home *** CD-ROM | disk | FTP | other *** search
Text File | 1993-12-07 | 58.1 KB | 2,448 lines |
- Newsgroups: comp.sources.unix
- From: dbell@canb.auug.org.au (David I. Bell)
- Subject: v27i138: calc-2.9.0 - arbitrary precision C-like programmable calculator, Part11/19
- References: <1.755316719.21314@gw.home.vix.com>
- Sender: unix-sources-moderator@gw.home.vix.com
- Approved: vixie@gw.home.vix.com
-
- Submitted-By: dbell@canb.auug.org.au (David I. Bell)
- Posting-Number: Volume 27, Issue 138
- Archive-Name: calc-2.9.0/part11
-
- #!/bin/sh
- # this is part 11 of a multipart archive
- # do not concatenate these parts, unpack them in order with /bin/sh
- # file calc2.9.0/value.c continued
- #
- CurArch=11
- if test ! -r s2_seq_.tmp
- then echo "Please unpack part 1 first!"
- exit 1; fi
- ( read Scheck
- if test "$Scheck" != $CurArch
- then echo "Please unpack part $Scheck next!"
- exit 1;
- else exit 0; fi
- ) < s2_seq_.tmp || exit 1
- echo "x - Continuing file calc2.9.0/value.c"
- sed 's/^X//' << 'SHAR_EOF' >> calc2.9.0/value.c
- X * Raise one value to another value's power, within the specified error.
- X * Result is placed in the indicated location.
- X */
- Xvoid
- Xpowervalue(v1, v2, v3, vres)
- X VALUE *v1, *v2, *v3, *vres;
- X{
- X NUMBER *epsilon;
- X COMPLEX *c, ctmp;
- X
- X vres->v_type = V_NULL;
- X if (v3->v_type != V_NUM)
- X math_error("Non-real epsilon value for power");
- X epsilon = v3->v_num;
- X if (qisneg(epsilon) || qiszero(epsilon))
- X math_error("Non-positive epsilon value for power");
- X switch (TWOVAL(v1->v_type, v2->v_type)) {
- X case TWOVAL(V_NUM, V_NUM):
- X vres->v_num = qpower(v1->v_num, v2->v_num, epsilon);
- X vres->v_type = V_NUM;
- X return;
- X case TWOVAL(V_NUM, V_COM):
- X ctmp.real = v1->v_num;
- X ctmp.imag = &_qzero_;
- X ctmp.links = 1;
- X vres->v_com = cpower(&ctmp, v2->v_com, epsilon);
- X break;
- X case TWOVAL(V_COM, V_NUM):
- X ctmp.real = v2->v_num;
- X ctmp.imag = &_qzero_;
- X ctmp.links = 1;
- X vres->v_com = cpower(v1->v_com, &ctmp, epsilon);
- X break;
- X case TWOVAL(V_COM, V_COM):
- X vres->v_com = cpower(v1->v_com, v2->v_com, epsilon);
- X break;
- X default:
- X math_error("Illegal value for raising to power");
- X }
- X /*
- X * Here for any complex result.
- X */
- X vres->v_type = V_COM;
- X c = vres->v_com;
- X if (!cisreal(c))
- X return;
- X vres->v_num = qlink(c->real);
- X vres->v_type = V_NUM;
- X comfree(c);
- X}
- X
- X
- X/*
- X * Divide one arbitrary value by another one.
- X * Result is placed in the indicated location.
- X */
- Xvoid
- Xdivvalue(v1, v2, vres)
- X VALUE *v1, *v2, *vres;
- X{
- X COMPLEX *c;
- X COMPLEX ctmp;
- X VALUE tmpval;
- X
- X vres->v_type = V_NULL;
- X switch (TWOVAL(v1->v_type, v2->v_type)) {
- X case TWOVAL(V_NUM, V_NUM):
- X vres->v_num = qdiv(v1->v_num, v2->v_num);
- X vres->v_type = V_NUM;
- X return;
- X case TWOVAL(V_COM, V_NUM):
- X vres->v_com = cdivq(v1->v_com, v2->v_num);
- X vres->v_type = V_COM;
- X return;
- X case TWOVAL(V_NUM, V_COM):
- X if (qiszero(v1->v_num)) {
- X vres->v_num = qlink(&_qzero_);
- X vres->v_type = V_NUM;
- X return;
- X }
- X ctmp.real = v1->v_num;
- X ctmp.imag = &_qzero_;
- X ctmp.links = 1;
- X vres->v_com = cdiv(&ctmp, v2->v_com);
- X vres->v_type = V_COM;
- X return;
- X case TWOVAL(V_COM, V_COM):
- X vres->v_com = cdiv(v1->v_com, v2->v_com);
- X vres->v_type = V_COM;
- X c = vres->v_com;
- X if (cisreal(c)) {
- X vres->v_num = qlink(c->real);
- X vres->v_type = V_NUM;
- X comfree(c);
- X }
- X return;
- X case TWOVAL(V_MAT, V_NUM):
- X case TWOVAL(V_MAT, V_COM):
- X invertvalue(v2, &tmpval);
- X vres->v_mat = matmulval(v1->v_mat, &tmpval);
- X vres->v_type = V_MAT;
- X freevalue(&tmpval);
- X return;
- X default:
- X if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ))
- X math_error("Non-compatible values for divide");
- X *vres = objcall(OBJ_DIV, v1, v2, NULL_VALUE);
- X return;
- X }
- X}
- X
- X
- X/*
- X * Divide one arbitrary value by another one keeping only the integer part.
