home *** CD-ROM | disk | FTP | other *** search
/ Collection of Education / collectionofeducationcarat1997.iso / SCIENCE / OPT312.ZIP / OPTC423.EQU < prev    next >
Text File  |  1994-07-20  |  2KB  |  15 lines

  1. "AST3CAL3 EQUATION VARIABLE","07-20-1994","20:49:33"
  2. "FOCAL_LENGTH=F+(1-SIGN(ABS(F)))*S[O]*S[I]/NZE(S[O]+S[I]) IMAGE_DISTANCE=S[I]+(1-SIGN(ABS(S[I])))*S[O]*F/NZE(S[O]-F) OBJECT_DISTANCE=S[O]+(1-SIGN(ABS(S[O])))*F*S[I]/(S[I]-F) TRANSVERSE_MAGNIFICATION=-IMAGE_DISTANCE/NZE(OBJECT_DISTANCE)"
  3. "THIN LENS IMAGERY, MAGNIFICATION, OBJECT, IMAGE DISTANCES.     A summary of object/image properties for concave and convex lenses follows.           (enter 2 of 3 values and leave unknown as 0, program will calculate.)     Lens   OBJECT         <-------------------- IMAGE ------------------->                 Location       Type       Location         Orient.   rel. size                                                                                           CNCV   anywhere       virtual    |S[I]<|F|        erect     minfied                                                                                             CNVX   ∞>S[O]>2*F     real       F<S[I]<2*F       invert.   minified            CNVX   S[O]=2*F       real       S[I]=2*F         invert.   same size           CNVX   F<S[O]<2*F     real       ∞>S[I]>2*f       invert.   magnified           CNVX   S[O]=F                      ±∞                                           CNVX   S[O]<F         virtual    |S[I]|>S[O]      erect     magnified                                      F = focal length                                                 Transverse magnification: M[T] < 0 inverted |M[T]| < 1 minified     *** Answer(s) to problem ***                              (c) PCSCC, Inc., 1993 (a) Set F=0, S[I]=8 and S[O]=38. F=6.61 and M[T]=-.281. Now type (space)        F=focal_length (enter), set S[I]=2 and S[O]=0. Object distance is -2.87.  M[T]= 0.697. (b) Object is virtual (2.87 in. on other side of lens),erect and minifiedby 0.697.      ||An object positioned 38 inches to the right of a positive lens is imaged 8 inches to its left. (a) Where will the object appear if its image   is moved to 2 inches from the lens? (b) Describe it.                                Type comma key to see answer. Type (F2) to return to application file."
  4. 7
  5. 6.608695652173913,0,""
  6. 2,0,""
  7. -2.867924528301887,0,""
  8. .6973684210526316,0,""
  9. 6.608695652173913,0,""
  10. 0,0,""
  11. 2,0,""
  12. 1
  13. 0
  14. 0
  15.