home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Freelog 65
/
Freelog065.iso
/
BAS
/
Bureautique
/
Gnumeric
/
gnumeric-1.3.92-rc1.exe
/
analysis-statistical.xml
< prev
next >
Wrap
Text File
|
2004-11-01
|
72KB
|
1,822 lines
<sect1 id="sect-analysis-statistical">
<title>Statistical Analysis</title>
<para>
The data analysis tools package contains tools for statistical
data analysis and data sampling. To use
these tools select the <guilabel>Data Analysis...</guilabel> item
in the <guilabel>Tools</guilabel> menu. This yields a list of
tools to choose from. Select one of the tools from the list and
press the OK button or double-click on the tool. The tools are
described below.
</para>
<figure id="fig-statistical-analysistools">
<title>Statistical Analysis Tools </title>
<screenshot>
<screeninfo>Gnumeric's Data Analysis Tools</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-tools.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the statistical analysis tools
available through the "Tools" menu.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>
All tools have the same output options (see <xref
linkend="fig-outputoptions" />). The results can be printed into a
new sheet, into a new workbook, or into a given output range on a
sheet of the current workbook. To select the output method select
one of the radio buttons inside the <guilabel>Output</guilabel>
frame. If you have chosen <quote><guibutton>Output
Range</guibutton></quote> you must also enter a single range in
the entry field.
</para>
<para>Select the <guilabel>Autofit
Columns</guilabel> option to automatically adjust the widths of
the columns in the output range.
</para>
<note>
<para>
If the chosen output range is too small, some of the results
will be lost.
</para>
</note>
<note>
<para>
The old data in the output range is deleted and cannot be
recovered.
</para>
</note>
<figure id="fig-outputoptions">
<title>Common output options of the data analysis tools</title>
<screenshot id="outputoptions-shot">
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-outputoptions.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output options dialog used by
the statistical analysis tools.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>
To enter a range into an entry field, you can either type the
range specification into the text field, or click in the text
field and then select the range on the sheet (see <xref
linkend="specifyingranges" />).
</para>
<figure id="specifyingranges">
<title>Specifying Ranges</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ranges.png" format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the input range text box used by the
statistical analysis tools.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>
Some entry fields accept lists of ranges. To enter these lists,
select one range, type a comma, and then select the next range. At
any time, you may switch to another sheet of the workbook.
</para>
<sect2 id="anova">
<title>Analysis of Variance</title>
<sect3 id="anova-single-factor-tool">
<title>ANOVA: Single Factor Tool</title>
<para>
Use this tool to perform a single factor analysis of the
variances of given variables. The variables are specified by
the <quote><guilabel>Input Range:</guilabel></quote> entry.
The given range can be grouped into the variables either by
columns, by rows or by areas. The
<quote><guilabel>Alpha:</guilabel></quote> entry specifies the
significance level which is by default 5%.
</para>
<para>If the first row or first column of the given range, or the
first field of each area contains labels, select the <quote><guibutton>Labels
</guibutton></quote> option. The names of
the variables will be included in the output table.</para>
<para>The results of this analysis of variance are presented in
a standard ANOVA table. The <quote><guilabel>F critical</guilabel></quote>
value is the largest value of F that is statistically significant
using the given significance level (<quote><guilabel>Alpha</guilabel></quote>).</para>
<para>This tool also calculates the count, sum, average,
and the variance of each variable.</para>
<figure id="anova-one-factor-tool-ex1">
<title>1-factor ANOVA Dialog and Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ANOVA1-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of a multilevel single factor ANOVA
analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usinganovaonefactortool">
<title>Using the single factor ANOVA</title>
<para>See <xref linkend="anova-one-factor-tool-ex1" /> for an example
of a completed dialog and <xref
linkend="anova-one-factor-tool-ex2" />
for the corresponding output.
</para>
</example>
<figure id="anova-one-factor-tool-ex2">
<title>Output From a 1-factor ANOVA</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ANOVA1-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a multilevel single
factor ANOVA analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect3>
<sect3 id="anova-two-factor-tool">
<title>ANOVA: Two-Factor Tool</title>
<para><application>Gnumeric</application> can perform two factor fixed effects ANOVAs with and
without replication. The same dialog is used and the
appropriate tool is selected depending on whether the number of rows
per sample is 1 or larger than 1.</para>
<sect4 id="anova-two-factor-without-tool">
<title>ANOVA: Two-Factor Without Replication Tool</title>
<para>If the number of rows per sample is given as 1, <application>Gnumeric</application>
performs a two factor fixed effects ANOVA without replication. Each
column of the input range is interpreted as a level of the first
factor while each row is interpreted as a level of the second factor.
</para>
<para>The first row and column of the range may contain labels for
these levels. In this case the <quote><guibutton>Labels</guibutton></quote> option should be selected.
</para>
<para> The <quote><guilabel>Alpha:</guilabel></quote> entry specifies the
significance level which is by default 5%.</para>
<example id="usinganovatwofactorwotool">
<title>Using the 2-factor ANOVA Without Replication Tool</title>
<para>See <xref linkend="anova-two-factor-without-tool-ex1" /> for an example
of a completed dialog and <xref
linkend="anova-two-factor-without-tool-ex2" />
for the corresponding output.