- X * Result is placed in the indicated location.
- X */
- Xvoid
- Xquovalue(v1, v2, vres)
- X VALUE *v1, *v2, *vres;
- X{
- X COMPLEX *c;
- X
- X vres->v_type = V_NULL;
- X switch (TWOVAL(v1->v_type, v2->v_type)) {
- X case TWOVAL(V_NUM, V_NUM):
- X vres->v_num = qquo(v1->v_num, v2->v_num);
- X vres->v_type = V_NUM;
- X return;
- X case TWOVAL(V_COM, V_NUM):
- X vres->v_com = cquoq(v1->v_com, v2->v_num);
- X vres->v_type = V_COM;
- X c = vres->v_com;
- X if (cisreal(c)) {
- X vres->v_num = qlink(c->real);
- X vres->v_type = V_NUM;
- X comfree(c);
- X }
- X return;
- X case TWOVAL(V_MAT, V_NUM):
- X case TWOVAL(V_MAT, V_COM):
- X vres->v_mat = matquoval(v1->v_mat, v2);
- X vres->v_type = V_MAT;
- X return;
- X default:
- X if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ))
- X math_error("Non-compatible values for quotient");
- X *vres = objcall(OBJ_QUO, v1, v2, NULL_VALUE);
- X return;
- X }
- X}
- X
- X
- X/*
- X * Divide one arbitrary value by another one keeping only the remainder.
- X * Result is placed in the indicated location.
- X */
- Xvoid
- Xmodvalue(v1, v2, vres)
- X VALUE *v1, *v2, *vres;
- X{
- X COMPLEX *c;
- X
- X vres->v_type = V_NULL;
- X switch (TWOVAL(v1->v_type, v2->v_type)) {
- X case TWOVAL(V_NUM, V_NUM):
- X vres->v_num = qmod(v1->v_num, v2->v_num);
- X vres->v_type = V_NUM;
- X return;
- X case TWOVAL(V_COM, V_NUM):
- X vres->v_com = cmodq(v1->v_com, v2->v_num);
- X vres->v_type = V_COM;
- X c = vres->v_com;
- X if (cisreal(c)) {
- X vres->v_num = qlink(c->real);
- X vres->v_type = V_NUM;
- X comfree(c);
- X }
- X return;
- X case TWOVAL(V_MAT, V_NUM):
- X case TWOVAL(V_MAT, V_COM):
- X vres->v_mat = matmodval(v1->v_mat, v2);
- X vres->v_type = V_MAT;
- X return;
- X default:
- X if ((v1->v_type != V_OBJ) && (v2->v_type != V_OBJ))
- X math_error("Non-compatible values for mod");
- X *vres = objcall(OBJ_MOD, v1, v2, NULL_VALUE);
- X return;
- X }
- X}
- X
- X
- X/*
- X * Test an arbitrary value to see if it is equal to "zero".
- X * The definition of zero varies depending on the value type. For example,
- X * the null string is "zero", and a matrix with zero values is "zero".
- X * Returns TRUE if value is not equal to zero.
- X */
- XBOOL
- Xtestvalue(vp)
- X VALUE *vp;
- X{
- X VALUE val;
- X
- X switch (vp->v_type) {
- X case V_NUM:
- X return !qiszero(vp->v_num);
- X case V_COM:
- X return !ciszero(vp->v_com);
- X case V_STR:
- X return (vp->v_str[0] != '\0');
- X case V_MAT:
- X return mattest(vp->v_mat);
- X case V_LIST:
- X return (vp->v_list->l_count != 0);
- X case V_ASSOC:
- X return (vp->v_assoc->a_count != 0);
- X case V_FILE:
- X return validid(vp->v_file);
- X case V_NULL:
- X return FALSE;
- X case V_OBJ:
- X val = objcall(OBJ_TEST, vp, NULL_VALUE, NULL_VALUE);
- X return (val.v_int != 0);
- X default:
- X return TRUE;
- X }
- X}
- X
- X
- X/*
- X * Compare two values for equality.
