home *** CD-ROM | disk | FTP | other *** search
/ Collection of Education / collectionofeducationcarat1997.iso / SCIENCE / OPT312.ZIP / OPTC406.EQU < prev    next >
Text File  |  1993-12-04  |  2KB  |  18 lines

  1. "AST1CAL3 EQUATION VARIABLE","12-04-1993","14:43:13"
  2. "OBJECT_DISTANCE=S[O]+(1-SIGN(ABS(S[O])))*N[1]*R*S[I]/(S[I]*(N[2]-N[1])-N[2]*R) IMAGE_DISTANCE=S[I]+(1-SIGN(ABS(S[I])))*N[2]*R*S[O]/(S[O]*(N[2]-N[1])-N[1]*R) INDEX_1=N[1]+(1-SIGN(ABS(N[1])))*N[2]*S[O]/(S[I]+1E-30)*(S[I]-R)/(S[O]+R+1E-30) INDEX_2=N[2]+(1-SIGN(ABS(N[2])))*N[1]*S[I]/(S[O]+1E-30)*(S[O]+R)/(S[I]-R+1E-30) RADIUS=R+(1-SIGN(ABS(R)))*(N[2]-N[1])/(N[1]/(S[O]+1E-30)+N[2]/(S[I]+1E-30))"
  3. "SPHERICAL REFRACTING SURFACES, PARAXIAL RAYS.                  A diagram of the Problem is shown below. Surface is represented by 's'.                                 s                                                                          A· o·                S = source             N[1] = index              L[O]  ·    s  ·  · L[I]        V = vertex of surface         outside    S    .            s   R·    ·          P = image              N[2] = index        ·· · · · · · ·o· · · o · · ·o P     L[O] = distance S to A        inside                     V|s    C       |       L[I] = distance A to P                           N[1]     | s      N[2] |       S[O] = distance S to vertex V                             |   s         |       S[I] = distance vertex V to image P        |----S[O]------|----S[I]-----|       C = center of sphere  R = radius curvat.                                               (c) Copyright PCSCC, Inc., 1993  Sign Convention:  S[O] + means its left of vertex V                                               S[I] + means its right  of vertex V                                             R    + means center C is right of V                           *** Answer(s) to problem ***                                                    Variables are set to proper values at entry.  Note, value of unknown should be  set to 0.0.  Enter any 4 of 5 knowns, program calculates missing (=0) one.      S[I] = -11.2. Image is virtual and to left of V.  Type any key to exit.                        ||The input end of a wide glass (Ng=1.6) fiber with convex       hemisphere of 1.5 cm radius is dipped in water (Nw=1.32). (a) If a point source is located 4 cm to the left of the vertex, where will its image be?                   Type comma key to see answer. Type (F2) to return to application file."
  4. 10
  5. 4,0,""
  6. -11.16279069767442,0,""
  7. 1.32,0,""
  8. 1.6,0,""
  9. 1.5,0,""
  10. 4,0,""
  11. 1.6,0,""
  12. 1.32,0,""
  13. 0,0,""
  14. 1.5,0,""
  15. 1
  16. 0
  17. 0
  18.