home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
octave-1.1.1p1-src.tgz
/
tar.out
/
fsf
/
octave
/
liboctave
/
MArray.cc
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-28
|
11KB
|
546 lines
// MArray.cc -*- C++ -*-
/*
Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, write to the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "MArray.h"
#include "lo-error.h"
// Nothing like a little CPP abuse to brighten everyone's day. Would
// have been nice to do this with template functions but as of 2.5.x,
// g++ seems to fail to resolve them properly.
#define DO_VS_OP(OP) \
int l = a.length (); \
T *result = 0; \
if (l > 0) \
{ \
result = new T [l]; \
const T *x = a.data (); \
for (int i = 0; i < l; i++) \
result[i] = x[i] OP s; \
}
#define DO_SV_OP(OP) \
int l = a.length (); \
T *result = 0; \
if (l > 0) \
{ \
result = new T [l]; \
const T *x = a.data (); \
for (int i = 0; i < l; i++) \
result[i] = s OP x[i]; \
}
#define DO_VV_OP(OP) \
T *result = 0; \
if (l > 0) \
{ \
result = new T [l]; \
const T *x = a.data (); \
const T *y = b.data (); \
for (int i = 0; i < l; i++) \
result[i] = x[i] OP y[i]; \
}
#define NEG_V \
int l = a.length (); \
T *result = 0; \
if (l > 0) \
{ \
result = new T [l]; \
const T *x = a.data (); \
for (int i = 0; i < l; i++) \
result[i] = -x[i]; \
}
/*
* One dimensional array with math ops.
*/
// Element by element MArray by scalar ops.
template <class T>
MArray<T>
operator + (const MArray<T>& a, const T& s)
{
DO_VS_OP (+);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator - (const MArray<T>& a, const T& s)
{
DO_VS_OP (-);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator * (const MArray<T>& a, const T& s)
{
DO_VS_OP (*);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator / (const MArray<T>& a, const T& s)
{
DO_VS_OP (/);
return MArray<T> (result, l);
}
// Element by element scalar by MArray ops.
template <class T>
MArray<T>
operator + (const T& s, const MArray<T>& a)
{
DO_SV_OP (+);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator - (const T& s, const MArray<T>& a)
{
DO_SV_OP (-);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator * (const T& s, const MArray<T>& a)
{
DO_SV_OP (*);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator / (const T& s, const MArray<T>& a)
{
DO_SV_OP (/);
return MArray<T> (result, l);
}
// Element by element MArray by MArray ops.
template <class T>
MArray<T>
operator + (const MArray<T>& a, const MArray<T>& b)
{
int l = a.length ();
if (l != b.length ())
{
(*current_liboctave_error_handler)
("nonconformant array addition attempted");
return MArray<T> ();
}
if (l == 0)
return MArray<T> ();
DO_VV_OP (+);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
operator - (const MArray<T>& a, const MArray<T>& b)
{
int l = a.length ();
if (l != b.length ())
{
(*current_liboctave_error_handler)
("nonconformant array subtraction attempted");
return MArray<T> ();
}
if (l == 0)
return MArray<T> ();
DO_VV_OP (-);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
product (const MArray<T>& a, const MArray<T>& b)
{
int l = a.length ();
if (l != b.length ())
{
(*current_liboctave_error_handler)
("nonconformant array product attempted");
return MArray<T> ();
}
if (l == 0)
return MArray<T> ();
DO_VV_OP (*);
return MArray<T> (result, l);
}
template <class T>
MArray<T>
quotient (const MArray<T>& a, const MArray<T>& b)
{
int l = a.length ();
if (l != b.length ())
{
(*current_liboctave_error_handler)
("nonconformant array quotient attempted");
return MArray<T> ();
}
if (l == 0)
return MArray<T> ();
DO_VV_OP (/);
return MArray<T> (result, l);
}
// Unary MArray ops.
template <class T>
MArray<T>
operator - (const MArray<T>& a)
{
NEG_V;
return MArray<T> (result, l);
}
/*
* Two dimensional array with math ops.
*/
template <class T>
MArray2<T>::MArray2 (const MDiagArray<T>& a)
: Array2<T> (a.rows (), a.cols (), T (0))
{
for (int i = 0; i < a.length (); i++)
elem (i, i) = a.elem (i, i);
}
// Element by element MArray2 by scalar ops.
template <class T>
MArray2<T>
operator + (const MArray2<T>& a, const T& s)
{
DO_VS_OP (+);
return MArray2<T> (result, a.rows (), a.cols ());
}
template <class T>
MArray2<T>
operator - (const MArray2<T>& a, const T& s)
{
DO_VS_OP (-);
return MArray2<T> (result, a.rows (), a.cols ());
}
template <class T>
MArray2<T>
operator * (const MArray2<T>& a, const T& s)
{
DO_VS_OP (*);
return MArray2<T> (result, a.rows (), a.cols ());
}
template <class T>
MArray2<T>
operator / (const MArray2<T>& a, const T& s)
{
DO_VS_OP (/);
return MArray2<T> (result, a.rows (), a.cols ());
}
// Element by element scalar by MArray2 ops.