- X * Returns TRUE if the two values differ.
- X */
- XBOOL
- Xcomparevalue(v1, v2)
- X VALUE *v1, *v2;
- X{
- X int r;
- X VALUE val;
- X
- X if ((v1->v_type == V_OBJ) || (v2->v_type == V_OBJ)) {
- X val = objcall(OBJ_CMP, v1, v2, NULL_VALUE);
- X return (val.v_int != 0);
- X }
- X if (v1 == v2)
- X return FALSE;
- X if (v1->v_type != v2->v_type)
- X return TRUE;
- X switch (v1->v_type) {
- X case V_NUM:
- X r = qcmp(v1->v_num, v2->v_num);
- X break;
- X case V_COM:
- X r = ccmp(v1->v_com, v2->v_com);
- X break;
- X case V_STR:
- X r = ((v1->v_str != v2->v_str) &&
- X ((v1->v_str[0] - v2->v_str[0]) ||
- X strcmp(v1->v_str, v2->v_str)));
- X break;
- X case V_MAT:
- X r = matcmp(v1->v_mat, v2->v_mat);
- X break;
- X case V_LIST:
- X r = listcmp(v1->v_list, v2->v_list);
- X break;
- X case V_ASSOC:
- X r = assoccmp(v1->v_assoc, v2->v_assoc);
- X break;
- X case V_NULL:
- X r = FALSE;
- X break;
- X case V_FILE:
- X r = (v1->v_file != v2->v_file);
- X break;
- X default:
- X math_error("Illegal values for comparevalue");
- X }
- X return (r != 0);
- X}
- X
- X
- X/*
- X * Compare two values for their relative values.
- X * Returns minus one if the first value is less than the second one,
- X * one if the first value is greater than the second one, and
- X * zero if they are equal.
- X */
- XFLAG
- Xrelvalue(v1, v2)
- X VALUE *v1, *v2;
- X{
- X int r;
- X VALUE val;
- X
- X if ((v1->v_type == V_OBJ) || (v2->v_type == V_OBJ)) {
- X val = objcall(OBJ_REL, v1, v2, NULL_VALUE);
- X return val.v_int;
- X }
- X if (v1 == v2)
- X return 0;
- X if (v1->v_type != v2->v_type)
- X math_error("Relative comparison of differing types");
- X switch (v1->v_type) {
- X case V_NUM:
- X r = qrel(v1->v_num, v2->v_num);
- X break;
- X case V_STR:
- X r = strcmp(v1->v_str, v2->v_str);
- X break;
- X case V_NULL:
- X r = 0;
- X break;
- X default:
- X math_error("Illegal value for relative comparison");
- X }
- X if (r < 0)
- X return -1;
- X return (r != 0);
- X}
- X
- X
- X/*
- X * Calculate a hash value for a value.
- X * The hash does not have to be a perfect one, it is only used for
- X * making associations faster.
- X */
- XHASH
- Xhashvalue(vp)
- X VALUE *vp;
- X{
- X switch (vp->v_type) {
- X case V_INT:
- X return ((long) vp->v_int);
- X break;
- X case V_NUM:
- X return qhash(vp->v_num);
- X break;
- X case V_COM:
- X return chash(vp->v_com);
- X break;
- X case V_STR:
- X return hashstr(vp->v_str);
- X break;
- X case V_NULL:
- X return 0;
- X break;
- X case V_OBJ:
- X return objhash(vp->v_obj);
- X break;
- X case V_LIST:
- X return listhash(vp->v_list);
- X break;
- X case V_ASSOC:
- X return assochash(vp->v_assoc);
- X break;
- X case V_MAT:
- X return mathash(vp->v_mat);
- X break;
- X case V_FILE:
- X return ((long) vp->v_file);
- X break;
- X default:
- X math_error("Hashing unknown value");
- X }
- X return 0;
- X}
- X
- X
- X/*
- X * Print the value of a descriptor in one of several formats.
- X * If flags contains PRINT_SHORT, then elements of arrays and lists
- X * will not be printed. If flags contains PRINT_UNAMBIG, then quotes
- X * are placed around strings and the null value is explicitly printed.
