home *** CD-ROM | disk | FTP | other *** search
/ Collection of Education / collectionofeducationcarat1997.iso / SCIENCE / OPT312.ZIP / OPTC409.EQU < prev    next >
Text File  |  1994-02-16  |  2KB  |  17 lines

  1. "AST3CAL3 EQUATION VARIABLE","02-16-1994","18:18:10"
  2. "OBJECT_DISTANCE=F[O]+(1-SIGN(ABS(F[O])))*N[1]*R/((N[2]-N[1])+1E-30) IMAGE_DISTANCE=1/1E-30 INDEX_1=N[1]+(1-SIGN(ABS(N[1])))*N[2]*F[O]/(F[O]+R+1E-30) INDEX_2=N[2]+(1-SIGN(ABS(N[2])))*N[1]/(F[O]+1E-30)*(F[O]+R) RADIUS=R+(1-SIGN(ABS(R)))*(N[2]-N[1])*F[O]/(N[1]+1E-30)"
  3. "SPHERICAL REFRACTING SURFACES, OBJECT FOCAL LENGTH.            A diagram of the Problem is shown below. Surface is represented by 's'.                                 s                                                                         A · o<··········∞     F = object focus       N[1] = index              L[O]  ·    s  ·    L[I]        V = vertex of sphere          outside    F    .            s   R·               P = image at ∞         N[2] = index        ·· · · · · · ·o· · · o   <─ rays    L[O] = distance F to sphere   inside                     V|s    C               L[I] = ∞                                         N[1]     | s      N[2]         F[O] = distance S to vertex                               |   s<··········∞     F[I] = ∞                                   |----F[O]------|<-----F[I]-----∞     C = center of sphere  R = radius curvat.                                               (c) Copyright PCSCC, Inc., 1993  Sign Convention:  F[O] + means its left of vertex V                                               F[I] = ∞ is always to right of vertex V                                         R    + means center C is right of V                           *** Answer(s) to problem ***                                                    Variables are set to proper values at entry.  Note, value of unknown should be  set to 0.0.  Enter any 3 of 4 knowns, program calculates missing (=0) one.      F[O] = 6.88. Image is real and to right of V.  Type any key to exit.                           || What is the radius of curvature of a glass fiber (Ng=1.48)    required to focus light rays 95 cm in front of its spherical interface in a     non-aqueous media of isopropanol (Nm=1.38)?                                        Type comma key to see answer. Type (F2) to return to application file."
  4. 9
  5. 95,0,""
  6. 1D+30,0,""
  7. 1.38,0,""
  8. 1.48,0,""
  9. 6.884057971014493,0,""
  10. 95,0,""
  11. 1.48,0,""
  12. 1.38,0,""
  13. 0,0,""
  14. 1
  15. 0
  16. 0
  17.