
* When we use the moon's mean node out of the elements, it is still
* as seen from the barycenter. Because the node is close to the
* earth, we would have to apply a considerable correction, which is of
* the order of 4000/384000 km or 35' (minutes of arc).
* Nobody has ever applied such a correction to the mean node.
*
* And the True Node?
* When we calculate the osculating orbital elements of the Moon (true node),
* are they relative to the barycenter or to the Earth's center?
* Our derivation of true node from the actual Moon positions considers
* the earth's center as the focal point of the osculating lunar ellipse.
* A more correct approach would first reduce the lunar position from
* geocentric to barycentric, then compute the orbital elements from
* the reduced positions, and then reduce the desired items
* (node, apogaeum, 'dark moon') to geocentric positions.
* No known astrological ephemeris has ever used such a correction, which is
* of the same order of magnitude as the correction to the meannode above.
* When the moon is going through the ecliptic, the geocenter, barycenter
* moon (and the node identical to the moon itself) line up; this is why
* the error does not show up in normal considerations.
*/
{
struct rememberdat /* time for which the datas are calculated */
{ REAL8 calculation_time, lng, rad, zet, lngspeed, radspeed, zetspeed; };
static struct rememberdat earthrem =
{ HUGE, HUGE, HUGE, HUGE, HUGE, HUGE, HUGE };
static struct rememberdat moonrem =
{ HUGE, HUGE, HUGE, HUGE, HUGE, HUGE, HUGE };
REAL8 c, s, x, knn, knv;
REAL8 rp, zp; /* needed to call hel! */
REAL8 *azet = alat;
BOOLEAN calc_geo, calc_helio, calc_apparent, calc_speed,
calc_nut;
helup (jd_ad); /* helup checks whether it was already called with same time*/
if ( planet == CALC_ONLY_ECL_NUT ) return (OK);
calc_helio = flag & CALC_BIT_HELIO;
calc_geo = ! calc_helio;
calc_apparent = ! (flag & CALC_BIT_NOAPP);
calc_nut = ! (flag & CALC_BIT_NONUT);
calc_speed = flag & CALC_BIT_SPEED;
/*
* it is necessary to compute EARTH in the following cases:
* heliocentric MOON or EARTH
* geocentric any planet except MOON or nodes or LILITH
*/
if (calc_helio && (planet == MOON || planet == EARTH)
|| calc_geo && planet != MOON
&& planet != MEAN_NODE
&& planet != TRUE_NODE
&& planet != LILITH) {
if ( earthrem.calculation_time != jd_ad ) {
hel ( EARTH, jd_ad, alng, arad, azet, alngspeed, &rp, &zp );
/* store earthdata for geocentric calculation: */
earthrem.lng = *alng;
earthrem.rad = *arad;
earthrem.zet = *azet;
earthrem.lngspeed = *alngspeed;
earthrem.radspeed = rp;
earthrem.zetspeed = zp;
earthrem.calculation_time = jd_ad;
}
}
switch(planet) {
case EARTH: /* has been already computed */
*alng = earthrem.lng;
*arad = earthrem.rad;
*azet = earthrem.zet;
*alngspeed = earthrem.lngspeed;
rp = earthrem.radspeed;
zp = earthrem.zetspeed;
if ( calc_geo ) { /* SUN seen from earth */
*alng = smod8360( *alng + 180.0 );
*azet = - *azet;
}
if (calc_apparent)
*alng = *alng - 0.0057683 * (*arad) * (*alngspeed);
break;
case MOON:
moon( alng, arad, azet );
moonrem.lng = *alng; /* moonrem will be used for TRUE_NODE */
moonrem.rad = *arad;
moonrem.zet = *azet;
*alngspeed = 12;
moonrem.calculation_time = jd_ad;
if ( calc_helio || calc_speed ) {/* get a second moon position */
REAL8 lng2, rad2, zet2;
helup( jd_ad + MOON_SPEED_INTERVAL );
moon( &lng2, &rad2, &zet2 );
helup( jd_ad );
if ( calc_helio ) { /* moon as seen from sun */
togeo( earthrem.lng, -earthrem.rad, moonrem.lng, moonrem.rad,
moonrem.zet, alng, arad );
togeo( earthrem.lng + MOON_SPEED_INTERVAL * earthrem.lngspeed,
-( earthrem.rad + MOON_SPEED_INTERVAL * earthrem.radspeed ),
lng2, rad2, zet2, &lng2, &rad2 );
}
*alngspeed = diff8360( lng2, *alng ) / MOON_SPEED_INTERVAL;
/* rp = ( rad2 - *arad ) / MOON_SPEED_INTERVAL;
zp = ( zet2 - moonrem.zet ) / MOON_SPEED_INTERVAL; */
}
*alat = RADTODEG * ASIN8( *azet / *arad );
/*
* light time correction, not applied for moon or nodes;
* moon would have only term of ca. 0.02", see Expl.Sup.1961 p.109
*/
break;
case MERCURY:
case VENUS:
case MARS:
case JUPITER:
case SATURN:
case URANUS:
case NEPTUNE:
case PLUTO:
case CHIRON:
if (hel ( planet, jd_ad, alng, arad, azet, alngspeed, &rp, &zp ) != OK)
return (ERR); /* outer planets can fail if out of ephemeris range */
if ( calc_geo ) { /* geocentric */
REAL8 lng1, rad1, lng2, rad2;
togeo( earthrem.lng, earthrem.rad, *alng, *arad, *azet, &lng1, &rad1 );
togeo( earthrem.lng + earthrem.lngspeed,
earthrem.rad + earthrem.radspeed,
*alng + *alngspeed, *arad + rp, *azet + zp, &lng2, &rad2 );
*alng = lng1;
*arad = rad1;
*alngspeed = diff8360( lng2, lng1 );
/* rp = rad2 - rad1; */
}
*alat = RADTODEG * ASIN8( *azet / *arad );
if (calc_apparent)
*alng = *alng - 0.0057683 * (*arad) * (*alngspeed);
break;
case MEAN_NODE:
*alng = smod8360( el[MOON].kn);
/*
* the distance of the node is the 'orbital parameter' p = a (1-e^2);
* Our current use of the axis a is wrong, but is never used.