- X */
- Xvoid
- Xprintvalue(vp, flags)
- X VALUE *vp;
- X{
- X switch (vp->v_type) {
- X case V_NUM:
- X qprintnum(vp->v_num, MODE_DEFAULT);
- X break;
- X case V_COM:
- X comprint(vp->v_com);
- X break;
- X case V_STR:
- X if (flags & PRINT_UNAMBIG)
- X math_chr('\"');
- X math_str(vp->v_str);
- X if (flags & PRINT_UNAMBIG)
- X math_chr('\"');
- X break;
- X case V_NULL:
- X if (flags & PRINT_UNAMBIG)
- X math_str("NULL");
- X break;
- X case V_OBJ:
- X (void) objcall(OBJ_PRINT, vp, NULL_VALUE, NULL_VALUE);
- X break;
- X case V_LIST:
- X listprint(vp->v_list,
- X ((flags & PRINT_SHORT) ? 0L : maxprint));
- X break;
- X case V_ASSOC:
- X assocprint(vp->v_assoc,
- X ((flags & PRINT_SHORT) ? 0L : maxprint));
- X break;
- X case V_MAT:
- X matprint(vp->v_mat,
- X ((flags & PRINT_SHORT) ? 0L : maxprint));
- X break;
- X case V_FILE:
- X printid(vp->v_file, flags);
- X break;
- X default:
- X math_error("Printing unknown value");
- X }
- X}
- X
- X/* END CODE */
- SHAR_EOF
- echo "File calc2.9.0/value.c is complete"
- chmod 0644 calc2.9.0/value.c || echo "restore of calc2.9.0/value.c fails"
- set `wc -c calc2.9.0/value.c`;Sum=$1
- if test "$Sum" != "29836"
- then echo original size 29836, current size $Sum;fi
- echo "x - extracting calc2.9.0/value.h (Text)"
- sed 's/^X//' << 'SHAR_EOF' > calc2.9.0/value.h &&
- X/*
- X * Copyright (c) 1993 David I. Bell
- X * Permission is granted to use, distribute, or modify this source,
- X * provided that this copyright notice remains intact.
- X *
- X * Definitions of general values and related routines used by the calculator.
- X */
- X
- X#ifndef VALUE_H
- X#define VALUE_H
- X
- X#include "cmath.h"
- X
- X
- X#define MAXDIM 4 /* maximum number of dimensions in matrices */
- X#define USUAL_ELEMENTS 4 /* usual number of elements for objects */
- X
- X
- X/*
- X * Flags to modify results from the printvalue routine.
- X * These flags are OR'd together.
- X */
- X#define PRINT_NORMAL 0x00 /* print in normal manner */
- X#define PRINT_SHORT 0x01 /* print in short format (no elements) */
- X#define PRINT_UNAMBIG 0x02 /* print in non-ambiguous manner */
- X
- X
- X/*
- X * Definition of values of various types.
- X */
- Xtypedef struct value VALUE;
- Xtypedef struct object OBJECT;
- Xtypedef struct matrix MATRIX;
- Xtypedef struct list LIST;
- Xtypedef struct assoc ASSOC;
- Xtypedef long FILEID;
- X
- X
- Xstruct value {
- X short v_type; /* type of value */
- X short v_subtype; /* other data related to some types */
- X union {
- X long vv_int; /* small integer value */
- X FILEID vv_file; /* id of opened file */
- X NUMBER *vv_num; /* arbitrary sized numeric value */
- X COMPLEX *vv_com; /* complex number */
- X VALUE *vv_addr; /* address of variable value */
- X MATRIX *vv_mat; /* address of matrix */
- X LIST *vv_list; /* address of list */
- X ASSOC *vv_assoc; /* address of association */
- X OBJECT *vv_obj; /* address of object */
- X char *vv_str; /* string value */
- X } v_union;
- X};
- X
- X
- X/*
- X * For ease in referencing
- X */
- X#define v_int v_union.vv_int
- X#define v_file v_union.vv_file
- X#define v_num v_union.vv_num
- X#define v_com v_union.vv_com
- X#define v_addr v_union.vv_addr
- X#define v_str v_union.vv_str
- X#define v_mat v_union.vv_mat
- X#define v_list v_union.vv_list
- X#define v_assoc v_union.vv_assoc
- X#define v_obj v_union.vv_obj
- X#define v_valid v_union.vv_int
- X
- X
- X/*
- X * Value types.