</para>
</example>
<figure id="anova-two-factor-without-tool-ex1">
<title>2-factor ANOVA Without Replication Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ANOVA2wo-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of a two factor ANOVA without
replication analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="anova-two-factor-without-tool-ex2">
<title>Output From a 2-factor ANOVA Without Replication</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ANOVA2wo-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a two factor ANOVA without
replication analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect4>
<sect4 id="anova-two-factor-with-tool">
<title>ANOVA: Two-Factor With Replication Tool</title>
<para>If the number of rows per sample is larger than 1, <application>Gnumeric</application>
performs a two factor fixed effects ANOVA with replication. Each
column of the input range is interpreted as a level of the first
factor while groups of rows (the number of rows in each group given
by the <quote><guilabel>number of rows per sample</guilabel></quote> value) are interpreted as levels
of the second factor.
</para>
<para>The first row and column of the range may contain labels for
these levels. In this case the <quote><guibutton>Labels</guibutton></quote> option should be selected.
</para>
<para> The <quote><guilabel>Alpha:</guilabel></quote> entry specifies the
significance level which is by default 5%.</para>
<para>See <xref linkend="anova-two-factor-with-tool-ex1" /> for an example
of a completed dialog and <xref
linkend="anova-two-factor-with-tool-ex2" />
for the corresponding output.
</para>
<figure id="anova-two-factor-with-tool-ex1">
<title>2-factor ANOVA With Replication Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ANOVA2w-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of a two factor ANOVA with replication
analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="anova-two-factor-with-tool-ex2">
<title>Output From a 2-factor ANOVA With Replication</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ANOVA2w-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a two factor ANOVA
with replication analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para><application>Gnumeric</application> will estimate missing
values for each level combination as the mean of the existing
values in that combination. The degrees of freedom are adjusted
appropriately. </para>
</sect4>
</sect3>
</sect2>
<sect2 id="correlation-tool">
<title>Correlation Tool</title>
<figure id="correlation-tool-dialog">
<title>Correlation Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-correlation.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the correlation analysis dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>The correlation tool calculates the pairwise Pearson
correlation coefficients of the
given variables. Use this tool to calculate any number of
correlation coefficients at the same time. The variables for
which the correlations are calculated are specified by the <quote><guilabel>Input
Range:</guilabel></quote> entry. The input range can consist of either a single
range or a comma separated list of ranges. The given range or
ranges can be grouped by columns, by rows, or by areas.</para>
<para>If the first row or column of the given ranges, or the
first field of each area contains labels, the
<quote><guibutton>Labels</guibutton></quote> option should be selected.
</para>
<figure id="correlation-example-1">
<title>Some Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-correlation-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of an example data set for a
correlation analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingcorrelationtool">
<title>Using the Correlation Tool</title>
<para>For example, you want to calculate the correlation between
three variables, one each in columns A, B, and C.
Both variables have 10 values in rows 2 to 11 with labels in row 1
(see <xref linkend="correlation-example-1" />).</para>
<orderedlist>
<listitem><para>
Enter A1:B11 in the <quote><guilabel>Input Range:</guilabel></quote> entry by typing
this directly into the entry or clicking in the entry field and
then selecting that range on the sheet. In the latter case the
entry will also contain the sheet name. </para></listitem>
<listitem><para>
Select the <quote><guibutton>Columns</guibutton></quote> radio button next to
<quote><guilabel>Grouped By:</guilabel></quote>,
since each variable is in its own column.</para></listitem>
<listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
option since the first row contains labels. (see
<xref linkend="correlation-example-2" />).</para></listitem>
<listitem><para> Specify the output
options as described above.</para></listitem>
<listitem><para> Press the OK button. </para></listitem>
</orderedlist>
<para>The calculated correlations are given in a table with each column and
row labeled with the names of the variables. If the
names are not given in the input range, <application>Gnumeric</application> generates them.
In our example, the
correlation between the variables in column A and B, can be found
in the second column and third row of the results table (see
<xref linkend="correlation-example-3" />).</para>
</example>
<figure id="correlation-example-2">
<title>Completed Correlation Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-correlation-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the completed correlation analysis
dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="correlation-example-3">
<title>Correlation Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-correlation-ex3.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output of the correlation
analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="covariance-tool">
<title>Covariance Tool</title>
<figure id="covariance-tool-dialog">
<title>Covariance Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-covariance.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the covariance analysis
dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>The covariance tool calculates the pairwise
covariance coefficients of the
given variables. Use this tool to calculate any number of
covariance coefficients at the same time. The variables for
which the covariances are calculated are specified by the <quote><guilabel>Input
Range:</guilabel></quote> entry. The input range can consist of either a single
range or a comma separated list of ranges. The given range or
ranges can be grouped by columns, by rows, or by areas.</para>
<para>If the first row or column of the given ranges, or the
first field of each area contains labels, the
<quote><guibutton>Labels</guibutton></quote> option should be selected.
</para>
<figure id="covariance-example-1">
<title>Some Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-covariance-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image example data for a covariance
analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingcovariancetool">
<title>Using The Covariance Tool</title>
<para>For example, you want to calculate the covariance between
three variables, one each in columns A, B, and C.
Both variables have 10 values in rows 2 to 11 with labels in row 1
(see <xref linkend="covariance-example-1" />).</para>
<orderedlist>
<listitem><para>
Enter A1:B11 in the <quote><guilabel>Input Range:</guilabel></quote> entry by typing
this directly into the entry or clicking in the entry field and
then selecting that range on the sheet. In the latter case the
entry will also contain the sheet name. </para></listitem>
<listitem><para>
Select the <quote><guibutton>Columns</guibutton></quote> radio button next to
<quote><guilabel>Grouped By:</guilabel></quote>,
since each variable is in its own column.</para></listitem>
<listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
option since the first row contains labels.