*/
*arad = pd[MOON].axis;
*alat = 0.0;
*alngspeed = -0.053;
break;
case TRUE_NODE: {
/* see comment 'Note 7 May 1991' above */
REAL8 ln, rn, zn,
lv, rv, zv,
l1, r1, z1,
xn, yn, xv, yv, r0, x0, y0;
helup( jd_ad + NODE_INTERVAL );
moon( &ln, &rn, &zn );
helup( jd_ad - NODE_INTERVAL );
moon( &lv, &rv, &zv );
helup( jd_ad );
if ( moonrem.calculation_time != jd_ad )
moon( &l1, &r1, &z1 );
else { /* moon is already calculated */
l1 = moonrem.lng;
r1 = moonrem.rad;
z1 = moonrem.zet;
}
rn = sqrt( rn * rn - zn * zn );
rv = sqrt( rv * rv - zv * zv );
r0 = sqrt( r1 * r1 - z1 * z1 );
xn = rn * COS8( DEGTORAD * ln );
yn = rn * SIN8( DEGTORAD * ln );
xv = rv * COS8( DEGTORAD * lv );
yv = rv * SIN8( DEGTORAD * lv );
x0 = r0 * COS8( DEGTORAD * l1 );
y0 = r0 * SIN8( DEGTORAD * l1 );
x = test_near_zero( x0 * yn - xn * y0 );
s = ( y0 * zn - z1 * yn ) / x;
c = test_near_zero( ( x0 * zn - z1 * xn ) / x );
knn = smod8360( RADTODEG * ATAN28( s, c )); /* = ATAN8( s / c ) */
x = test_near_zero( y0 * xv - x0 * yv );
s = ( yv * z1 - zv * y0 ) / x;
c = test_near_zero( ( xv * z1 - zv * x0 ) / x );
knv = smod8360( RADTODEG * ATAN28( s, c ));
*alng = smod8360( ( knv + knn ) / 2 );
/*
* the distance of the node is the 'orbital parameter' p = a (1-e^2);
* Our current use of the axis a is wrong.
*/
*arad = pd[MOON].axis;
*alat = 0.0;
*alngspeed = diff8360( knn, knv ) / NODE_INTERVAL;
}
break;
case LILITH: {
/*
* Added 22-Jun-93
* Lilith or Dark Moon is the empty focal point of the mean lunar ellipse.
* This is 180 degrees from the perihel.
* Because the lunar orbit is not in the ecliptic, it must be
* projected onto the ecliptic in the same way as the planetary orbits
* are (see for example Montenbruck, Grundlagen der Ephemeridenrechnung).
*
* We compute the MEAN Lilith, not the TRUE one which would have to be
* derived in a similar way as the true node.
* For the radius vector of Lilith we use a simple formula;
* to get a precise value, the fact that the focal point of the ellipse
* is not at the center of the earth but at the barycenter moon-earth
* would have to be accounted for.
* For the speed we always return a constant: the T term from the
* lunar perihel.
* Joelle de Gravelaine publishes in her book "Lilith der schwarze Mond"
* (Astrodata, 1990) an ephemeris which gives noon (12.00) positions
* but does not project onto the ecliptic.
* This creates deviations
*/
double arg_lat, lon, cosi;
struct elements *e = &el[MOON];
arg_lat = degnorm(e->pe - e->kn + 180.0);
cosi = COSDEG(e->in);
if (e->in == 0 || ABS8( arg_lat - 90.0 ) < TANERRLIMIT
|| ABS8( arg_lat - 270.0 ) < TANERRLIMIT ) {
lon = arg_lat;
} else {
lon = ATAN8( TANDEG( arg_lat ) * cosi );
lon = RADTODEG * lon;
if ( arg_lat > 90.0 && arg_lat < 270.0 ) lon += 180.0;
}
lon = degnorm(lon + e->kn);
*alng = lon;
*alngspeed = 0.111404; /* 6'41.05" per day */
*arad = 2 * pd[MOON].axis * e->ex;
/*
* To test Gravalaines error, return unprojected long in alat.
* the correct latitude would be:
* *alat = RADTODEG * ASIN8(SINDEG(arg_lat) * SINDEG(e->in));
*/
*alat = degnorm(arg_lat + e->kn); /* unprojected longitude, no nut */
}
break;
default:
fprintf(stderr, "calc() called with illegal planet %d\n", planet);
return ERR;
} /* end switch */
if (calc_nut)
*alng += nut;
*alng = smod8360( *alng); /* normalize to circle */
return (OK);
} /* end calc */
int rel_geo(int planet, double rau)
{
/*
* get relative earth distance in range 0..1000:
* To compute the relative distance we use fixed values of
* mimimum and maximum distance measured empirically between
* 1300 AD and 2300 AD (see helconst.c).
* This approach is certainly fine for the
* outer planets, but not the best for Sun and Moon, where it
* would be better to look at the mean anomaly, i.e. the progress
* the planet makes on it's Kepler orbit.
* Considering the low importance astrologers give to the relative
* distance, we consider the effort not worthwile.
* Now we compare real radius with longtime-averaged distances.
*/
int rgeo;
if (planet == MEAN_NODE || planet == TRUE_NODE || planet == LILITH) {
return 0;
} else {
#ifndef ASTROLOG
rgeo = 1000 * (1.0 - (rau - rmima[planet][0]) / (rmima[planet][1] - rmima[planet][0]));
#else
rgeo = 1000 * (int)(1.0 - (rau - rmima[planet][0]) / (rmima[planet][1] - rmima[planet][0]));
#endif
}
if (rgeo < 0)
rgeo = 0;
else if (rgeo > 999)
rgeo = 999;
return rgeo;
}
/******************************************************************
helio to geocentric conversion
******************************************************************/
void togeo(REAL8 lngearth,
REAL8 radearth,
REAL8 lng,
REAL8 rad,
REAL8 zet,
REAL8 *alnggeo,
REAL8 *aradgeo )
{
REAL8 r1, x, y;
r1 = sqrt( rad * rad - zet * zet );
x = r1 * COS8( DEGTORAD * lng ) - radearth * COS8( DEGTORAD * lngearth );
y = r1 * SIN8( DEGTORAD * lng ) - radearth * SIN8( DEGTORAD * lngearth );
*aradgeo = sqrt( x * x + y * y + zet * zet );
x = test_near_zero( x );
*alnggeo = smod8360( RADTODEG * ATAN28( y, x ) );
} /* end togeo */
/******************************************************************
helup()
prepares the orbital elements and the disturbation arguments for the
inner planets and the moon. helup(t) is called by hel() and by calc().
helup() returns its results in global variables.
helup() remembers the t it has been called with before and does
not recalculate its results when it is called more than once with
the same t.
******************************************************************/
void helup (REAL8 jd_ad ) /* relative julian date, ephemeris time */
{
int i;
static REAL8 thelup = HUGE; /* is initialized only once at load time */
struct elements *e = el; /* pointer to el[i] */
struct elements *ee = el; /* pointer to el[EARTH] */
struct eledata *d = pd; /* pointer to pd[i] */
REAL8 td, ti, ti2, tj1, tj2, tj3;
if ( thelup == jd_ad ) return; /* if already calculated then return */
for ( i = SUN; i <= MARS; i++, d++, e++ )
{
td = jd_ad - d->epoch;
ti = e->tj = td / 36525.0; /* julian centuries from epoch */
ti2 = ti * ti;
tj1 = ti / 3600.0; /* used when coefficients are in seconds of arc */
tj2 = ti * tj1;
tj3 = ti * tj2;
e->lg = mod8360( d->lg0 + d->lg1 * td + d->lg2 * tj2 + d->lg3 * tj3 );
/* also with moon lg1 *td is exact to 10e-8 degrees within 5000 years */
e->pe = mod8360( d->pe0 + d->pe1 * tj1 + d->pe2 * tj2 + d->pe3 * tj3 );
e->ex = d->ex0 + d->ex1 * ti + d->ex2 * ti2;
e->kn = mod8360( d->kn0 + d->kn1 * tj1 + d->kn2 * tj2 + d->kn3 * tj3 );
e->in = d->in0 + d->in1 * tj1 + d->in2 * tj2;
e->ma = smod8360( e->lg - e->pe );
if ( i == MOON ) { /* calculate ekliptic according Newcomb, APAE VI,
and nutation according Exp.Suppl. 1961, identical
with Mark Potttenger elemnut()
all terms >= 0.01" only .
