home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
eispack-1.0-src.tgz
/
tar.out
/
contrib
/
eispack
/
comqr.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
7KB
|
223 lines
subroutine comqr(nm,n,low,igh,hr,hi,wr,wi,ierr)
c
integer i,j,l,n,en,ll,nm,igh,itn,its,low,lp1,enm1,ierr
double precision hr(nm,n),hi(nm,n),wr(n),wi(n)
double precision si,sr,ti,tr,xi,xr,yi,yr,zzi,zzr,norm,tst1,tst2,
x pythag
c
c this subroutine is a translation of a unitary analogue of the
c algol procedure comlr, num. math. 12, 369-376(1968) by martin
c and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 396-403(1971).
c the unitary analogue substitutes the qr algorithm of francis
c (comp. jour. 4, 332-345(1962)) for the lr algorithm.
c
c this subroutine finds the eigenvalues of a complex
c upper hessenberg matrix by the qr method.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c low and igh are integers determined by the balancing
c subroutine cbal. if cbal has not been used,
c set low=1, igh=n.
c
c hr and hi contain the real and imaginary parts,
c respectively, of the complex upper hessenberg matrix.
c their lower triangles below the subdiagonal contain
c information about the unitary transformations used in
c the reduction by corth, if performed.
c
c on output
c
c the upper hessenberg portions of hr and hi have been
c destroyed. therefore, they must be saved before
c calling comqr if subsequent calculation of
c eigenvectors is to be performed.
c
c wr and wi contain the real and imaginary parts,
c respectively, of the eigenvalues. if an error
c exit is made, the eigenvalues should be correct
c for indices ierr+1,...,n.
c
c ierr is set to
c zero for normal return,
c j if the limit of 30*n iterations is exhausted
c while the j-th eigenvalue is being sought.
c
c calls cdiv for complex division.
c calls csroot for complex square root.
c calls pythag for dsqrt(a*a + b*b) .
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
ierr = 0
if (low .eq. igh) go to 180
c .......... create real subdiagonal elements ..........
l = low + 1
c
do 170 i = l, igh
ll = min0(i+1,igh)
if (hi(i,i-1) .eq. 0.0d0) go to 170
norm = pythag(hr(i,i-1),hi(i,i-1))
yr = hr(i,i-1) / norm
yi = hi(i,i-1) / norm
hr(i,i-1) = norm
hi(i,i-1) = 0.0d0
c
do 155 j = i, igh
si = yr * hi(i,j) - yi * hr(i,j)
hr(i,j) = yr * hr(i,j) + yi * hi(i,j)
hi(i,j) = si
155 continue
c
do 160 j = low, ll
si = yr * hi(j,i) + yi * hr(j,i)
hr(j,i) = yr * hr(j,i) - yi * hi(j,i)
hi(j,i) = si
160 continue
c
170 continue
c .......... store roots isolated by cbal ..........
180 do 200 i = 1, n
if (i .ge. low .and. i .le. igh) go to 200
wr(i) = hr(i,i)
wi(i) = hi(i,i)
200 continue
c
en = igh
tr = 0.0d0
ti = 0.0d0
itn = 30*n
c .......... search for next eigenvalue ..........
220 if (en .lt. low) go to 1001
its = 0
enm1 = en - 1
c .......... look for single small sub-diagonal element
c for l=en step -1 until low d0 -- ..........
240 do 260 ll = low, en
l = en + low - ll
if (l .eq. low) go to 300
tst1 = dabs(hr(l-1,l-1)) + dabs(hi(l-1,l-1))
x + dabs(hr(l,l)) + dabs(hi(l,l))
tst2 = tst1 + dabs(hr(l,l-1))
if (tst2 .eq. tst1) go to 300
260 continue
c .......... form shift ..........
300 if (l .eq. en) go to 660
if (itn .eq. 0) go to 1000
if (its .eq. 10 .or. its .eq. 20) go to 320
sr = hr(en,en)
si = hi(en,en)
xr = hr(enm1,en) * hr(en,enm1)
xi = hi(enm1,en) * hr(en,enm1)
if (xr .eq. 0.0d0 .and. xi .eq. 0.0d0) go to 340
yr = (hr(enm1,enm1) - sr) / 2.0d0
yi = (hi(enm1,enm1) - si) / 2.0d0
call csroot(yr**2-yi**2+xr,2.0d0*yr*yi+xi,zzr,zzi)
if (yr * zzr + yi * zzi .ge. 0.0d0) go to 310
zzr = -zzr
zzi = -zzi
310 call cdiv(xr,xi,yr+zzr,yi+zzi,xr,xi)
sr = sr - xr
si = si - xi
go to 340
c .......... form exceptional shift ..........
320 sr = dabs(hr(en,enm1)) + dabs(hr(enm1,en-2))
si = 0.0d0
c
340 do 360 i = low, en
hr(i,i) = hr(i,i) - sr
hi(i,i) = hi(i,i) - si
360 continue
c
tr = tr + sr
ti = ti + si
its = its + 1
itn = itn - 1
c .......... reduce to triangle (rows) ..........
lp1 = l + 1
c
do 500 i = lp1, en
sr = hr(i,i-1)
hr(i,i-1) = 0.0d0
norm = pythag(pythag(hr(i-1,i-1),hi(i-1,i-1)),sr)
xr = hr(i-1,i-1) / norm
wr(i-1) = xr
xi = hi(i-1,i-1) / norm
wi(i-1) = xi
hr(i-1,i-1) = norm
hi(i-1,i-1) = 0.0d0
hi(i,i-1) = sr / norm
c
do 490 j = i, en
yr = hr(i-1,j)
yi = hi(i-1,j)
zzr = hr(i,j)
zzi = hi(i,j)
hr(i-1,j) = xr * yr + xi * yi + hi(i,i-1) * zzr
hi(i-1,j) = xr * yi - xi * yr + hi(i,i-1) * zzi
hr(i,j) = xr * zzr - xi * zzi - hi(i,i-1) * yr
hi(i,j) = xr * zzi + xi * zzr - hi(i,i-1) * yi
490 continue
c
500 continue
c
si = hi(en,en)
if (si .eq. 0.0d0) go to 540
norm = pythag(hr(en,en),si)
sr = hr(en,en) / norm
si = si / norm
hr(en,en) = norm
hi(en,en) = 0.0d0
c .......... inverse operation (columns) ..........
540 do 600 j = lp1, en
xr = wr(j-1)
xi = wi(j-1)
c
do 580 i = l, j
yr = hr(i,j-1)
yi = 0.0d0
zzr = hr(i,j)
zzi = hi(i,j)
if (i .eq. j) go to 560
yi = hi(i,j-1)
hi(i,j-1) = xr * yi + xi * yr + hi(j,j-1) * zzi
560 hr(i,j-1) = xr * yr - xi * yi + hi(j,j-1) * zzr
hr(i,j) = xr * zzr + xi * zzi - hi(j,j-1) * yr
hi(i,j) = xr * zzi - xi * zzr - hi(j,j-1) * yi
580 continue
c
600 continue
c
if (si .eq. 0.0d0) go to 240
c
do 630 i = l, en
yr = hr(i,en)
yi = hi(i,en)
hr(i,en) = sr * yr - si * yi
hi(i,en) = sr * yi + si * yr
630 continue
c
go to 240
c .......... a root found ..........
660 wr(en) = hr(en,en) + tr
wi(en) = hi(en,en) + ti
en = enm1
go to 220
c .......... set error -- all eigenvalues have not
c converged after 30*n iterations ..........
1000 ierr = en
1001 return
end