</para></listitem>
<listitem><para> Specify the output
options as described above.</para></listitem>
<listitem><para> Press the OK button. </para></listitem>
</orderedlist>
<para>The calculated covariances are given in a table with each column and
row labeled with the names of the variables. If the
names are not given in the input range, <application>Gnumeric</application> generates them.
In our example, the
covariance between the variables in column A and B, can be found
in the second column and third row of the results table (see
<xref linkend="covariance-example-2" />).</para>
</example>
<figure id="covariance-example-2">
<title>Covariance Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-covariance-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output of a covariance analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="descriptive-statistics-tool">
<title>Descriptive Statistics Tool</title>
<figure id="descriptive-statistics-tool-dialog">
<title>Descriptive Statistics Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-descstats.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the descriptive statistics dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>The descriptive statistics tool calculates various statistics
for the given variables and a confidence interval for the population
mean. The variables are specified via the <quote><guilabel>Input
Range:</guilabel></quote> entry. The given range or list of ranges can be grouped into
variables by columns, rows, or areas.</para>
<para>This tool can produce four different kinds of statistical
data.
</para>
<itemizedlist>
<listitem><para>If the <quote><guibutton>Summary Statistics</guibutton></quote> option is selected,
this tool calculates the
mean, standard error, median, mode, standard deviation, sample
variance, kurtosis, skewness, range, minimum, maximum, sum, and
count for each variable.</para>
</listitem>
<listitem><para>If the <quote><guibutton>Confidence Interval for the Mean</guibutton></quote> option is
selected, the tool calculates confidence intervals for the population
mean of each variable.
Specify the confidence level in the entry box. The default confidence
level is 95%.</para>
<note><para>The interval given will usually be wider than the
interval obtained using the CONFIDENCE function. The CONFIDENCE function
assumes that the population standard deviation is known. This tool
estimates the population standard deviation using the sample standard
deviation.</para></note></listitem>
<listitem><para>If the <quote><guibutton>Kth Largest:</guibutton></quote> option is selected, the tool finds
the <parameter>k</parameter>th largest value of each of the variables. Specify
<parameter>k</parameter> in
the entry box next to the option. The default is 1.
</para></listitem>
<listitem><para>If the <quote><guibutton>Kth Smallest:</guibutton></quote> option is selected, the tool finds
the <parameter>k</parameter>th smallest value of each of the variables. Specify
<parameter>k</parameter> in
the entry box next to the option. The default is 1.
</para></listitem>
</itemizedlist>
<para>If the first entry for each variable contains the label,
select the <quote><guibutton>Labels</guibutton></quote> option.
</para>
<figure id="descstats-example-1">
<title>Some Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-descstats-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of some example data for descriptive
statistics.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingdescstatstool"><title>Using the Descriptive Statistics Tool</title>
<para><xref linkend="descstats-example-1" /> shows some example data,
<xref linkend="descstats-example-1-options" /> the selected options, and
<xref linkend="descstats-example-2" /> the corresponding output.
</para>
</example>
<figure id="descstats-example-1-options">
<title>The Options Page For Descriptive Statistics</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-descstats-ex1-options.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of some example data for descriptive
statistics.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="descstats-example-2">
<title>Descriptive Statistics Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-descstats-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output of a descriptive
statistics analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="exp-smoothing-tool">
<title>Exponential Smoothing Tool</title>
<figure id="smoothing-tool-dialog">
<title>Exponential Smoothing Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-smoothing.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the exponential smooting
dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>The Exponential Smoothing tool performs the exponential
smoothing for the given set or sets of values. Each value in the
smoothed set is predicted based on the forecast for the prior
period. The formula to calculate the forecast is:
F(t+1) = F(t) + (1 - <guilabel>dampingFactor</guilabel>)
* (A(t) - F(t)),
where <parameter>A(t)</parameter> is the <parameter>t</parameter>th
value in the original data set.</para>
<para>Specify the cells containing the datasets in the <quote><guilabel>Input
Range</guilabel></quote> entry. The entered range or ranges are grouped into
datasets either by rows or by columns.</para>
<para>If you have labels
in the first cell of each data set, select the
<quote><guilabel>Labels</guilabel></quote> option.</para>
<para>Specify prior forecast adjustment value in the
<quote><guilabel>Damping factor</guilabel></quote> entry.
A value, for example, between 0.2 and 0.3 represents 20 to 30 percent error
adjustment in the prior forecast.</para>
<para>If you want to have the standard errors output as well, press the
checkbutton on before starting the tool. The standard errors are
calculated using the following formula: e(t) = SQRT ( ((A(t-3)-F(t-3))^2 +
(A(t-2)-F(t-2))^2 + (A(t-1)-F(t-1))^2) / 3 ).</para>
<figure id="smoothing-example-1">
<title>Some Example Data for the Exponential Smoothing Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-smoothing-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for exponential
smoothing.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingsmoothingtool"><title>Using the Exponential Smoothing Tool</title>
<para><xref linkend="smoothing-example-1" /> shows some example data and
<xref linkend="smoothing-example-2" /> the corresponding output.