The 1984 IAU Theory of Nutation, as published in
AE 1984 suppl. has not yet been implemented
because it would mean to use other elements of
moon and sun */
REAL8 mnode, mlong2, slong2, mg, sg, d2;
mnode = DEGTORAD * e->kn; /* moon's mean node */
mlong2 = DEGTORAD * 2.0 * e->lg; /* 2 x moon's mean longitude */
mg = DEGTORAD * e->ma; /* moon's mean anomaly (g1) */
slong2 = DEGTORAD * 2.0 * ee->lg; /* 2 x sun's mean longitude (L), with
the phase 180 deg earth-sun irrelevant
because 2 x 180 = 360 deg */
sg = DEGTORAD * ee->ma; /* sun's mean anomaly = earth's */
d2 = mlong2 - slong2; /* 2 x elongation of moon from sun */
meanekl = ekld[0] + ekld[1] * tj1 + ekld[2] * tj2 + ekld[3] * tj3;
ekl = meanekl +
( 9.2100 * COS8( mnode )
- 0.0904 * COS8( 2.0 * mnode )
+ 0.0183 * COS8( mlong2 - mnode )
+ 0.0884 * COS8( mlong2 )
+ 0.0113 * COS8( mlong2 + mg )
+ 0.5522 * COS8( slong2 )
+ 0.0216 * COS8( slong2 + sg ) ) / 3600.0;
nut = ( ( -17.2327 - 0.01737 * ti ) * SIN8( mnode )
+ 0.2088 * SIN8( 2.0 * mnode )
+ 0.0675 * SIN8( mg )
- 0.0149 * SIN8( mg - d2 )
- 0.0342 * SIN8( mlong2 - mnode)
+ 0.0114 * SIN8( mlong2 - mg)
- 0.2037 * SIN8( mlong2 )
- 0.0261 * SIN8( mlong2 + mg )
+ 0.0124 * SIN8( slong2 - mnode)
+ 0.0214 * SIN8( slong2 - sg)
- 1.2729 * SIN8( slong2 )
- 0.0497 * SIN8( slong2 + sg)
+ 0.1261 * SIN8( sg ) ) / 3600.0;
}
} /* for i */
/* calculate the arguments sa[] for the disturbation terms */
ti = (jd_ad - EPOCH1850) / 365.25; /* julian years from 1850 */
for ( i = 0; i < SDNUM; i++ )
sa [i] = mod8360 (sd [i].sd0 + sd [i].sd1 * ti);
/*
sa[2] += 0.3315 * SIN8 (DEGTORAD *(133.9099 + 38.39365 * el[SUN].tj));
*/
/* correction of jupiter perturbation argument for sun from Pottenger;
creates only .03" and 1e-7 rad, not applied because origin unclear */
thelup = jd_ad; /* note the last helup time */
} /* end helup() */
/******************************************************************
hel()
Computes the heliocentric positions for all planets except the moon.
The outer planets from Jupiter onwards, including Chiron, are
actually done by a subsequent call to outer_hel() which takes
exactly the same parameters.
hel() does true position relative to the mean ecliptic and equinox
of date. Nutation is not added and must be done so by the caller.
The latitude of the Sun (max. 0.5") is neglected and always returned
as zero.
return: OK or ERR
******************************************************************/
int hel( int planet, /* planet index as defined by placalc.h */
REAL8 t, /* relative juliand date, ephemeris time */
/* Now come 6 pointers to return values. */
REAL8 *al, /* longitude in degrees */
REAL8 *ar, /* radius in AU */
REAL8 *az, /* distance from ecliptic in AU */
REAL8 *alp, /* speed in longitude, degrees per day */
REAL8 *arp, /* speed in radius, AU per day */
REAL8 *azp) /* speed in z, AU per day */
{
void disturb();
REAL8 fnu();
register struct elements *e;
register struct eledata *d;
REAL8 lk = 0.0;
REAL8 rk = 0.0;
REAL8 b, h1, sini, sinv, cosi, cosu, cosv, man, truanom, esquare,
k8, u, up, v, vp;
if (planet >= JUPITER )
return ( outer_hel( planet, t, al, ar, az, alp, arp, azp ));
if (planet < SUN || planet == MOON)
return (ERR);
e = &el[planet];
d = &pd[planet];
sini = SIN8( DEGTORAD * e->in );
cosi = COS8( DEGTORAD * e->in );
esquare = sqrt( ( 1.0 + e->ex ) / ( 1.0 - e->ex ) ); /* H6 in old version */
man = e->ma;
if ( planet == EARTH ) /* some longperiodic terms in mean longitude */
man += ( 0.266 * SIN8 ( DEGTORAD * ( 31.8 + 119.0 * e->tj ) )
+ 6.40 * SIN8 ( DEGTORAD * ( 231.19 + 20.2 * e->tj ) )
+ (1.882-0.016*e->tj) * SIN8( DEGTORAD * (57.24 + 150.27 * e->tj))
) / 3600.0;
if ( planet == MARS ) /* some longperiodic terms */
man += ( 0.606 * SIN8( DEGTORAD * (212.87 + e->tj * 119.051) )
+ 52.490 * SIN8( DEGTORAD * (47.48 + e->tj * 19.771) )
+ 0.319 * SIN8( DEGTORAD * (116.88 + e->tj * 773.444) )
+ 0.130 * SIN8( DEGTORAD * (74 + e->tj * 163) )
+ 0.280 * SIN8( DEGTORAD * (300 + e->tj * 40.8) )
- ( 37.05 +13.5 * e->tj )
) / 3600.0;
u = fnu ( man, e->ex, 0.0000003 ); /* error 0.001" returns radians */
cosu = COS8( u );
h1 = 1 - e->ex * cosu;
*ar = d->axis * h1;
if ( ABS8( M_PI - u ) < TANERRLIMIT )
truanom = u; /* very close to aphel */
else
truanom = 2.0 * ATAN8( esquare * TAN8( u * 0.5 ) ); /* true anomaly, rad*/
v = smod8360( truanom * RADTODEG + e->pe - e->kn ); /* argument of latitude */
if ( sini == 0.0 || ABS8( v - 90.0 ) < TANERRLIMIT
|| ABS8( v - 270.0 ) < TANERRLIMIT ) {
*al = v;
} else {
*al = RADTODEG * ATAN8( TAN8( v * DEGTORAD ) * cosi );
if ( v > 90.0 && v < 270.0 ) *al += 180.0;
}
*al = smod8360( *al + e->kn );
sinv = SIN8( v * DEGTORAD );
cosv = COS8( v * DEGTORAD );
*az = *ar * sinv * sini;
b = ASIN8( sinv * sini ); /* latitude in radians */
k8 = cosv / COS8( b ) * sini;
up = 360.0 / d->period / h1; /* du/dt degrees/day */
if ( ABS8 ( M_PI - u ) < TANERRLIMIT )
vp = up / esquare; /* speed at aphel */
else
vp = up * esquare * ( 1 + COS8 ( truanom ) ) / ( 1 + cosu );
/* dv/dt degrees/day */
*arp = d->axis * up * DEGTORAD * SIN8( u ) * e->ex;
/* dr/dt AU/day */
*azp = *arp * sinv * sini + *ar * vp * DEGTORAD * cosv * sini; /* dz/dt */
*alp = vp / cosi * ( 1 - k8 * k8 );
/* now come the disturbations */
switch ( planet ) {
REAL8 am, mma, ema, u2;
case EARTH:
/*
* earth has some special moon values and a disturbation series due to the
* planets. The moon stuff is due to the fact, that the mean elements
* give the coordinates of the earth-moon barycenter. By adding the
* corrections we effectively reduce to the center of the earth.
