home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
eispack-1.0-src.tgz
/
tar.out
/
contrib
/
eispack
/
cinvit.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
8KB
|
253 lines
subroutine cinvit(nm,n,ar,ai,wr,wi,select,mm,m,zr,zi,
x ierr,rm1,rm2,rv1,rv2)
c
integer i,j,k,m,n,s,ii,mm,mp,nm,uk,ip1,its,km1,ierr
double precision ar(nm,n),ai(nm,n),wr(n),wi(n),zr(nm,mm),
x zi(nm,mm),rm1(n,n),rm2(n,n),rv1(n),rv2(n)
double precision x,y,eps3,norm,normv,epslon,growto,ilambd,pythag,
x rlambd,ukroot
logical select(n)
c
c this subroutine is a translation of the algol procedure cx invit
c by peters and wilkinson.
c handbook for auto. comp. vol.ii-linear algebra, 418-439(1971).
c
c this subroutine finds those eigenvectors of a complex upper
c hessenberg matrix corresponding to specified eigenvalues,
c using inverse iteration.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c ar and ai contain the real and imaginary parts,
c respectively, of the hessenberg matrix.
c
c wr and wi contain the real and imaginary parts, respectively,
c of the eigenvalues of the matrix. the eigenvalues must be
c stored in a manner identical to that of subroutine comlr,
c which recognizes possible splitting of the matrix.
c
c select specifies the eigenvectors to be found. the
c eigenvector corresponding to the j-th eigenvalue is
c specified by setting select(j) to .true..
c
c mm should be set to an upper bound for the number of
c eigenvectors to be found.
c
c on output
c
c ar, ai, wi, and select are unaltered.
c
c wr may have been altered since close eigenvalues are perturbed
c slightly in searching for independent eigenvectors.
c
c m is the number of eigenvectors actually found.
c
c zr and zi contain the real and imaginary parts, respectively,
c of the eigenvectors. the eigenvectors are normalized
c so that the component of largest magnitude is 1.
c any vector which fails the acceptance test is set to zero.
c
c ierr is set to
c zero for normal return,
c -(2*n+1) if more than mm eigenvectors have been specified,
c -k if the iteration corresponding to the k-th
c value fails,
c -(n+k) if both error situations occur.
c
c rm1, rm2, rv1, and rv2 are temporary storage arrays.
c
c the algol procedure guessvec appears in cinvit in line.
c
c calls cdiv for complex division.
c calls pythag for dsqrt(a*a + b*b) .
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
ierr = 0
uk = 0
s = 1
c
do 980 k = 1, n
if (.not. select(k)) go to 980
if (s .gt. mm) go to 1000
if (uk .ge. k) go to 200
c .......... check for possible splitting ..........
do 120 uk = k, n
if (uk .eq. n) go to 140
if (ar(uk+1,uk) .eq. 0.0d0 .and. ai(uk+1,uk) .eq. 0.0d0)
x go to 140
120 continue
c .......... compute infinity norm of leading uk by uk
c (hessenberg) matrix ..........
140 norm = 0.0d0
mp = 1
c
do 180 i = 1, uk
x = 0.0d0
c
do 160 j = mp, uk
160 x = x + pythag(ar(i,j),ai(i,j))
c
if (x .gt. norm) norm = x
mp = i
180 continue
c .......... eps3 replaces zero pivot in decomposition
c and close roots are modified by eps3 ..........
if (norm .eq. 0.0d0) norm = 1.0d0
eps3 = epslon(norm)
c .......... growto is the criterion for growth ..........
ukroot = uk
ukroot = dsqrt(ukroot)
growto = 0.1d0 / ukroot
200 rlambd = wr(k)
ilambd = wi(k)
if (k .eq. 1) go to 280
km1 = k - 1
go to 240
c .......... perturb eigenvalue if it is close
c to any previous eigenvalue ..........
220 rlambd = rlambd + eps3
c .......... for i=k-1 step -1 until 1 do -- ..........
240 do 260 ii = 1, km1
i = k - ii
if (select(i) .and. dabs(wr(i)-rlambd) .lt. eps3 .and.
x dabs(wi(i)-ilambd) .lt. eps3) go to 220
260 continue
c
wr(k) = rlambd
c .......... form upper hessenberg (ar,ai)-(rlambd,ilambd)*i
c and initial complex vector ..........