</para>
</example>
<figure id="smoothing-example-2">
<title>Exponential Smoothing Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-smoothing-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output of an exponential
smoothing analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="fourier-analysis-tool">
<title>Fourier Analysis Tool</title>
<figure id="fourier-tool-dialog">
<title>Fourier Analysis Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-fourier.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the fourier analysis
dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>
The Fourier Analysis tool normally performs a Fast Fourier
Transform to obtain the discrete fourier transform
F<subscript>s</subscript> of the given sequence
f<subscript>t</subscript> of real numbers according to the
formula given in <xref linkend="fourier-tool-formula"
/>.</para> <para>Select the
<quote><guilabel>Inverse</guilabel></quote> option to calculate
the inverse discrete fourier transform
f<subscript>t</subscript> of the given sequence
F<subscript>s</subscript> of real numbers</para> <note><para>If
the given sequences does not contain a number of terms that is
a power of 2 (i.e. 2, 4, 8, 16, 32, 64, 128, etc.), this tool
will append zeros to reach such a power of 2!</para></note>
<para>Specify the cells containing the datasets in the
<quote><guilabel>Input Range</guilabel></quote> entry. The
entered range or ranges are grouped into sequences either by rows
or by columns.</para>
<para>If you have labels
in the first cell of each data set, select the
<quote><guilabel>Labels</guilabel></quote> option.</para>
<figure id="fourier-tool-formula">
<title>Fourier Analysis Formulae</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-fourier-formula.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>The formulae used in a fourier analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<note>
<para>Before using the numbers obtained by this tool, ensure
that these are in fact the correct formulae for your
discipline. In the physical sciences this fourier transform
tends to be called the inverse fourier transform and vice
versa. Moreover, frequently the scaling factor varies.</para>
<para>For example <application>Mathematica</application> uses
the terms fourier transform and inverse fourier transform with
the reversed meaning than <application>Gnumeric</application>
and it uses a scaling factor of
<parameter>1/SQRT(N)</parameter> rather than
<parameter>1/N</parameter>.</para></note>
</sect2>
<sect2 id="ftest-two-sample-for-variances-tool">
<title>F-Test: Two-Sample for Variances Tool</title>
<figure id="ftest-tool-dialog">
<title>F-Test Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ftest.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the dialog for an F-test analysis of
the equality of two variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>Use the F-Test tool to test whether two population
variances are different against the null hypothesis that
they are not.</para>
<para>Specify the variables in the <quote><guilabel>Variable 1 Range:</guilabel></quote>
and <quote><guilabel>Variable 2 Range:</guilabel></quote> entries. The <quote><guilabel>Alpha:</guilabel></quote>
entry contains the
significance level which is by default 5%.</para>
<para>If the first field of each range contains labels,
select the <quote><guibutton>Labels</guibutton></quote> option. The names of
the variables will be included in the output table.</para>
<para>The results are given in a table. This table contains
the mean, variance, count of observations and the degree
of freedom for both variables. The output table also includes the F-value,
the one-tailed probability for the F-value, and the F Critical
value for one-tailed test and the corresponding values for a two
tailed test. The one-tailed probability for the
F-value (<quote><guilabel>P(F<=f) one-tail</guilabel></quote> row) is the probability of making a
Type I error in the one-tailed test. Similarly, the two-tailed
probability for the F-value (<quote><guilabel>P two-tail</guilabel></quote> row)
is the probability of making a Type I error in the two-tailed test.
Since in the two-tailed F-Test both critical values are positive, the
<quote><guilabel>F Critical two-tail</guilabel></quote> row contains two numbers.</para>
<para>If the output is directed into a specific output range, that
range should contain at least three columns and eight rows.</para>
<figure id="ftest-example-1">
<title>Some Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ftest-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of some example data for an F-test of
the equality of two variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingftesttool"><title>Using the F-Test Tool</title>
<para><xref linkend="ftest-example-1" /> shows some example data and
<xref linkend="ftest-example-2" /> the corresponding output.
</para>
</example>
<figure id="ftest-example-2">
<title>F-Test Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ftest-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output of an F-test analysis of
the equality of two variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="histogram-tool">
<title>Histogram Tool</title>
<sect3 id="histogram-tool-intro">
<title>Introduction</title>
<figure id="histogram-tool-dialog">
<title>Histogram Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-histogram.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the dialog to generate various
histograms open to the "Input" tab.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>
The histogram calculates several kinds of histograms for one or more
variables. The types of histogram created are determined by the options
selected.
</para>
<para>As shown in <xref linkend="histogram-tool-dialog" />, the
histogram dialog has four tabs. We will introduce them in
sequence.</para>
</sect3>
<sect3 id="histogram-tool-inputtab">
<title>The <quote><guilabel>Input</guilabel></quote> Tab</title>
<para>The <quote><guilabel>Input</guilabel></quote> tab contains
the field specifying the data to be used for the
histogram.</para>
<para>
The <quote><guilabel>Input Range</guilabel></quote> entry
contains a single range or a list of ranges, that can be grouped
into variables by rows, columns, or areas. The
<quote><guilabel>Bin Range</guilabel></quote> entry contains a
single range of cutoff values. Both ranges may also include
labels.
</para>
<para>If the first row or column of the given input ranges, or
the first field of each area contains labels, the
<quote><guibutton>Input Labels</guibutton></quote> option should
be selected.