* We neglect the correction in latitude, which is about 0.5", because
* for astrological purposes we want the Sun to have latitude zero.
*/
am = DEGTORAD * smod8360( el[MOON].lg - e->lg + 180.0 ); /* degrees */
mma = DEGTORAD * el[MOON].ma;
ema = DEGTORAD * e->ma;
u2 = 2.0 * DEGTORAD * (e->lg - 180.0 - el[MOON].kn); /* 2u' */
lk = 6.454 * SIN8( am )
+ 0.013 * SIN8( 3.0 * am )
+ 0.177 * SIN8( am + mma )
- 0.424 * SIN8( am - mma )
+ 0.039 * SIN8( 3.0 * am - mma )
- 0.064 * SIN8( am + ema )
+ 0.172 * SIN8( am - ema )
- 0.013 * SIN8( am - mma - ema)
- 0.013 * SIN8( u2 );
rk = 13360 * COS8( am )
+ 30 * COS8( 3.0 * am )
+ 370 * COS8( am + mma )
- 1330 * COS8( am - mma )
+ 80 * COS8( 3.0 * am - mma )
- 140 * COS8( am + ema )
+ 360 * COS8( am - ema )
- 30 * COS8( am - mma - ema)
+ 30 * COS8( u2 );
/* long periodic term from mars 15g''' - 8g'', Vol 6 p19, p24 */
lk += 0.202 * SIN8( DEGTORAD * (315.6 + 893.3 * e->tj));
disturb( earthkor, al, ar, lk, rk, man );
break;
case MERCURY: /* only normal disturbation series */
disturb( mercurykor, al, ar, 0.0, 0.0, man );
break;
case VENUS: /* some longperiod terms and normal series */
lk = (2.761 - 0.22*e->tj) * SIN8( DEGTORAD * (237.24 + 150.27 * e->tj))
+ 0.269 * SIN8( DEGTORAD * (212.2 + 119.05 * e->tj))
- 0.208 * SIN8( DEGTORAD * (175.8 + 1223.5 * e->tj));
/* make seconds */
disturb( venuskor, al, ar, lk, 0.0, man );
break;
case MARS: /* only normal disturbation series */
disturb( marskor, al, ar, 0.0, 0.0, man );
break;
} /* switch planet */
return (OK);
} /* hel */
/******************************************************************/
void disturb( k, al, ar, lk, rk, man )
register struct kor *k; /* ENDMARK-terminated array of struct kor */
REAL8 *al, /* longitude in degrees, use a pointer to return value */
*ar; /* radius in AU */
REAL8 lk, /* longitude correction in SECONDS OF ARC */
/* function can be called with an lk and rk already
!= 0, but no value is returned */
rk, /* radius correction in units of 9th place of log r */
man; /* mean anomaly of planet */
{
REAL8 arg;
while ( k->j != ENDMARK ) {
arg = k->j * sa[k->k] + k->i * man;
lk += k->lampl * COS8( DEGTORAD * ( k->lphase - arg ) );
rk += k->rampl * COS8( DEGTORAD * ( k->rphase - arg ) );
k++;
} /* while */
*ar *= EXP10 ( rk * 1.0E-9 ); /* 10^ rk */
*al += lk / 3600.0;
} /* disturb() */
/******************************************************************/
int moon(REAL8 *al, REAL8 *ar, REAL8 *az ) /* return OK or ERR */
{
REAL8 a1,a2,a3,a4,a5,a6,a7,a8,a9,c2,c4,arg,b,d,f,dgc,dlm,dpm,dkm,dls;
REAL8 ca, cb, cd, f_2d, f_4d, g1c,lk,lk1,man,ms,nib,s,sinarg,sinp,sk;
REAL8 t, tb, t2c, r2rad, i1corr, i2corr, dlid;
#ifndef ASTROLOG
int i, j;
#else
int i;
#endif
struct elements *e;
struct m45dat *mp;
# if MOON_TEST_CORR
struct m5dat *m5p;
# endif
e = &el[MOON];
t = e->tj * 36525; /* days from epoch 1900 */
/* new format table II, parameters in full rotations of 360 degrees */
r2rad = 360.0 * DEGTORAD;
tb = t * 1e-12; /* units of 10^12 */
t2c = t * t * 1e-16; /* units of 10^16 */
a1 = SIN8( r2rad * (0.53733431 - 10104982 * tb + 191 * t2c ));
a2 = SIN8( r2rad * (0.71995354 - 147094228 * tb + 43 * t2c ));
c2 = COS8( r2rad * (0.71995354 - 147094228 * tb + 43 * t2c ));
a3 = SIN8( r2rad * (0.14222222 + 1536238 * tb ));
a4 = SIN8( r2rad * (0.48398132 - 147269147 * tb + 43 * t2c ));
c4 = COS8( r2rad * (0.48398132 - 147269147 * tb + 43 * t2c ));
a5 = SIN8( r2rad * (0.52453688 - 147162675 * tb + 43 * t2c ));
a6 = SIN8( r2rad * (0.84536324 - 11459387 * tb ));
a7 = SIN8( r2rad * (0.23363774 + 1232723 * tb + 191 * t2c ));
a8 = SIN8( r2rad * (0.58750000 + 9050118 * tb ));
a9 = SIN8( r2rad * (0.61043085 - 67718733 * tb ));
dlm = 0.84 * a3 + 0.31 * a7 + 14.27 * a1 + 7.261 * a2 + 0.282 * a4
+ 0.237 * a6;
dpm = -2.1 * a3 - 2.076 * a2 - 0.840 * a4 - 0.593 * a6;
dkm = 0.63 * a3 + 95.96 * a2 + 15.58 * a4 + 1.86 * a5;
dls = -6.4 * a3 - 0.27 * a8 - 1.89 * a6 + 0.20 * a9;
dgc = (-4.318 * c2 - 0.698 * c4) / 3600.0 / 360.0; /* in revolutions */
dgc = (1.000002708 + 139.978 * dgc); /* in this form used later */
man = DEGTORAD * (e->ma + ( dlm - dpm ) / 3600.0);
/* man with periodic and secular corr. */
