home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
eispack-1.0-src.tgz
/
tar.out
/
contrib
/
eispack
/
comlr2.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
12KB
|
363 lines
subroutine comlr2(nm,n,low,igh,int,hr,hi,wr,wi,zr,zi,ierr)
C MESHED overflow control WITH vectors of isolated roots (10/19/89 BSG)
C MESHED overflow control WITH triangular multiply (10/30/89 BSG)
c
integer i,j,k,l,m,n,en,ii,jj,ll,mm,nm,nn,igh,im1,ip1,
x itn,its,low,mp1,enm1,iend,ierr
double precision hr(nm,n),hi(nm,n),wr(n),wi(n),zr(nm,n),zi(nm,n)
double precision si,sr,ti,tr,xi,xr,yi,yr,zzi,zzr,norm,tst1,tst2
integer int(igh)
c
c this subroutine is a translation of the algol procedure comlr2,
c num. math. 16, 181-204(1970) by peters and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 372-395(1971).
c
c this subroutine finds the eigenvalues and eigenvectors
c of a complex upper hessenberg matrix by the modified lr
c method. the eigenvectors of a complex general matrix
c can also be found if comhes has been used to reduce
c this general matrix to hessenberg form.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c low and igh are integers determined by the balancing
c subroutine cbal. if cbal has not been used,
c set low=1, igh=n.
c
c int contains information on the rows and columns interchanged
c in the reduction by comhes, if performed. only elements
c low through igh are used. if the eigenvectors of the hessen-
c berg matrix are desired, set int(j)=j for these elements.
c
c hr and hi contain the real and imaginary parts,
c respectively, of the complex upper hessenberg matrix.
c their lower triangles below the subdiagonal contain the
c multipliers which were used in the reduction by comhes,
c if performed. if the eigenvectors of the hessenberg
c matrix are desired, these elements must be set to zero.
c
c on output
c
c the upper hessenberg portions of hr and hi have been
c destroyed, but the location hr(1,1) contains the norm
c of the triangularized matrix.
c
c wr and wi contain the real and imaginary parts,
c respectively, of the eigenvalues. if an error
c exit is made, the eigenvalues should be correct
c for indices ierr+1,...,n.
c
c zr and zi contain the real and imaginary parts,
c respectively, of the eigenvectors. the eigenvectors
c are unnormalized. if an error exit is made, none of
c the eigenvectors has been found.
c
c ierr is set to
c zero for normal return,
c j if the limit of 30*n iterations is exhausted
c while the j-th eigenvalue is being sought.
c
c
c calls cdiv for complex division.
c calls csroot for complex square root.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated october 1989.
c
c ------------------------------------------------------------------
c
ierr = 0
c .......... initialize eigenvector matrix ..........
do 100 i = 1, n
c
do 100 j = 1, n
zr(i,j) = 0.0d0
zi(i,j) = 0.0d0
if (i .eq. j) zr(i,j) = 1.0d0
100 continue
c .......... form the matrix of accumulated transformations
c from the information left by comhes ..........
iend = igh - low - 1
if (iend .le. 0) go to 180
c .......... for i=igh-1 step -1 until low+1 do -- ..........
do 160 ii = 1, iend
i = igh - ii
ip1 = i + 1
c
do 120 k = ip1, igh
zr(k,i) = hr(k,i-1)
zi(k,i) = hi(k,i-1)
120 continue
c
j = int(i)
if (i .eq. j) go to 160
c
do 140 k = i, igh
zr(i,k) = zr(j,k)
zi(i,k) = zi(j,k)
zr(j,k) = 0.0d0
zi(j,k) = 0.0d0
140 continue
c
zr(j,i) = 1.0d0
160 continue
c .......... store roots isolated by cbal ..........
180 do 200 i = 1, n
if (i .ge. low .and. i .le. igh) go to 200
wr(i) = hr(i,i)
wi(i) = hi(i,i)
200 continue
c
en = igh
tr = 0.0d0
ti = 0.0d0
itn = 30*n
c .......... search for next eigenvalue ..........
220 if (en .lt. low) go to 680
its = 0
enm1 = en - 1
c .......... look for single small sub-diagonal element
c for l=en step -1 until low do -- ..........
