home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
libcruft
/
linpack
/
dgeco.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
6KB
|
194 lines
SUBROUTINE DGECO(A,LDA,N,IPVT,RCOND,Z)
INTEGER LDA,N,IPVT(1)
DOUBLE PRECISION A(LDA,1),Z(1)
DOUBLE PRECISION RCOND
C
C DGECO FACTORS A DOUBLE PRECISION MATRIX BY GAUSSIAN ELIMINATION
C AND ESTIMATES THE CONDITION OF THE MATRIX.
C
C IF RCOND IS NOT NEEDED, DGEFA IS SLIGHTLY FASTER.
C TO SOLVE A*X = B , FOLLOW DGECO BY DGESL.
C TO COMPUTE INVERSE(A)*C , FOLLOW DGECO BY DGESL.
C TO COMPUTE DETERMINANT(A) , FOLLOW DGECO BY DGEDI.
C TO COMPUTE INVERSE(A) , FOLLOW DGECO BY DGEDI.
C
C ON ENTRY
C
C A DOUBLE PRECISION(LDA, N)
C THE MATRIX TO BE FACTORED.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C ON RETURN
C
C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
C WHICH WERE USED TO OBTAIN IT.
C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
C
C IPVT INTEGER(N)
C AN INTEGER VECTOR OF PIVOT INDICES.
C
C RCOND DOUBLE PRECISION
C AN ESTIMATE OF THE RECIPROCAL CONDITION OF A .
C FOR THE SYSTEM A*X = B , RELATIVE PERTURBATIONS
C IN A AND B OF SIZE EPSILON MAY CAUSE
C RELATIVE PERTURBATIONS IN X OF SIZE EPSILON/RCOND .
C IF RCOND IS SO SMALL THAT THE LOGICAL EXPRESSION
C 1.0 + RCOND .EQ. 1.0
C IS TRUE, THEN A MAY BE SINGULAR TO WORKING
C PRECISION. IN PARTICULAR, RCOND IS ZERO IF
C EXACT SINGULARITY IS DETECTED OR THE ESTIMATE
C UNDERFLOWS.
C
C Z DOUBLE PRECISION(N)
C A WORK VECTOR WHOSE CONTENTS ARE USUALLY UNIMPORTANT.
C IF A IS CLOSE TO A SINGULAR MATRIX, THEN Z IS
C AN APPROXIMATE NULL VECTOR IN THE SENSE THAT
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C LINPACK DGEFA
C BLAS DAXPY,DDOT,DSCAL,DASUM
C FORTRAN DABS,DMAX1,DSIGN
C
C INTERNAL VARIABLES
C
DOUBLE PRECISION DDOT,EK,T,WK,WKM
DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
INTEGER INFO,J,K,KB,KP1,L
C
C
C COMPUTE 1-NORM OF A
C
ANORM = 0.0D0
DO 10 J = 1, N
ANORM = DMAX1(ANORM,DASUM(N,A(1,J),1))
10 CONTINUE
C
C FACTOR
C
CALL DGEFA(A,LDA,N,IPVT,INFO)
C
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
C OVERFLOW.
C
C SOLVE TRANS(U)*W = E
C
EK = 1.0D0
DO 20 J = 1, N
Z(J) = 0.0D0
20 CONTINUE
DO 100 K = 1, N
IF (Z(K) .NE. 0.0D0) EK = DSIGN(EK,-Z(K))
IF (DABS(EK-Z(K)) .LE. DABS(A(K,K))) GO TO 30
S = DABS(A(K,K))/DABS(EK-Z(K))
CALL DSCAL(N,S,Z,1)
EK = S*EK
30 CONTINUE
WK = EK - Z(K)
WKM = -EK - Z(K)
S = DABS(WK)
SM = DABS(WKM)
IF (A(K,K) .EQ. 0.0D0) GO TO 40
WK = WK/A(K,K)
WKM = WKM/A(K,K)
GO TO 50
40 CONTINUE
WK = 1.0D0
WKM = 1.0D0
50 CONTINUE
KP1 = K + 1
IF (KP1 .GT. N) GO TO 90
DO 60 J = KP1, N
SM = SM + DABS(Z(J)+WKM*A(K,J))
Z(J) = Z(J) + WK*A(K,J)
S = S + DABS(Z(J))
60 CONTINUE
IF (S .GE. SM) GO TO 80
T = WKM - WK
WK = WKM
DO 70 J = KP1, N
Z(J) = Z(J) + T*A(K,J)
70 CONTINUE
80 CONTINUE
90 CONTINUE
Z(K) = WK
100 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
C
C SOLVE TRANS(L)*Y = W
C
DO 120 KB = 1, N
K = N + 1 - KB
IF (K .LT. N) Z(K) = Z(K) + DDOT(N-K,A(K+1,K),1,Z(K+1),1)
IF (DABS(Z(K)) .LE. 1.0D0) GO TO 110
S = 1.0D0/DABS(Z(K))
CALL DSCAL(N,S,Z,1)
110 CONTINUE
L = IPVT(K)
T = Z(L)
Z(L) = Z(K)
Z(K) = T
120 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
C
YNORM = 1.0D0
C
C SOLVE L*V = Y
C
DO 140 K = 1, N
L = IPVT(K)
T = Z(L)
Z(L) = Z(K)
Z(K) = T
IF (K .LT. N) CALL DAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
IF (DABS(Z(K)) .LE. 1.0D0) GO TO 130
S = 1.0D0/DABS(Z(K))
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
130 CONTINUE
140 CONTINUE
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
C
C SOLVE U*Z = V
C
DO 160 KB = 1, N
K = N + 1 - KB
IF (DABS(Z(K)) .LE. DABS(A(K,K))) GO TO 150
S = DABS(A(K,K))/DABS(Z(K))
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
150 CONTINUE
IF (A(K,K) .NE. 0.0D0) Z(K) = Z(K)/A(K,K)
IF (A(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
T = -Z(K)
CALL DAXPY(K-1,T,A(1,K),1,Z(1),1)
160 CONTINUE
C MAKE ZNORM = 1.0
S = 1.0D0/DASUM(N,Z,1)
CALL DSCAL(N,S,Z,1)
YNORM = S*YNORM
C
IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
RETURN
END