ms = DEGTORAD * (el[EARTH].ma + dls / 3600.0);
f = DEGTORAD * (e->lg - e->kn + ( dlm - dkm ) / 3600.0);
d = DEGTORAD * (e->lg + 180 - el[EARTH].lg + (dlm - dls) / 3600.0);
lk = lk1 = sk = sinp = nib = g1c = 0;
i1corr = 1.0 - 6.8320E-8 * t;
i2corr = dgc * dgc; /* i2 occurs only as -2, 2 */
for ( i = 0, mp = m45; i < NUM_MOON_CORR; i++, mp++ ) {
/* arg = mp->i0 * man + mp->i1 * ms + mp->i2 * f + mp->i3 * d; */
arg = mp->i0 * man;
arg += mp->i3 * d;
arg += mp->i2 * f;
arg += mp->i1 * ms;
sinarg = SIN8( arg );
/* now apply corrections due to changes in constants;
we correct only terms in l' (i1) and F (i2), not in l (i0), because
the latter are < 0.05"
We don't apply corrections for cos(arg), i.e. for parallax
*/
if (mp->i1 != 0) { /* i1 can be -2, -1, 0, 1, 2 */
sinarg *= i1corr;
if (mp->i1 == 2 || mp->i1 == -2)
sinarg *= i1corr;
}
if (mp->i2 != 0) /* i2 can be -2, 0, 2 */
sinarg *= i2corr;
lk += mp->lng * sinarg;
sk += mp->lat * sinarg;
sinp += mp->par * COS8 (arg) ;
} /* for i */
# if MOON_TEST_CORR /* optionally add more lunar longitudes */
for ( m5p = m5; m5p->i0 != 99; m5p++ ) { /* i0 = 99 is end mark */
arg = m5p->i0 * man + m5p->i1 * ms + m5p->i2 * f + m5p->i3 * d;
sinarg = SIN8( arg );
lk1 += m5p->lng * sinarg;
}
# endif
/*now compute some planetary terms in longitude, list i delta;
we take all > 0.5" and neglect secular terms in the arguments. These
produce phase errors > 10 degrees only after 3000 years.
*/
dlid = 0.822 * SIN8 ( r2rad * (0.32480 - 0.0017125594 * t ));
dlid += 0.307 * SIN8 ( r2rad * (0.14905 - 0.0034251187 * t ));
dlid += 0.348 * SIN8 ( r2rad * (0.68266 - 0.0006873156 * t ));
dlid += 0.662 * SIN8 ( r2rad * (0.65162 + 0.0365724168 * t ));
dlid += 0.643 * SIN8 ( r2rad * (0.88098 - 0.0025069941 * t ));
dlid += 1.137 * SIN8 ( r2rad * (0.85823 + 0.0364487270 * t ));
dlid += 0.436 * SIN8 ( r2rad * (0.71892 + 0.0362179180 * t ));
dlid += 0.327 * SIN8 ( r2rad * (0.97639 + 0.0001734910 * t ));
*al = smod8360(e->lg + (dlm + lk + lk1 + dlid) / 3600.0); /* without nutation */
/* solar Terms in latitude Nibeta */
f_2d = f - 2.0 * d;
f_4d = f - 4.0 * d;
nib += -526.069 * SIN8( f_2d );
nib += -3.352 * SIN8( f_4d );
nib += 44.297 * SIN8( man + f_2d );
nib += -6.000 * SIN8( man + f_4d );
nib += 20.599 * SIN8(-man + f );
nib += -30.598 * SIN8(-man + f_2d );
nib += -24.649 * SIN8(-2*man + f );
nib += -2.000 * SIN8(-2*man + f_2d );
nib += -22.571 * SIN8( ms + f_2d );
nib += 10.985 * SIN8( -ms + f_2d );
/* new gamma1C from 29 Jul 88, all terms > 0.4 " in table III, code 2 */
g1c += -0.725 * COS8( d);
g1c += 0.601 * COS8( 2 * d);
g1c += 0.394 * COS8( 3 * d);
g1c += -0.445 * COS8( man + 4 * d);
g1c += 0.455 * COS8( man + 1 * d);
g1c += 5.679 * COS8( 2 * man - 2 * d);
g1c += -1.300 * COS8( 3 * man );
g1c += -1.302 * COS8( ms );
g1c += -0.416 * COS8( ms - 4 * d);
g1c += -0.740 * COS8( 2 * ms - 2 * d);
g1c += 0.787 * COS8( man + ms + 2 * d);
g1c += 0.461 * COS8( man + ms );
g1c += 2.056 * COS8( man + ms - 2 * d);
g1c += -0.471 * COS8( man + ms - 4 * d);
g1c += -0.443 * COS8( -man + ms + 2 * d);
g1c += 0.679 * COS8( -man + ms );
g1c += -1.540 * COS8( -man + ms - 2 * d);
s = f + sk / 3600.0 * DEGTORAD;
ca = 18519.7 + g1c;
cb = -0.000336992 * ca * dgc * dgc * dgc;
cd = ca / 18519.7;
# ifdef MS_C
/*
* Microsoft C 5.0 runs out of heap space with this expression.
* What a shit compiler!
*/
b = ca * SIN8( s ) * dgc;
b += cb * SIN8( 3.0 * s );
b += cd * nib;
b = b / 3600.0;
# else
b = ( ca * SIN8( s ) * dgc + cb * SIN8( 3.0 * s ) + cd * nib ) / 3600.0;
# endif
/* we neglect the planetary terms in latitude, code 4 in table III */
sinp = ( sinp + 3422.451);
/* Improved lunar ephemeris and APAE until ca. 1970 had here
3422.54 as constant of moon's sine parallax.
The difference can be applied by direct addition of 0.089" to
our parallax results.
To get the radius in A.U. from the sine parallax,
we use 1964 IAU value 8.794" for solar parallax.
sinp is still in seconds of arc.
To calculate moon parallax in " it would be:
p = sinp ( 1 + sinp * sinp * 3.917405E-12)
based on the formula p = sinp + 1/6 sinp^3
and taking into account the conversion of " to radians.