240 do 260 ll = low, en
l = en + low - ll
if (l .eq. low) go to 300
tst1 = dabs(hr(l-1,l-1)) + dabs(hi(l-1,l-1))
x + dabs(hr(l,l)) + dabs(hi(l,l))
tst2 = tst1 + dabs(hr(l,l-1)) + dabs(hi(l,l-1))
if (tst2 .eq. tst1) go to 300
260 continue
c .......... form shift ..........
300 if (l .eq. en) go to 660
if (itn .eq. 0) go to 1000
if (its .eq. 10 .or. its .eq. 20) go to 320
sr = hr(en,en)
si = hi(en,en)
xr = hr(enm1,en) * hr(en,enm1) - hi(enm1,en) * hi(en,enm1)
xi = hr(enm1,en) * hi(en,enm1) + hi(enm1,en) * hr(en,enm1)
if (xr .eq. 0.0d0 .and. xi .eq. 0.0d0) go to 340
yr = (hr(enm1,enm1) - sr) / 2.0d0
yi = (hi(enm1,enm1) - si) / 2.0d0
call csroot(yr**2-yi**2+xr,2.0d0*yr*yi+xi,zzr,zzi)
if (yr * zzr + yi * zzi .ge. 0.0d0) go to 310
zzr = -zzr
zzi = -zzi
310 call cdiv(xr,xi,yr+zzr,yi+zzi,xr,xi)
sr = sr - xr
si = si - xi
go to 340
c .......... form exceptional shift ..........
320 sr = dabs(hr(en,enm1)) + dabs(hr(enm1,en-2))
si = dabs(hi(en,enm1)) + dabs(hi(enm1,en-2))
c
340 do 360 i = low, en
hr(i,i) = hr(i,i) - sr
hi(i,i) = hi(i,i) - si
360 continue
c
tr = tr + sr
ti = ti + si
its = its + 1
itn = itn - 1
c .......... look for two consecutive small
c sub-diagonal elements ..........
xr = dabs(hr(enm1,enm1)) + dabs(hi(enm1,enm1))
yr = dabs(hr(en,enm1)) + dabs(hi(en,enm1))
zzr = dabs(hr(en,en)) + dabs(hi(en,en))
c .......... for m=en-1 step -1 until l do -- ..........
do 380 mm = l, enm1
m = enm1 + l - mm
if (m .eq. l) go to 420
yi = yr
yr = dabs(hr(m,m-1)) + dabs(hi(m,m-1))
xi = zzr
zzr = xr
xr = dabs(hr(m-1,m-1)) + dabs(hi(m-1,m-1))
tst1 = zzr / yi * (zzr + xr + xi)
tst2 = tst1 + yr
if (tst2 .eq. tst1) go to 420
380 continue
c .......... triangular decomposition h=l*r ..........
420 mp1 = m + 1
c
do 520 i = mp1, en
im1 = i - 1
xr = hr(im1,im1)
xi = hi(im1,im1)
yr = hr(i,im1)
yi = hi(i,im1)
if (dabs(xr) + dabs(xi) .ge. dabs(yr) + dabs(yi)) go to 460
c .......... interchange rows of hr and hi ..........
do 440 j = im1, n
zzr = hr(im1,j)
hr(im1,j) = hr(i,j)
hr(i,j) = zzr
zzi = hi(im1,j)
hi(im1,j) = hi(i,j)
hi(i,j) = zzi
440 continue
c
call cdiv(xr,xi,yr,yi,zzr,zzi)
wr(i) = 1.0d0
go to 480
460 call cdiv(yr,yi,xr,xi,zzr,zzi)
wr(i) = -1.0d0
480 hr(i,im1) = zzr
hi(i,im1) = zzi
c
do 500 j = i, n
hr(i,j) = hr(i,j) - zzr * hr(im1,j) + zzi * hi(im1,j)
hi(i,j) = hi(i,j) - zzr * hi(im1,j) - zzi * hr(im1,j)
500 continue
c
520 continue
c .......... composition r*l=h ..........
do 640 j = mp1, en
xr = hr(j,j-1)
xi = hi(j,j-1)
hr(j,j-1) = 0.0d0
hi(j,j-1) = 0.0d0
c .......... interchange columns of hr, hi, zr, and zi,
c if necessary ..........