</para>
</sect3>
<sect3 id="histogram-tool-binstab">
<title>The <quote><guilabel>Bins</guilabel></quote> Tab</title>
<figure id="histogram-tool-dialog-bins">
<title>Histogram Tool Dialog <quote><guilabel>Bins Tab</guilabel></quote></title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-histogram-bins.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the dialog to generate various
histograms open to the "Bins" tab.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>The bins (or classes) for the histogram can either be predetermined by data
contained in your workbook or calculated by the histogram tool.</para>
<para>Select the <quote><guilabel>Predetermined Bins</guilabel></quote> option to specify
data on your worksheet in the <quote><guilabel>Bin Range:</guilabel></quote> entry. The
range should consist of a single column or two columns (the first one containing labels). If the
first column of the bin range contains labels, select the <quote><guibutton>Bin
Labels</guibutton></quote> option. The values in the last column are used as separators between adjacent bins.</para>
<para>Select the <quote><guilabel>Calculated Bins</guilabel></quote> option to have the
bins determined by the tool. Enter the desired number of bins in the
<quote><guilabel>N:</guilabel></quote> entry. It is recommended (but optional) that you
specify the minimum and maximum cutoffs in the <quote><guilabel>Min:</guilabel></quote>
and <quote><guilabel>Max:</guilabel></quote> entries.</para>
</sect3>
<sect3 id="histogram-tool-optionstab">
<title>The <quote><guilabel>Options</guilabel></quote> Tab</title>
<para> The options in the options tab modify the appearance of the histogram:</para>
<itemizedlist>
<listitem>
<para> The <quote><guibutton>Pareto</guibutton></quote> option causes the bins to be
sorted by decreasing
frequency of the first variable.
</para>
</listitem>
<listitem>
<para> The <quote><guibutton>Percentages</guibutton></quote> option adds a histogram in terms
of
percentages rather than frequencies.
</para>
</listitem>
<listitem>
<para> The <quote><guibutton>Cumulative Percentages</guibutton></quote> option adds a
cumulative histogram.
</para>
</listitem>
<listitem>
<para> The <quote><guibutton>Chart</guibutton></quote> option is not implemented.
</para>
</listitem>
</itemizedlist>
</sect3>
<sect3 id="histogram-tool-outputtab">
<title>The <quote><guilabel>Output</guilabel></quote> Tab</title>
<para>
The Output tab contains the standard output options and fields
described at the beginning of <xref
linkend="sect-analysis-statistical" />.
</para>
</sect3>
<sect3 id="histogram-tool-example">
<title>A Histogram Example</title>
<figure id="histogram-example-1">
<title>Some Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-histogram-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of some example data for use with the
histogram tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="histogram-example-3">
<title>Specifying Bins</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-histogram-ex3.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of selecting the bins for the example
data used with the histogram tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usinghistogramtool">
<title>Using the Histogram Tool</title>
<para>
For example, you want to calculate a histogram and a
cumulative histogram in percentages for a the number of
successes in several sequences of trials. The numbers of
successes are recorded in column A and the classes of interest
in column D with labels in column C (see <xref
linkend="histogram-example-1" />).
</para>
<orderedlist>
<listitem>
<para>
Enter A1:A21 in the <quote><guilabel>Input
Range:</guilabel></quote> entry of the
<quote><guilabel>Input</guilabel></quote> tab by typing
this directly into the entry or clicking in the entry
field and then selecting that range on the sheet. In the
latter case the entry will also contain the sheet
name.
</para>
</listitem>
<listitem>
<para>
Since you only have one variable select the
<quote><guibutton>Areas</guibutton></quote> or
<quote><guibutton>Columns</guibutton></quote> radio button
next to <quote><guilabel>Grouped By:</guilabel></quote>.
</para>
</listitem>
<listitem><para> Select the
<quote><guibutton>Input Labels</guibutton></quote> option
since the first cell of the Input Range contains a
label.</para>
</listitem>
<listitem><para> Enter C1:D5 in
the <quote><guilabel>Bin Range:</guilabel></quote> entry
of the <quote><guilabel>Bins</guilabel></quote> tab. The
<quote><guilabel>Predetermined Bins</guilabel></quote>
option will now also be selected (see <xref
linkend="histogram-example-3" />). </para>
</listitem>
<listitem><para> Select the <quote><guibutton>Bin
Labels</guibutton></quote> option since the first column
of the Bin Range contains labels. </para>
</listitem>
<listitem><para> Select the
<quote><guibutton>Percentage</guibutton></quote> and
<quote><guibutton>Cumulative
Percentages</guibutton></quote> options of the
<quote><guilabel>Options</guilabel></quote> tab.
</para>
</listitem>
<listitem>
<para>
In the <quote><guilabel>Output</guilabel></quote> tab,
specify the output options as described at the beginning of
<xref linkend="sect-analysis-statistical" />.
</para>
</listitem>
<listitem><para>
Press the OK button. </para>
</listitem>
</orderedlist>
<para> The results are shown in
<xref linkend="histogram-example-2" />.</para>
</example>
<figure id="histogram-example-2">
<title>Histogram Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-histogram-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from the histogram
analysis tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect3>
</sect2>
<sect2 id="moving-average-tool">
<title>Moving Average Tool</title>
<figure id="moving-tool-dialog">
<title>Moving Average Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-moving-average.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the dialog for the moving average
analysis tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>Use the moving average tool to calculate moving averages of
one or more data sets. A moving average provides useful trend
information of the data that is lost in a simple average. In
addition, moving averages can be used to eliminate random
variance. For example, use this tool to create a smoother curve
of a stock prize.</para>
<para>Specify the cells containing the datasets in the
<quote><guilabel>Input Range</guilabel></quote> entry. The
entered range or ranges are grouped into datasets either by rows
or by columns.</para>
<para>If you have labels in the first cell of each data set,
select the <quote><guilabel>Labels</guilabel></quote>
option.</para>
<para>Specify the <quote><guilabel>Interval</guilabel></quote>
for the moving average. The interval <parameter>i</parameter> is
the number of consecutive values to be included in each moving
average.</para>
<para>The results are given in one column for each dataset Each
row represents the moving average of the corresponding row or
column in the input range. The moving average cannot be
calculated for the first <parameter>k</parameter> rows in the
input range where <parameter>k</parameter> is smaller than the
given interval <parameter>i</parameter>.</para>
<figure id="moving-example-1">
<title>Some Example Data for the Moving Average Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-moving-average-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of some example data for use with the
moving average analysis tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingmovingtool"><title>Using the Moving Average Tool</title>
<para><xref linkend="moving-example-1" /> shows some example data and
<xref linkend="moving-example-2" /> the corresponding output.