The semidiameter of the moon is: (Expl.Suppl. 61, p 109)
s = 0.0796 + 0.272446 * p
*/
*ar = 8.794 / sinp;
*az = *ar * SIN8( DEGTORAD * b );
return (OK);
} /* end moon() */
/******************************************************************/
REAL8 fnu(REAL8 t,REAL8 ex,REAL8 err )
/* solution of the kepler equation, return rad*/
/* t = mean anomaly in degrees */
/* ex = excentricity of orbit */
/* err = maximum error in degrees */
{
REAL8 u0, delta;
t *= DEGTORAD;
u0 = t;
err *= DEGTORAD;
delta = 1;
while ( ABS8( delta ) >= err ) {
delta = ( t + ex * SIN8( u0 ) - u0 ) / ( 1 - ex * COS8( u0 ) );
u0 += delta;
}
return( u0 );
} /* end fnu() */
/************************************************************************
outer_hel()
Computes the position of Jupiter, Saturn, Uranus, Neptune, Pluto and
Chiron by reading our stored ephemeris in steps of 80 (!) days and
applying a high order interpolation to it. The interpolation errors are
less than 0.01" seconds or arc.
The stored ephemeris is packed in a special format consisting of
32 bit numbers; it has been created on the Astrodienst Unix system
by numerical integration with routines provided originally by Marc
Pottenger, USA, which we improved for better long term precision.
Because the Unix system uses a different byte order than the MSDOS
systems, the bytes must be reordered for MSDOS after reading from
the binary files.
outer_hel() takes the same parameters as hel().
It returns the same type of values.
The access to the ephemeris files is done in the functions chi_file_posit()
and lrz_file_posit().
****************************************************************************/
int outer_hel( int planet, REAL8 jd_ad, REAL8 *al, REAL8 *ar, REAL8 *az,
REAL8 *alp, REAL8 *arp, REAL8 *azp )
/* jd_ad Astrodienst relative Julian ephemeris time */
{
static FILE *outerfp, *chironfp;
static double last_j0_outer = HUGE;
static double last_j0_chiron = HUGE;
static long icoord[6][5][3], chicoord[6][3];
REAL8 j0, jd, jfrac;
REAL8 l[6], r[6], z[6];
#ifndef ASTROLOG
int i, n, order, p;
#else
int n, order, p;
#endif
if (planet < JUPITER || planet > PLUTO && planet != CHIRON)
return (ERR);
jd = jd_ad + JUL_OFFSET;
j0 = floor ( (jd - 0.5) / EPHE_STEP) * EPHE_STEP + 0.5;
jfrac = (jd - j0) / EPHE_STEP;
if (planet == CHIRON ) {
if (last_j0_chiron != j0) {
for ( n = 0; n < 6; n++) { /* read 6 days */
jd = j0 + (n - 2) * EPHE_STEP;
if (chi_file_posit (jd, &chironfp) != OK) return (ERR);
fread (&chicoord[n][0], sizeof(long), 3, chironfp);
# if MSDOS
longreorder (&chicoord[n][0], 3 * sizeof(long));
# endif
}
last_j0_chiron = j0;
}
for ( n = 0; n < 6; n++) {
l[n] = chicoord[n][0] / DEG2MSEC;
r[n] = chicoord[n][1] / AU2INT;
z[n] = chicoord[n][2] / AU2INT;
} /* for n */
} else { /* an outerplanet */
if (last_j0_outer != j0) { /* read all 5 planets for 6 steps */
for ( n = 0; n < 6; n++) {
jd = j0 + (n - 2) * EPHE_STEP;
if (lrz_file_posit (jd, &outerfp) != OK) return (ERR);
fread (&icoord[n][0][0], sizeof(long), 15, outerfp);
# if MSDOS
longreorder (&icoord[n][0][0], 15 * sizeof(long));
# endif
}
last_j0_outer = j0;
}
p = planet - JUPITER;
for ( n = 0; n < 6; n++) {
l[n] = icoord[n][p][0] / DEG2MSEC;
r[n] = icoord[n][p][1] / AU2INT;
z[n] = icoord[n][p][2] / AU2INT;
} /* for n */
}
if (planet > SATURN)
order = 3;
else
order = 5;
inpolq(2, order, jfrac, l, al, alp);
*alp /= EPHE_STEP;
inpolq(2, order, jfrac, r, ar, arp);
*arp /= EPHE_STEP;
inpolq(2, order, jfrac, z, az, azp);
*azp /= EPHE_STEP;
return OK;
}
/*****************************************************
quicker Everett interpolation, after Pottenger
version 9 Jul 1988 by Alois Treindl
return OK or ERR.
*****************************************************/
int inpolq(n,o,p,x,axu,adxu)
int n, /* interpolate between x[n] and x[n-1], at argument n+p */
o; /* order of interpolation, maximum 5 */
double p, /* argument , intervall [0..1] */
x[], /* array of function values, x[n-o]..x[n+o] must exist */
*axu, /* pointer for storage of result */
*adxu; /* pointer for storage of dx/dt */
{
static double q,q2,q3,q4,q5,
p2,p3,p4,p5,
u,u0,u1,u2;
static double lastp = 9999;
double dm2,dm1,d0,dp1,dp2,
d2m1,d20,d2p1,d2p2,
d30,d3p1,d3p2,
d4p1,d4p2;
double offset = 0.0;
if (lastp != p) {
q=1.0-p;
q2 = q*q;
q3 = (q+1.0)*q*(q-1.0)/6.0; /* q - 1 over 3; u5 */
p2 = p*p;
p3 = (p+1.0)*p*(p-1.0)/6.0; /* p - 1 over 3; u8 */
u = (3.0*p2-1.0)/6.0;
u0 = (3.0*q2-1.0)/6.0;
q4 = q2*q2; /* f5 */
p4 = p2*p2; /* f4 */
u1 = (5.0*p4-15.0*p2+4.0)/120.0; /* u1 */
u2 = (5.0*q4-15.0*q2+4.0)/120.0; /* u2 */
q5 = q3*(q+2.0)*(q-2.0)/20.0; /* q - 2 over 5; u6 */
p5 = (p+2.0)*p3*(p-2.0)/20.0; /* p - 2 over 5; u9 */
lastp = p;
}
dm1 = x[n] - x[n-1];
if (dm1 > 180.0) dm1 -= 360.0;
if (dm1 < -180.0) dm1 += 360.0;
d0 = x[n+1] - x[n];
if (d0 > 180.0) {
d0 -= 360.0;
offset = 360.0;
}
if (d0 < -180.0) {
d0 += 360.0;
offset = -360.0;
}
dp1 = x[n+2] - x[n+1];
if (dp1 > 180.0) dp1 -= 360.0;
if (dp1 < -180.0) dp1 += 360.0;
d20 = d0 - dm1; /* f8 */
d2p1 = dp1 - d0; /* f9 */
/* Everett interpolation 3rd order */
*axu = q*(x[n] + offset) + q3*d20
+ p*x[n+1] + p3*d2p1;
*adxu = d0 + u*d2p1 - u0*d20;
if ( o > 3 ) { /* 5th order */
dm2 = x[n-1] - x[n-2];
if (dm2 > 180.0) dm2 -= 360.0;
if (dm2 < -180.0) dm2 += 360.0;
dp2 = x[n+3] - x[n+2];
if (dp2 > 180.0) dp2 -= 360.0;
if (dp2 < -180.0) dp2 += 360.0;
d2m1 = dm1 - dm2;
d2p2 = dp2 - dp1;
d30 = d20 - d2m1;
d3p1 = d2p1 - d20;
d3p2 = d2p2 - d2p1;
d4p1 = d3p1 - d30; /* f7 */
d4p2 = d3p2 - d3p1; /* f */
*axu += p5*d4p2 + q5*d4p1;
*adxu += u1*d4p2 - u2*d4p1;
}
return (OK);
} /* end inpolq() */
/*********************************************************
position lrz file at proper position for julian date jd;
Return OK or ERR. Version for outer planets.