- X */
- X#define V_NULL 0 /* null value */
- X#define V_INT 1 /* normal integer */
- X#define V_NUM 2 /* number */
- X#define V_COM 3 /* complex number */
- X#define V_ADDR 4 /* address of variable value */
- X#define V_STR 5 /* address of string */
- X#define V_MAT 6 /* address of matrix structure */
- X#define V_LIST 7 /* address of list structure */
- X#define V_ASSOC 8 /* address of association structure */
- X#define V_OBJ 9 /* address of object structure */
- X#define V_FILE 10 /* opened file id */
- X#define V_MAX 10 /* highest legal value */
- X
- X#define V_STRLITERAL 0 /* string subtype for literal str */
- X#define V_STRALLOC 1 /* string subtype for allocated str */
- X
- X#define TWOVAL(a,b) ((a) * (V_MAX+1) + (b)) /* for switch of two values */
- X
- X#define NULL_VALUE ((VALUE *) 0)
- X
- X
- Xextern void freevalue MATH_PROTO((VALUE *vp));
- Xextern void copyvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void negvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void addvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void subvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void mulvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void squarevalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void invertvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void roundvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void broundvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void intvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void fracvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void incvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void decvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void conjvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void sqrtvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void rootvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *v3,
- X VALUE *vres));
- Xextern void absvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void normvalue MATH_PROTO((VALUE *vp, VALUE *vres));
- Xextern void shiftvalue MATH_PROTO((VALUE *v1, VALUE *v2, BOOL rightshift,
- X VALUE *vres));
- Xextern void scalevalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void powivalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void powervalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *v3,
- X VALUE *vres));
- Xextern void divvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void quovalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern void modvalue MATH_PROTO((VALUE *v1, VALUE *v2, VALUE *vres));
- Xextern BOOL testvalue MATH_PROTO((VALUE *vp));
- Xextern BOOL comparevalue MATH_PROTO((VALUE *v1, VALUE *v2));
- Xextern FLAG relvalue MATH_PROTO((VALUE *v1, VALUE *v2));
- Xextern HASH hashvalue MATH_PROTO((VALUE *vp));
- Xextern void printvalue MATH_PROTO((VALUE *vp, int flags));
- X
- X
- X
- X/*
- X * Structure of a matrix.
- X */
- Xstruct matrix {
- X long m_dim; /* dimension of matrix */
- X long m_size; /* total number of elements */
- X long m_min[MAXDIM]; /* minimum bound for indices */
- X long m_max[MAXDIM]; /* maximum bound for indices */
- X VALUE m_table[1]; /* actually varying length table */
- X};
- X
- X#define matsize(n) (sizeof(MATRIX) - sizeof(VALUE) + ((n) * sizeof(VALUE)))
- X
- X
- Xextern MATRIX *matadd MATH_PROTO((MATRIX *m1, MATRIX *m2));
- Xextern MATRIX *matsub MATH_PROTO((MATRIX *m1, MATRIX *m2));
- Xextern MATRIX *matmul MATH_PROTO((MATRIX *m1, MATRIX *m2));
- Xextern MATRIX *matneg MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matalloc MATH_PROTO((long size));
- Xextern MATRIX *matcopy MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matsquare MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matinv MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matscale MATH_PROTO((MATRIX *m, long n));
- Xextern MATRIX *matshift MATH_PROTO((MATRIX *m, long n));
- Xextern MATRIX *matmulval MATH_PROTO((MATRIX *m, VALUE *vp));
- Xextern MATRIX *matpowi MATH_PROTO((MATRIX *m, NUMBER *q));
- Xextern MATRIX *matconj MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matquoval MATH_PROTO((MATRIX *m, VALUE *vp));
- Xextern MATRIX *matmodval MATH_PROTO((MATRIX *m, VALUE *vp));
- Xextern MATRIX *matint MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matfrac MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matround MATH_PROTO((MATRIX *m, long places));
- Xextern MATRIX *matbround MATH_PROTO((MATRIX *m, long places));
- Xextern MATRIX *mattrans MATH_PROTO((MATRIX *m));
- Xextern MATRIX *matcross MATH_PROTO((MATRIX *m1, MATRIX *m2));
- Xextern BOOL mattest MATH_PROTO((MATRIX *m));
- Xextern BOOL matcmp MATH_PROTO((MATRIX *m1, MATRIX *m2));
- Xextern long matsearch MATH_PROTO((MATRIX *m, VALUE *vp, long index));
- Xextern long matrsearch MATH_PROTO((MATRIX *m, VALUE *vp, long index));
- Xextern HASH mathash MATH_PROTO((MATRIX *m));
- Xextern VALUE matdet MATH_PROTO((MATRIX *m));
- Xextern VALUE matdot MATH_PROTO((MATRIX *m1, MATRIX *m2));
- Xextern void matfill MATH_PROTO((MATRIX *m, VALUE *v1, VALUE *v2));
- Xextern void matfree MATH_PROTO((MATRIX *m));
- Xextern void matprint MATH_PROTO((MATRIX *m, long max_print));
- Xextern VALUE *matindex MATH_PROTO((MATRIX *mp, BOOL create, long dim,
- X VALUE *indices));
- X
- X
- X#if 0
- Xextern BOOL matisident MATH_PROTO((MATRIX *m));
- X#endif
- X
- X
- X
- X/*
- X * List definitions.