template <class T>
MArray2<T>
operator + (const T& s, const MArray2<T>& a)
{
DO_SV_OP (+);
return MArray2<T> (result, a.rows (), a.cols ());
}
template <class T>
MArray2<T>
operator - (const T& s, const MArray2<T>& a)
{
DO_SV_OP (-);
return MArray2<T> (result, a.rows (), a.cols ());
}
template <class T>
MArray2<T>
operator * (const T& s, const MArray2<T>& a)
{
DO_SV_OP (*);
return MArray2<T> (result, a.rows (), a.cols ());
}
template <class T>
MArray2<T>
operator / (const T& s, const MArray2<T>& a)
{
DO_SV_OP (/);
return MArray2<T> (result, a.rows (), a.cols ());
}
// Element by element MArray2 by MArray2 ops.
template <class T>
MArray2<T>
operator + (const MArray2<T>& a, const MArray2<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant array addition attempted");
return MArray2<T> ();
}
if (r == 0 || c == 0)
return MArray2<T> ();
int l = a.length ();
DO_VV_OP (+);
return MArray2<T> (result, r, c);
}
template <class T>
MArray2<T>
operator - (const MArray2<T>& a, const MArray2<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant array subtraction attempted");
return MArray2<T> ();
}
if (r == 0 || c == 0)
return MArray2<T> ();
int l = a.length ();
DO_VV_OP (-);
return MArray2<T> (result, r, c);
}
template <class T>
MArray2<T>
product (const MArray2<T>& a, const MArray2<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant array product attempted");
return MArray2<T> ();
}
if (r == 0 || c == 0)
return MArray2<T> ();
int l = a.length ();
DO_VV_OP (*);
return MArray2<T> (result, r, c);
}
template <class T>
MArray2<T>
quotient (const MArray2<T>& a, const MArray2<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant array quotient attempted");
return MArray2<T> ();
}
if (r == 0 || c == 0)
return MArray2<T> ();
int l = a.length ();
DO_VV_OP (/);
return MArray2<T> (result, r, c);
}
// Unary MArray2 ops.
template <class T>
MArray2<T>
operator - (const MArray2<T>& a)
{
NEG_V;
return MArray2<T> (result, a.rows (), a.cols ());
}
/*
* Two dimensional diagonal array with math ops.
*/
// Element by element MDiagArray by scalar ops.
template <class T>
MDiagArray<T>
operator * (const MDiagArray<T>& a, const T& s)
{
DO_VS_OP (*);
return MDiagArray<T> (result, a.rows (), a.cols ());
}
template <class T>
MDiagArray<T>
operator / (const MDiagArray<T>& a, const T& s)
{
DO_VS_OP (/);
return MDiagArray<T> (result, a.rows (), a.cols ());
}
// Element by element scalar by MDiagArray ops.
template <class T>
MDiagArray<T>
operator * (const T& s, const MDiagArray<T>& a)
{
DO_SV_OP (*);
return MDiagArray<T> (result, a.rows (), a.cols ());
}
// Element by element MDiagArray by MDiagArray ops.
template <class T>
MDiagArray<T>
operator + (const MDiagArray<T>& a, const MDiagArray<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant diagonal array addition attempted");
return MDiagArray<T> ();
}
if (c == 0 || r == 0)
return MDiagArray<T> ();
int l = a.length ();
DO_VV_OP (+);
return MDiagArray<T> (result, r, c);
}
template <class T>
MDiagArray<T>
operator - (const MDiagArray<T>& a, const MDiagArray<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant diagonal array subtraction attempted");
return MDiagArray<T> ();
}
if (c == 0 || r == 0)
return MDiagArray<T> ();
int l = a.length ();
DO_VV_OP (-);
return MDiagArray<T> (result, r, c);
}
template <class T>
MDiagArray<T>
product (const MDiagArray<T>& a, const MDiagArray<T>& b)
{
int r = a.rows ();
int c = a.cols ();
if (r != b.rows () || c != b.cols ())
{
(*current_liboctave_error_handler)
("nonconformant diagonal array product attempted");
return MDiagArray<T> ();
}
if (c == 0 || r == 0)
return MDiagArray<T> ();
int l = a.length ();
DO_VV_OP (*);
return MDiagArray<T> (result, r, c);
}
// Unary MDiagArray ops.
template <class T>
MDiagArray<T>
operator - (const MDiagArray<T>& a)
{
NEG_V;
return MDiagArray<T> (result, a.rows (), a.cols ());
}
#undef DO_SV_OP
#undef DO_VS_OP
#undef DO_VV_OP
#undef NEG_V
#if 0
#ifdef OCTAVE
typedefMArray<double> octave_mad_template_type;
typedefMArray2<double> octave_ma2d_template_type;
typedefMDiagArray<double> octave_mdad_template_type;
#include <Complex.h>
typedefMArray<Complex> octave_mac_template_type;
typedefMArray2<Complex> octave_ma2c_template_type;
typedefMDiagArray<Complex> octave_mdac_template_type;
#endif
#endif
/*
;;; Local Variables: ***
;;; mode: C++ ***
;;; page-delimiter: "^/\\*" ***
;;; End: ***
*/