The path where the ephemeris files are looked for is defined
by ephe_path.
**********************************************************/
int lrz_file_posit (jd, lrzfpp)
double jd; /* full Julian day number, not Astrodienst relative */
FILE **lrzfpp; /* pointer to file pointer; this function
opens or closes the ephemeris file, and caller
should keep it open while using it. The caller
should close it when he is finished with using
the placalc() package. */
{
int filenr;
long posit, jlong;
static char fname[80];
static int open_lrznr = -10000; /* local memory to remember whether
an already open file is the one with
the correct number for this date */
#ifndef ASTROLOG
jlong = floor (jd);
filenr = jlong / EPHE_DAYS_PER_FILE;
#else
jlong = (long)floor (jd);
filenr = (int)(jlong / EPHE_DAYS_PER_FILE);
#endif
if (jlong < 0 && filenr * EPHE_DAYS_PER_FILE != jlong) filenr--;
posit = jlong - filenr * EPHE_DAYS_PER_FILE;
posit = (posit / (int) EPHE_STEP) * EPHE_OUTER_BSIZE;
if (*lrzfpp == NULL || open_lrznr != filenr) { /* no or wrong open file */
open_lrznr = -10000;
if (filenr >= 0)
sprintf (fname, "%s%s%s%d", ephe_path, DIR_GLUE, EPHE_OUTER, filenr);
else
sprintf (fname, "%s%s%sM%d", ephe_path, DIR_GLUE, EPHE_OUTER, -filenr);
if (*lrzfpp == NULL)
*lrzfpp = fopen (fname, OPEN_EPHE); /* open for read */
else
*lrzfpp = freopen (fname, OPEN_EPHE, *lrzfpp);
if (*lrzfpp == NULL) {
if (placalc_err_text != NULL)
sprintf (placalc_err_text,"lrz_file_posit: file %s does not exist", fname);
else
fprintf (stderr,"lrz_file_posit: file %s does not exist\n", fname);
return (ERR);
}
open_lrznr = filenr;
}
if (fseek (*lrzfpp, posit, 0) == 0)
return (OK);
if (placalc_err_text != NULL)
sprintf (placalc_err_text,"lrz_file_posit: fseek error %s posit %ld", fname, posit);
else
fprintf (stderr,"lrz_file_posit: fseek error %s posit %ld\n", fname, posit);
return (ERR); /* this fseek error occurs only with incomplete files */
} /* end lrz_file_posit */
/*********************************************************
position chiron file at proper position for julian date jd;
Return OK or ERR. Version for Chiron.
Sister function to lrz_file_posit().
**********************************************************/
int chi_file_posit (jd, lrzfpp)
double jd; /* full Julian day number, not Astrodienst relative */
FILE **lrzfpp; /* pointer to file pointer; this function
opens or closes the ephemeris file, and caller
should keep it open while using it */
{
int filenr;
long posit, jlong;
char fname[80];
static int open_lrznr = -10000; /* local memory to remember whether
an already open file is the one with
the correct number for this date */
#ifndef ASTROLOG
jlong = floor (jd);
filenr = jlong / EPHE_DAYS_PER_FILE;
#else
jlong = (long)floor (jd);
filenr = (int)(jlong / EPHE_DAYS_PER_FILE);
#endif
if (jlong < 0 && filenr * EPHE_DAYS_PER_FILE != jlong) filenr--;
posit = jlong - filenr * EPHE_DAYS_PER_FILE;
posit = (posit / (int) EPHE_STEP) * EPHE_CHIRON_BSIZE;
if (*lrzfpp == NULL || open_lrznr != filenr) { /* no or wrong open file */
open_lrznr = -10000;
if (filenr >= 0)
sprintf (fname, "%s%s%s%d", ephe_path, DIR_GLUE, EPHE_CHIRON, filenr);
else
sprintf (fname, "%s%s%sM%d", ephe_path, DIR_GLUE, EPHE_CHIRON, -filenr);
if (*lrzfpp == NULL)
*lrzfpp = fopen (fname, OPEN_EPHE); /* open for read */
else
*lrzfpp = freopen (fname, OPEN_EPHE, *lrzfpp); /* open for read */
if (*lrzfpp == NULL) {
if (placalc_err_text != NULL)
sprintf (placalc_err_text,"chi_file_posit: file %s does not exist", fname);
else
fprintf (stderr,"chi_file_posit: file %s does not exist\n", fname);
return (ERR);
}
open_lrznr = filenr;
}
if (fseek (*lrzfpp, posit, 0) == 0)
return (OK);
if (placalc_err_text != NULL)
sprintf (placalc_err_text,"chi_file_posit: fseek error %s posit %ld", fname, posit);
else
fprintf (stderr,"chi_file_posit: fseek error %s posit %ld\n", fname, posit);
return (ERR); /* this fseek error occurs only with incomplete files */
} /* end chi_file_posit */
/***********************************************************************/
REAL8 fraction (REAL8 x) /* positive fraction: 3.4 -> 0.4, -3.7 -> 0.7 */
{
return (x - floor (x));
}
/***********************************************************
function sidtime (t): returns sidereal time at greenwich;
Parameters differ from ASYS version! after AESuppl. 1961, page 75
version 24-oct-87
***********************************************************/
REAL8 sidtime (REAL8 jd_ad, REAL8 ecl, REAL8 nuta)
/* jd_ad relative julian date */
/* ecl, nuta ecliptic and nutation of date, in degrees */
{
REAL8 tj, sec, x;
tj = (jd_ad + 18262.0) / 36525.0; /* julian centuries from epoch 1900.0 */
sec = 23925.836 + 8640184.542 * tj + 0.0929 * tj * tj;
x = sec / 3600.0 / 24.0 + fraction (jd_ad - 0.5)
+ nuta / 360.0 * COS8 (DEGTORAD * ecl);
return fraction(x) * 24.0;
}
/******************************************************************/
REAL8 smod8360( REAL8 x ) /* x MOD 360.0, so that x in 0..<360 */
{
while ( x >= 360.0 ) x -= 360.0;
while ( x < 0.0) x += 360.0;
return x;
} /* smod8360 */
/******************************************************************/
REAL8 mod8360( REAL8 x ) /* x MOD 360.0, so that x in 0..360 */
{
if ( x >= 0 && x < 360.0 ) return( x );
return( x - 360.0 * floor ( x / 360.0 ) );
} /* mod8360 */
/******************************************************************/
REAL8 diff8360 (REAL8 a, REAL8 b)
/* a - b on a 360 degree circle, result -180..180*/
{
REAL8 d;
d = a - b;
if ( d >= 180.0 ) return( d - 360.0 );
if ( d < -180.0 ) return( d + 360.0 );
return( d );
} /* diff8360 */
/******************************************************************/
REAL8 test_near_zero(REAL8 x )
{
if ( ABS8( x ) >= NEAR_ZERO ) return( x );
if ( x < 0 ) return( -NEAR_ZERO );
return( NEAR_ZERO );
} /* test_near_zero */
# if MSDOS
/********************************************************************/
#ifndef ASTROLOG
longreorder (UCHAR *p, int n)
#else
void longreorder (UCHAR *p, int n)
#endif
/* p points to memory filled with long values; for
each of the values the seqeuence of the four bytes
has to be reversed, to translate HP-UX and VAX
ordering to MSDOS/Turboc ordering */
{
int i;
unsigned char c0, c1, c2, c3;
for (i = 0; i < n; i += 4, p += 4) {
c0 = *p;
c1 = *(p + 1);
c2 = *(p + 2);
c3 = *(p + 3);
*p = c3;
*(p + 1) = c2;
*(p + 2) = c1;
*(p + 3) = c0;
}
}
# endif
/*
* get the planet index for an AFL letter
* returns -1 if the letter does not correspond to a planet.