- X * An individual list element.
- X */
- Xtypedef struct listelem LISTELEM;
- Xstruct listelem {
- X LISTELEM *e_next; /* next element in list (or NULL) */
- X LISTELEM *e_prev; /* previous element in list (or NULL) */
- X VALUE e_value; /* value of this element */
- X};
- X
- X
- X/*
- X * Structure for a list of elements.
- X */
- Xstruct list {
- X LISTELEM *l_first; /* first list element (or NULL) */
- X LISTELEM *l_last; /* last list element (or NULL) */
- X LISTELEM *l_cache; /* cached list element (or NULL) */
- X long l_cacheindex; /* index of cached element (or undefined) */
- X long l_count; /* total number of elements in the list */
- X};
- X
- X
- Xextern void insertlistfirst MATH_PROTO((LIST *lp, VALUE *vp));
- Xextern void insertlistlast MATH_PROTO((LIST *lp, VALUE *vp));
- Xextern void insertlistmiddle MATH_PROTO((LIST *lp, long index, VALUE *vp));
- Xextern void removelistfirst MATH_PROTO((LIST *lp, VALUE *vp));
- Xextern void removelistlast MATH_PROTO((LIST *lp, VALUE *vp));
- Xextern void removelistmiddle MATH_PROTO((LIST *lp, long index, VALUE *vp));
- Xextern void listfree MATH_PROTO((LIST *lp));
- Xextern void listprint MATH_PROTO((LIST *lp, long max_print));
- Xextern long listsearch MATH_PROTO((LIST *lp, VALUE *vp, long index));
- Xextern long listrsearch MATH_PROTO((LIST *lp, VALUE *vp, long index));
- Xextern HASH listhash MATH_PROTO((LIST *lp));
- Xextern BOOL listcmp MATH_PROTO((LIST *lp1, LIST *lp2));
- Xextern VALUE *listfindex MATH_PROTO((LIST *lp, long index));
- Xextern LIST *listalloc MATH_PROTO((void));
- Xextern LIST *listcopy MATH_PROTO((LIST *lp));
- X
- X
- X
- X/*
- X * Structures for associations.
- X * Associations are "indexed" by one or more arbitrary values, and are
- X * stored in a hash table with their hash values for quick indexing.
- X */
- Xtypedef struct assocelem ASSOCELEM;
- Xstruct assocelem {
- X ASSOCELEM *e_next; /* next element in list (or NULL) */
- X long e_dim; /* dimension of indexing for this element */
- X HASH e_hash; /* hash value for this element */
- X VALUE e_value; /* value of association */
- X VALUE e_indices[1]; /* index values (variable length) */
- X};
- X
- X
- Xstruct assoc {
- X long a_count; /* number of elements in the association */
- X long a_size; /* current size of association hash table */
- X ASSOCELEM **a_table; /* current hash table for elements */
- X};
- X
- X
- Xextern ASSOC *assocalloc MATH_PROTO((long initsize));
- Xextern ASSOC *assoccopy MATH_PROTO((ASSOC *ap));
- Xextern void assocfree MATH_PROTO((ASSOC *ap));
- Xextern void assocprint MATH_PROTO((ASSOC *ap, long max_print));
- Xextern long assocsearch MATH_PROTO((ASSOC *ap, VALUE *vp, long index));
- Xextern long assocrsearch MATH_PROTO((ASSOC *ap, VALUE *vp, long index));
- Xextern HASH assochash MATH_PROTO((ASSOC *ap));
- Xextern BOOL assoccmp MATH_PROTO((ASSOC *ap1, ASSOC *ap2));
- Xextern VALUE *assocfindex MATH_PROTO((ASSOC *ap, long index));
- Xextern VALUE *associndex MATH_PROTO((ASSOC *ap, BOOL create, long dim,
- X VALUE *indices));
- X
- X
- X/*
- X * Object actions.