</para>
</example>
<figure id="moving-example-2">
<title>Moving Averages Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-moving-average-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from the moving average
analysis tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="rank-and-percentile-tool">
<title>Rank and Percentile Tool</title>
<figure id="rank-and-percentile-tool-dialog">
<title>Rank and Percentile Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-rank.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the rank and percentile analysis
tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>Use this tool to rank given data and to calculate the
percentiles of each data point.</para>
<para>Specify the datasets to use in the <quote><guilabel>Input
Range:</guilabel></quote> entry.
The given range can be grouped into datasets by columns, by rows, or by areas.</para>
<para>For each dataset, the tool creates three columns in the
output table:</para>
<orderedlist>
<listitem><para>The first column gives the indices of the
ordered data from largest to smallest data value.</para></listitem>
<listitem><para>The second column
gives data values corresponding to the indices in the first column.</para></listitem>
<listitem><para>The third column indicates
the percentile of the data value in the second column.</para></listitem>
</orderedlist>
<para>If you have labels
in the first cell of each data set, select the
<quote><guilabel>Labels</guilabel></quote> option.</para>
<figure id="rank-example-1">
<title>Some Example Data for the Rank and Percentile Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-rank-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for use with the rank
and percentile analysis tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingranktool"><title>Using the Rank and Percentile Tool</title>
<para><xref linkend="rank-example-1" /> shows some example data and
<xref linkend="rank-example-2" /> the corresponding output.
</para>
</example>
<figure id="rank-example-2">
<title>Rank and Percentile Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-rank-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a rank and
percentile analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<note><para>In the case of ties, the rank calculated by this tool differs from the
value of the RANK function for the same data. This tool calculates the rank as it is
normally used in Statistics: If two values are tied, the assigned rank is the average
rank for those entries. For example in <xref
linkend="rank-example-1" /> the two values 10
are the second and third largest values. Since they are equal each receives the rank of
2.5, the average of 2 and 3. The rank function on the other hand assigns the rank as it
is normally used to determine placements. The two values 10 would therefore each receive
a rank of 2.
</para></note>
</sect2>
<sect2 id="regression-tool">
<title>Regression Tool</title>
<figure id="regression-tool-dialog">
<title>Regression Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-regression.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the regression tool dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>The regression tool performs a multiple regression analysis.</para>
<para>Enter a range or list of ranges containing the independent variables
into the <quote><guilabel>X Variables:</guilabel></quote> entry. These ranges
can be grouped into the various independent variables by columns, by rows,
or by areas. Select the appropriate option.</para>
<para>Enter a single range containing the dependent variable into the
<quote><guilabel>Y Variable:</guilabel></quote> entry.</para>
<para>If the ranges for the independent and dependent variables also contains
labels in the first field of each row, column or area, select the <quote>
<guilabel>Labels</guilabel></quote> option.</para>
<para> Specify the confidence level in the <quote><guilabel>Confidence
Level:</guilabel></quote> entry. The default is 95%.</para>
<para>To force the regression line or plane to pass through the origin, select the
<quote><guilabel>Force Intercept To Be Zero</guilabel></quote> option.</para>
<para>Specify the output options as described above. If the output is directed
into a specific output range, that
range should contain at least seven columns and 17 rows more than there are
independent variables.</para>
<figure id="regression-example-1">
<title>Regression Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-regression-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for use with the
regression tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingregressiontool">
<title>Using the Regression Tool</title>
<para>
Suppose you want to perform a regression analysis on the data
given in <xref linkend="regression-example-1" /> using
<parameter>v</parameter> and <parameter>y</parameter> as
independent variables and <parameter>u</parameter> as dependent
variable.</para>
<orderedlist>
<listitem><para>
Enter B1:B9,E1:E9 in the <quote><guilabel>X Variables:</guilabel></quote>
entry by typing
this directly into the entry or clicking in the entry field and
then selecting the first part range on the sheet, typing comma, and then
selecting the second range. In the latter case the
entry will also contain the sheet name. </para></listitem>
<listitem><para>
Enter A1:A9 in the <quote><guilabel>Y Variable:</guilabel></quote>
entry. </para></listitem>
<listitem><para>
Select the <quote><guibutton>Columns</guibutton></quote> or
<quote><guibutton>Areas</guibutton></quote> option
since each variable is in its own column and also its own area.</para></listitem>
<listitem><para> Select the <quote><guibutton>Labels</guibutton></quote>
option since the first row contains labels. (see
<xref linkend="regression-example-2" />).</para></listitem>
<listitem><para> Specify the output
options as described above.</para></listitem>
<listitem><para> Press the OK button. </para></listitem>
</orderedlist>
<para> The output of this regression analysis is shown in
<xref linkend="regression-example-3" />.</para>
</example>
<figure id="regression-example-2">