*/
int afl2planet(int afl)
{
int p;
switch (afl) {
case AFL_SUN : p = SUN; break;
case AFL_MON : p = MOON; break;
case AFL_MER : p = MERCURY; break;
case AFL_VEN : p = VENUS; break;
case AFL_MAR : p = MARS; break;
case AFL_JUP : p = JUPITER; break;
case AFL_SAT : p = SATURN; break;
case AFL_URA : p = URANUS; break;
case AFL_NEP : p = NEPTUNE; break;
case AFL_PLU : p = PLUTO; break;
case AFL_MNODE : p = MEAN_NODE; break;
case AFL_TNODE : p = TRUE_NODE; break;
case AFL_CHI : p = CHIRON; break;
case AFL_LIL : p = LILITH; break;
case AFL_AC : p = AC; break;
case AFL_MC : p = MC; break;
default : p = -1; break;
}
return p;
}
/*******************************************************************
precession direction cosines from equator of date to 1950.0
correct non-symmetric version from Suppl. 1961, p 30
and AA (Astr.Almanach) 1983, p B18
(pre-1984 precession must be used for transformation of Vol.22 data!)
********************************************************************/
void getdc50(double j, double dceqdt50[3][3])
{
double t,t2,t3;
double zeta, zet, th, sinz0, cosz0, sinz, cosz, sinth, costh;
t=(j-2433282.423)/36524.22;
t2=t*t;
t3=t2*t;
zeta = (0.6402633 * t + 0.0000839 * t2 + 0.0000050 * t3) * DEGTORAD;
zet = zeta + 0.0002197 * t2 * DEGTORAD;
th = (0.5567376 * t - 0.0001183 * t2 - 0.0000117 * t3) * DEGTORAD;
cosz0 = cos(zeta);
sinz0 = sin(zeta);
cosz = cos(zet);
sinz = sin(zet);
costh = cos(th);
sinth = sin(th);
dceqdt50[0][0] = cosz0 * costh * cosz - sinz0 * sinz; /* Xx */
dceqdt50[1][0] = -sinz0 * costh * cosz - cosz0 * sinz; /* Yx */
dceqdt50[2][0] = -sinth * cosz; /* Zx */
dceqdt50[0][1] = cosz0 * costh * sinz + sinz0 * cosz; /* Xy */
dceqdt50[1][1] = -sinz0 * costh * sinz + cosz0 * cosz; /* Yy */
dceqdt50[2][1] = -sinth * sinz; /* Zy */
dceqdt50[0][2] = cosz0 * sinth; /* Xz */
dceqdt50[1][2] = -sinz0 * sinth; /* Yz */
dceqdt50[2][2] = costh; /* Zz */
}
void to_mean_ekl (double jd, double xyz[], double lrz[])
/*
* jd = absolute julian day
* xyz[0..2] array with x, y, z equator 1950.0
* Transform equatorial coordinates 1950.0
* to ecliptic coordinates mean equinox of date.
* Return values are stored in lrz[0..2]
* as lrz[0] = mean longitude, lrz[1] = radius, lrz[2] = r * sin(lat).
*
* This function is not used within placalc itself and can be removed;
* it was used to transform the coordinates from the numerical integration
* program into the format as stored in the ephemeris files.
*/
{
double ex, ey, ez, ex0, ey0, ez0, ix, iy, iz, il, ir;
double cosobl, sinobl;
double ti, tj1, tj2;
double dceqdt50[3][3];
getdc50(jd, dceqdt50); /* calc precession matrix to equator of date */
ti = (jd - 2415020) / 36525.0; /* julian centuries from 1900 */
tj1 = ti / 3600.0;
tj2 = ti * tj1;
/* should agree with what is in ekld[], see helconst.c */
meanekl = 23.452294 - 46.845 * tj1 -0.0059 * tj2 + 0.00181 * tj2 * ti;
ex0 = xyz[0];
ey0 = xyz[1];
ez0 = xyz[2];
ex=dceqdt50[0][0]*ex0+dceqdt50[1][0]*ey0+dceqdt50[2][0]*ez0;
ey=dceqdt50[0][1]*ex0+dceqdt50[1][1]*ey0+dceqdt50[2][1]*ez0;
ez=dceqdt50[0][2]*ex0+dceqdt50[1][2]*ey0+dceqdt50[2][2]*ez0;
/* now we have equator of date and go to mean ekl of date */
cosobl = cos(meanekl * DEGTORAD);
sinobl = sin(meanekl * DEGTORAD);
ix = ex;
iy = ey * cosobl + ez * sinobl;
iz = -ey * sinobl + ez * cosobl;
/* convert xyz to longitude = il and radius = ir */
ir = sqrt(ix * ix + iy * iy + iz * iz);
il = atan2(iy, ix) * RADTODEG; /* returns range -pi .. pi */
if ( il < 0) il += 360.0;
lrz[0] = il;
lrz[1] = ir;
lrz[2] = iz;
}
#endif /* PLACALC */
#ifdef ASTROLOG
/* End contents of placalc.c */
#endif