- X */
- X#define OBJ_PRINT 0 /* print the value */
- X#define OBJ_ONE 1 /* create the multiplicative identity */
- X#define OBJ_TEST 2 /* test a value for "zero" */
- X#define OBJ_ADD 3 /* add two values */
- X#define OBJ_SUB 4 /* subtrace one value from another */
- X#define OBJ_NEG 5 /* negate a value */
- X#define OBJ_MUL 6 /* multiply two values */
- X#define OBJ_DIV 7 /* divide one value by another */
- X#define OBJ_INV 8 /* invert a value */
- X#define OBJ_ABS 9 /* take absolute value of value */
- X#define OBJ_NORM 10 /* take the norm of a value */
- X#define OBJ_CONJ 11 /* take the conjugate of a value */
- X#define OBJ_POW 12 /* take the power function */
- X#define OBJ_SGN 13 /* return the sign of a value */
- X#define OBJ_CMP 14 /* compare two values for equality */
- X#define OBJ_REL 15 /* compare two values for inequality */
- X#define OBJ_QUO 16 /* integer quotient of values */
- X#define OBJ_MOD 17 /* remainder of division of values */
- X#define OBJ_INT 18 /* integer part of */
- X#define OBJ_FRAC 19 /* fractional part of */
- X#define OBJ_INC 20 /* increment by one */
- X#define OBJ_DEC 21 /* decrement by one */
- X#define OBJ_SQUARE 22 /* square value */
- X#define OBJ_SCALE 23 /* scale by power of two */
- X#define OBJ_SHIFT 24 /* shift left (or right) by number of bits */
- X#define OBJ_ROUND 25 /* round to specified decimal places */
- X#define OBJ_BROUND 26 /* round to specified binary places */
- X#define OBJ_ROOT 27 /* take nth root of value */
- X#define OBJ_SQRT 28 /* take square root of value */
- X#define OBJ_MAXFUNC 28 /* highest function */
- X
- X
- X/*
- X * Definition of an object type.
- X * This is actually a varying sized structure.
- X */
- Xtypedef struct {
- X char *name; /* name of object */
- X int count; /* number of elements defined */
- X int actions[OBJ_MAXFUNC+1]; /* function indices for actions */
- X int elements[1]; /* element indexes (MUST BE LAST) */
- X} OBJECTACTIONS;
- X
- X#define objectactionsize(elements) \
- X (sizeof(OBJECTACTIONS) + ((elements) - 1) * sizeof(int))
- X
- X
- X/*
- X * Structure of an object.
- X * This is actually a varying sized structure.
- X * However, there are always at least USUAL_ELEMENTS values in the object.
- X */
- Xstruct object {
- X OBJECTACTIONS *o_actions; /* action table for this object */
- X VALUE o_table[USUAL_ELEMENTS]; /* object values (MUST BE LAST) */
- X};
- X
- X#define objectsize(elements) \
- X (sizeof(OBJECT) + ((elements) - USUAL_ELEMENTS) * sizeof(VALUE))
- X
- X
- Xextern OBJECT *objcopy MATH_PROTO((OBJECT *op));
- Xextern OBJECT *objalloc MATH_PROTO((long index));
- Xextern VALUE objcall MATH_PROTO((int action, VALUE *v1, VALUE *v2, VALUE *v3));
- Xextern void objfree MATH_PROTO((OBJECT *op));
- Xextern void objuncache MATH_PROTO((void));
- Xextern int addelement MATH_PROTO((char *name));
- Xextern void defineobject MATH_PROTO((char *name, int indices[], int count));
- Xextern int checkobject MATH_PROTO((char *name));
- Xextern void showobjfuncs MATH_PROTO((void));
- Xextern int findelement MATH_PROTO((char *name));
- Xextern int objoffset MATH_PROTO((OBJECT *op, long index));
- Xextern HASH objhash MATH_PROTO((OBJECT *op));
- X
- X#endif
- X
- X/* END CODE */
- SHAR_EOF
- chmod 0644 calc2.9.0/value.h || echo "restore of calc2.9.0/value.h fails"
- set `wc -c calc2.9.0/value.h`;Sum=$1
- if test "$Sum" != "12825"
- then echo original size 12825, current size $Sum;fi
- echo "x - extracting calc2.9.0/version.c (Text)"
- sed 's/^X//' << 'SHAR_EOF' > calc2.9.0/version.c &&
- X/*
- X * Copyright (c) 1993 David I. Bell
- X * Permission is granted to use, distribute, or modify this source,
- X * provided that this copyright notice remains intact.