<title>Completed Regression Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-regression-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the regression tool dialog with the
required fields completed.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="regression-example-3">
<title>Regression Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-regression-ex3.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a regression
analysis.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="sampling-tool">
<title>Sampling Tool</title>
<figure>
<title>Sampling Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-sampling.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the sampling tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>Use the sampling tool to take a sample of a data set. This
tool can take both a random sample of a given size or a periodic
sample:</para>
<variablelist>
<varlistentry><term>random sample</term>
<listitem><para>A random sample is a subset of the population such that
every subset of that size has the same chance of being picked.</para></listitem>
</varlistentry>
<varlistentry><term>periodic sample</term>
<listitem><para>In a periodic sample every <parameter>k</parameter>th element in
the population is selected.</para></listitem>
</varlistentry>
</variablelist>
<para>To use this tool, first specify the data set or data sets by setting the
<quote><guilabel>Input Range:</guilabel></quote> entry. The range or ranges
given can be grouped into datasets by rows, by columns, or by areas.</para>
<para>If the first entry in each data set contains a variable, select the
<quote><guilabel>Labels</guilabel></quote> option.</para>
<para>Select the sampling method which
can be either periodic or random.</para>
<variablelist>
<varlistentry><term>random sample</term>
<listitem><para>Specify the size of the random sample in the <quote><guilabel>Size
of Sample:</guilabel></quote> entry.</para></listitem>
</varlistentry>
<varlistentry><term>periodic sample</term>
<listitem><para>Specify the period in the <quote><guilabel>Period:</guilabel></quote>
entry.</para></listitem>
</varlistentry>
</variablelist>
<para>Specify the number of samples you would like to obtain in the <quote><guilabel>
Number of Samples:</guilabel></quote> entry.</para>
<note><para> Since the period uniquely determines a periodic sample, if you specify
that you would like 2 samples you will be given the identical sample twice.</para></note>
<note><para>If the dataset for a periodic sample is a two dimensional range, <application>Gnumeric</application>
will enumerate the data points by row first.</para></note>
<figure id="sampling-example-1">
<title>Some Example Data for the Sampling Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-sampling-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for use with the
sampling tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<example id="usingsamplingtool"><title>Using the Sampling Tool</title>
<para><xref linkend="sampling-example-1" /> shows some example data and
<xref linkend="sampling-example-2" /> the corresponding output.
</para>
</example>
<figure id="sampling-example-2">
<title>Sampling Tool Output</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-sampling-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from the sampling
tool.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect2>
<sect2 id="t-test">
<title>Comparing Means of 2 Populations</title>
<para><application>Gnumeric</application> provides 4 similar
tools to test whether the difference of two population means is
equal to a hypothesized value. These four tools use the same
dialog (see <xref linkend="ttest-dialog" />).</para>
<figure id="ttest-dialog">
<title><parameter>t</parameter>- and <parameter>z</parameter>-Test
Tool Dialog</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest.png" format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the t-test and z-test dialog.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>Depending on the options settings, the appropriate test
will be performed. The entries in the
<quote><guilabel>Input</guilabel></quote>,
<quote><guilabel>Test</guilabel></quote>, and
<quote><guilabel>Output</guilabel></quote> frames are independent
from the specific test.</para>
<para>Enter the first variable in the <quote><guilabel>Variable 1
Range</guilabel></quote> entry and the second variable in the
<quote><guilabel>Variable 2 Range</guilabel></quote>
entry.</para> <para>Enter the hypothesized difference between the
population means in the <quote><guilabel>Hypothesized Mean
Difference</guilabel></quote> entry, which has a default of 0.
Enter the significance level in the
<quote><guilabel>Alpha</guilabel></quote> entry, which has a
default of 5 %.</para> <para> Specify the output options as
described above. If the output is printed into a range, it should
have at least three columns and ten rows.</para>
<para>There are up to three possible options that can be selected:</para>
<variablelist>
<varlistentry><term><quote><guilabel>Paired</guilabel></quote> versus <quote><guilabel>Unpaired</guilabel></quote>
</term><listitem><para>
If the variables are dependent (or paired) select the <quote><guilabel>Paired</guilabel></quote>
option.
</para></listitem>
</varlistentry>
<varlistentry><term><quote><guilabel>Known</guilabel></quote> versus <quote><guilabel>Unknown</guilabel></quote>
</term><listitem><para>
For unpaired or independent variables, the population variances may be known
or unknown. In the latter case they will be estimated using the sample variances.
Select the <quote><guilabel>Known</guilabel></quote> option if you in fact know the population
variances prior to collecting the sample.
</para></listitem>
</varlistentry>
<varlistentry><term><quote><guilabel>Equal</guilabel></quote> versus <quote><guilabel>Unequal</guilabel></quote>
</term><listitem><para>
For paired variables with unknown population variances, we may either assume
that the population variances are equal or not. If the population variances are
assumed to be equal, <application>Gnumeric</application> will estimate the common variance by pooling the
sample variances. Select the <quote><guilabel>Equal</guilabel></quote> option to assume that
the population variances are equal.