280 mp = 1
c
do 320 i = 1, uk
c
do 300 j = mp, uk
rm1(i,j) = ar(i,j)
rm2(i,j) = ai(i,j)
300 continue
c
rm1(i,i) = rm1(i,i) - rlambd
rm2(i,i) = rm2(i,i) - ilambd
mp = i
rv1(i) = eps3
320 continue
c .......... triangular decomposition with interchanges,
c replacing zero pivots by eps3 ..........
if (uk .eq. 1) go to 420
c
do 400 i = 2, uk
mp = i - 1
if (pythag(rm1(i,mp),rm2(i,mp)) .le.
x pythag(rm1(mp,mp),rm2(mp,mp))) go to 360
c
do 340 j = mp, uk
y = rm1(i,j)
rm1(i,j) = rm1(mp,j)
rm1(mp,j) = y
y = rm2(i,j)
rm2(i,j) = rm2(mp,j)
rm2(mp,j) = y
340 continue
c
360 if (rm1(mp,mp) .eq. 0.0d0 .and. rm2(mp,mp) .eq. 0.0d0)
x rm1(mp,mp) = eps3
call cdiv(rm1(i,mp),rm2(i,mp),rm1(mp,mp),rm2(mp,mp),x,y)
if (x .eq. 0.0d0 .and. y .eq. 0.0d0) go to 400
c
do 380 j = i, uk
rm1(i,j) = rm1(i,j) - x * rm1(mp,j) + y * rm2(mp,j)
rm2(i,j) = rm2(i,j) - x * rm2(mp,j) - y * rm1(mp,j)
380 continue
c
400 continue
c
420 if (rm1(uk,uk) .eq. 0.0d0 .and. rm2(uk,uk) .eq. 0.0d0)
x rm1(uk,uk) = eps3
its = 0
c .......... back substitution
c for i=uk step -1 until 1 do -- ..........
660 do 720 ii = 1, uk
i = uk + 1 - ii
x = rv1(i)
y = 0.0d0
if (i .eq. uk) go to 700
ip1 = i + 1
c
do 680 j = ip1, uk
x = x - rm1(i,j) * rv1(j) + rm2(i,j) * rv2(j)
y = y - rm1(i,j) * rv2(j) - rm2(i,j) * rv1(j)
680 continue
c
700 call cdiv(x,y,rm1(i,i),rm2(i,i),rv1(i),rv2(i))
720 continue
c .......... acceptance test for eigenvector
c and normalization ..........
its = its + 1
norm = 0.0d0
normv = 0.0d0
c
do 780 i = 1, uk
x = pythag(rv1(i),rv2(i))
if (normv .ge. x) go to 760
normv = x
j = i
760 norm = norm + x
780 continue
c
if (norm .lt. growto) go to 840
c .......... accept vector ..........
x = rv1(j)
y = rv2(j)
c
do 820 i = 1, uk
call cdiv(rv1(i),rv2(i),x,y,zr(i,s),zi(i,s))
820 continue
c
if (uk .eq. n) go to 940
j = uk + 1
go to 900
c .......... in-line procedure for choosing
c a new starting vector ..........
840 if (its .ge. uk) go to 880
x = ukroot
y = eps3 / (x + 1.0d0)
rv1(1) = eps3
c
do 860 i = 2, uk
860 rv1(i) = y
c
j = uk - its + 1
rv1(j) = rv1(j) - eps3 * x
go to 660
c .......... set error -- unaccepted eigenvector ..........
880 j = 1
ierr = -k
c .......... set remaining vector components to zero ..........
900 do 920 i = j, n
zr(i,s) = 0.0d0
zi(i,s) = 0.0d0
920 continue
c
940 s = s + 1
980 continue
c
go to 1001
c .......... set error -- underestimate of eigenvector
c space required ..........
1000 if (ierr .ne. 0) ierr = ierr - n
if (ierr .eq. 0) ierr = -(2 * n + 1)
1001 m = s - 1
return
end