if (wr(j) .le. 0.0d0) go to 580
c
do 540 i = 1, j
zzr = hr(i,j-1)
hr(i,j-1) = hr(i,j)
hr(i,j) = zzr
zzi = hi(i,j-1)
hi(i,j-1) = hi(i,j)
hi(i,j) = zzi
540 continue
c
do 560 i = low, igh
zzr = zr(i,j-1)
zr(i,j-1) = zr(i,j)
zr(i,j) = zzr
zzi = zi(i,j-1)
zi(i,j-1) = zi(i,j)
zi(i,j) = zzi
560 continue
c
580 do 600 i = 1, j
hr(i,j-1) = hr(i,j-1) + xr * hr(i,j) - xi * hi(i,j)
hi(i,j-1) = hi(i,j-1) + xr * hi(i,j) + xi * hr(i,j)
600 continue
c .......... accumulate transformations ..........
do 620 i = low, igh
zr(i,j-1) = zr(i,j-1) + xr * zr(i,j) - xi * zi(i,j)
zi(i,j-1) = zi(i,j-1) + xr * zi(i,j) + xi * zr(i,j)
620 continue
c
640 continue
c
go to 240
c .......... a root found ..........
660 hr(en,en) = hr(en,en) + tr
wr(en) = hr(en,en)
hi(en,en) = hi(en,en) + ti
wi(en) = hi(en,en)
en = enm1
go to 220
c .......... all roots found. backsubstitute to find
c vectors of upper triangular form ..........
680 norm = 0.0d0
c
do 720 i = 1, n
c
do 720 j = i, n
tr = dabs(hr(i,j)) + dabs(hi(i,j))
if (tr .gt. norm) norm = tr
720 continue
c
hr(1,1) = norm
if (n .eq. 1 .or. norm .eq. 0.0d0) go to 1001
c .......... for en=n step -1 until 2 do -- ..........
do 800 nn = 2, n
en = n + 2 - nn
xr = wr(en)
xi = wi(en)
hr(en,en) = 1.0d0
hi(en,en) = 0.0d0
enm1 = en - 1
c .......... for i=en-1 step -1 until 1 do -- ..........
do 780 ii = 1, enm1
i = en - ii
zzr = 0.0d0
zzi = 0.0d0
ip1 = i + 1
c
do 740 j = ip1, en
zzr = zzr + hr(i,j) * hr(j,en) - hi(i,j) * hi(j,en)
zzi = zzi + hr(i,j) * hi(j,en) + hi(i,j) * hr(j,en)
740 continue
c
yr = xr - wr(i)
yi = xi - wi(i)
if (yr .ne. 0.0d0 .or. yi .ne. 0.0d0) go to 765
tst1 = norm
yr = tst1
760 yr = 0.01d0 * yr
tst2 = norm + yr
if (tst2 .gt. tst1) go to 760
765 continue
call cdiv(zzr,zzi,yr,yi,hr(i,en),hi(i,en))
c .......... overflow control ..........
tr = dabs(hr(i,en)) + dabs(hi(i,en))
if (tr .eq. 0.0d0) go to 780
tst1 = tr
tst2 = tst1 + 1.0d0/tst1
if (tst2 .gt. tst1) go to 780
do 770 j = i, en
hr(j,en) = hr(j,en)/tr
hi(j,en) = hi(j,en)/tr
770 continue
c
780 continue
c
800 continue
c .......... end backsubstitution ..........
c .......... vectors of isolated roots ..........
do 840 i = 1, N
if (i .ge. low .and. i .le. igh) go to 840
c
do 820 j = I, n
zr(i,j) = hr(i,j)
zi(i,j) = hi(i,j)
820 continue
c
840 continue
c .......... multiply by transformation matrix to give
c vectors of original full matrix.
c for j=n step -1 until low do -- ..........
do 880 jj = low, N
j = n + low - jj
m = min0(j,igh)
c
do 880 i = low, igh
zzr = 0.0d0
zzi = 0.0d0
c
do 860 k = low, m
zzr = zzr + zr(i,k) * hr(k,j) - zi(i,k) * hi(k,j)
zzi = zzi + zr(i,k) * hi(k,j) + zi(i,k) * hr(k,j)
860 continue
c
zr(i,j) = zzr
zi(i,j) = zzi
880 continue
c
go to 1001
c .......... set error -- all eigenvalues have not
c converged after 30*n iterations ..........
1000 ierr = en
1001 return
end