</para></listitem>
</varlistentry>
</variablelist>
<sect3 id="t-test-paired-two-samples-for-means-tool">
<title><parameter>t</parameter>-Test: Paired Two Sample for Means Tool</title>
<figure id="ttest-dialog-paired">
<title><parameter>t</parameter>-Test (Paired) Tool Dialog Options</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-paired.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the options for the t-test.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>For paired variables, when you click on
<quote><guibutton>OK</guibutton></quote>, <application>Gnumeric</application> will test whether the
mean of the difference between the paired variables is equal to
the given hypothesized mean difference.</para>
<example id="usingttestpairedtool">
<title>Using the <parameter>t</parameter>-Test (Paired) Tool</title>
<para>See <xref linkend="ttest-paired-tool-ex1" /> for an example
of a completed dialog and <xref linkend="ttest-paired-tool-ex2" />
for the corresponding output.
</para>
</example>
<figure id="ttest-paired-tool-ex1">
<title><parameter>t</parameter>-Test (Paired) Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-paired-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the example for a t-test.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="ttest-paired-tool-ex2">
<title>Output from the <parameter>t</parameter>-Test (Paired) Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-paired-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output results from a t-test.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect3>
<sect3 id="t-test-two-sample-equal-variances-tool">
<title><parameter>t</parameter>-Test: Two-Sample Assuming Equal Variances Tool</title>
<figure id="ttest-dialog-equal">
<title><parameter>t</parameter>-Test (Equal Variances) Tool Dialog
Options</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-equal.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the options for a t-test
analysis of two samples with equal variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>For unpaired variables with unknown but assumed equal population variances,
when you click on <quote><guibutton>OK</guibutton></quote>, <application>Gnumeric</application> will test whether the
mean of the difference between the paired variables is equal to the given hypothesized
mean difference.</para>
<example id="usingttestequaltool">
<title>Using the <parameter>t</parameter>-Test (Unknown but Equal Variances) Tool</title>
<para>See <xref linkend="ttest-equal-tool-ex1" /> for an example
of a completed dialog and <xref linkend="ttest-equal-tool-ex2" />
for the corresponding output.
</para>
</example>
<figure id="ttest-equal-tool-ex1">
<title><parameter>t</parameter>-Test (Unknown but Equal Variances) Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-equal-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for use with a t-test
with unknown but equal variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="ttest-equal-tool-ex2">
<title>Output from the <parameter>t</parameter>-Test (Unknown but Equal Variances) Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-equal-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a t-test
with unknown but equal variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect3>
<sect3 id="t-test-two-samples-unequal-variances">
<title><parameter>t</parameter>-Test: Two-Sample Assuming Unequal Variances Tool</title>
<figure id="ttest-dialog-unequal">
<title><parameter>t</parameter>-Test (Unknown and Unequal Variances) Tool
Dialog Options</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-unequal.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the options in a t-test of two
samples with unknown and possibly unequal
variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>For unpaired variables with unknown and assumed unequal population variances,
when you click on <quote><guibutton>OK</guibutton></quote>, <application>Gnumeric</application> will test whether the
mean of the difference between the paired variables is equal to the given hypothesized
mean difference.</para>
<example id="usingttestunwqualtool">
<title>Using the <parameter>t</parameter>-Test (Unknown and Unequal Variances) Tool</title>
<para>See <xref linkend="ttest-unequal-tool-ex1" /> for an example
of a completed dialog and <xref linkend="ttest-unequal-tool-ex2" />
for the corresponding output.
</para>
</example>
<figure id="ttest-unequal-tool-ex1">
<title><parameter>t</parameter>-Test (Unknown and Unequal Variances) Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-unequal-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for use in a t-test of two
samples with unknown and possibly unequal
variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="ttest-unequal-tool-ex2">
<title>Output from the <parameter>t</parameter>-Test (Unknown and Unequal Variances)
Tool</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ttest-unequal-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output of a t-test of two
samples with unknown and possibly unequal
variances.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect3>
<sect3 id="ztest-two-samples-for-means-tool">
<title><parameter>z</parameter>-Test: Two Samples for Means Tool</title>
<figure id="ztest-dialog">
<title><parameter>z</parameter>-Test Tool Dialog Options</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ztest.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the options in a z-test of two
samples.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<para>For unpaired variables with known population variances, enter those variances
in the <quote><guilabel>Variable 1 Pop. Variance</guilabel></quote> and
<quote><guilabel>Variable 2 Pop. Variance</guilabel></quote> entries.
When you click on <quote><guibutton>OK</guibutton></quote>, <application>Gnumeric</application> will test whether the
mean of the difference between the paired variables is equal to the given hypothesized
mean difference.</para>
<example id="usingztesttool">
<title>Using the <parameter>z</parameter>-Test Tool</title>
<para>See <xref linkend="ztest-tool-ex1" /> for an example
of a completed dialog and <xref linkend="ztest-tool-ex2" />
for the corresponding output.
</para>
</example>
<figure id="ztest-tool-ex1">
<title><parameter>z</parameter>-Test Example Data</title>
<screenshot>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ztest-ex1.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of example data for use in a z-test of two
samples.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
<figure id="ztest-tool-ex2">
<title>Output from the <parameter>z</parameter>-Test Tool</title>
<screenshot>
<screeninfo>Output from the <parameter>z</parameter>-Test
Tools
</screeninfo>
<mediaobject>
<imageobject>
<imagedata fileref="figures/analysistools-ztest-ex2.png"
format="PNG" />
</imageobject>
<textobject>
<phrase>An image of the output from a z-test of two
samples.</phrase>
</textobject>
</mediaobject>
</screenshot>
</figure>
</sect3>
</sect2>
</sect1>