- X *
- X * version - determine the version of calc
- X */
- X
- X#include "calc.h"
- X
- X#define MAJOR_VER 2 /* major version */
- X#define MINOR_VER 9 /* minor version */
- X#define PATCH_LEVEL 0 /* patch level */
- X
- X
- Xvoid
- Xversion(stream)
- X FILE *stream; /* stream to write version on */
- X{
- X fprintf(stream,
- X "C-style arbitrary precision calculator (version %d.%d.%d)\n",
- X MAJOR_VER, MINOR_VER, PATCH_LEVEL);
- X}
- X
- X/* END CODE */
- SHAR_EOF
- chmod 0644 calc2.9.0/version.c || echo "restore of calc2.9.0/version.c fails"
- set `wc -c calc2.9.0/version.c`;Sum=$1
- if test "$Sum" != "564"
- then echo original size 564, current size $Sum;fi
- echo "x - extracting calc2.9.0/zfunc.c (Text)"
- sed 's/^X//' << 'SHAR_EOF' > calc2.9.0/zfunc.c &&
- X/*
- X * Copyright (c) 1993 David I. Bell
- X * Permission is granted to use, distribute, or modify this source,
- X * provided that this copyright notice remains intact.
- X *
- X * Extended precision integral arithmetic non-primitive routines
- X */
- X
- X#include "zmath.h"
- X
- Xstatic ZVALUE primeprod; /* product of primes under 100 */
- XZVALUE _tenpowers_[32]; /* table of 10^2^n */
- X
- X
- X/*
- X * Compute the factorial of a number.
- X */
- Xvoid
- Xzfact(z, dest)
- X ZVALUE z, *dest;
- X{
- X long ptwo; /* count of powers of two */
- X long n; /* current multiplication value */
- X long m; /* reduced multiplication value */
- X long mul; /* collected value to multiply by */
- X ZVALUE res, temp;
- X
- X if (zisneg(z))
- X math_error("Negative argument for factorial");
- X if (zisbig(z))
- X math_error("Very large factorial");
- X n = (zistiny(z) ? z1tol(z) : z2tol(z));
- X ptwo = 0;
- X mul = 1;
- X res = _one_;
- X /*
- X * Multiply numbers together, but squeeze out all powers of two.
- X * We will put them back in at the end. Also collect multiple
- X * numbers together until there is a risk of overflow.
- X */
- X for (; n > 1; n--) {
- X for (m = n; ((m & 0x1) == 0); m >>= 1)
- X ptwo++;
- X mul *= m;
- X if (mul < BASE1/2)
- X continue;
- X zmuli(res, mul, &temp);
- X zfree(res);
- X res = temp;
- X mul = 1;
- X }
- X /*
- X * Multiply by the remaining value, then scale result by
- X * the proper power of two.
- X */
- X if (mul > 1) {
- X zmuli(res, mul, &temp);
- X zfree(res);
- X res = temp;
- X }
- X zshift(res, ptwo, &temp);
- X zfree(res);
- X *dest = temp;
- X}
- X
- X
- X/*
- X * Compute the product of the primes up to the specified number.
- X */
- Xvoid
- Xzpfact(z, dest)
- X ZVALUE z, *dest;
- X{
- X long n; /* limiting number to multiply by */
- X long p; /* current prime */
- X long i; /* test value */
- X long mul; /* collected value to multiply by */
- X ZVALUE res, temp;
- X
- X if (zisneg(z))
- X math_error("Negative argument for factorial");
- X if (zisbig(z))
- X math_error("Very large factorial");
- X n = (zistiny(z) ? z1tol(z) : z2tol(z));
- X /*
- X * Multiply by the primes in order, collecting multiple numbers
- X * together until there is a chance of overflow.
- X */
- X mul = 1 + (n > 1);
- X res = _one_;
- X for (p = 3; p <= n; p += 2) {
- X for (i = 3; (i * i) <= p; i += 2) {
- X if ((p % i) == 0)
- X goto next;
- X }
- X mul *= p;
- X if (mul < BASE1/2)
- X continue;
- X zmuli(res, mul, &temp);
- X zfree(res);
- X res = temp;
- X mul = 1;
- Xnext: ;
- X }
- X /*
- X * Multiply by the final value if any.
- X */
- X if (mul > 1) {
- X zmuli(res, mul, &temp);
- X zfree(res);
- X res = temp;
- X }
- X *dest = res;
- X}
- X
- X
- X/*
- X * Compute the least common multiple of all the numbers up to the
- X * specified number.
- X */
- Xvoid
- Xzlcmfact(z, dest)
- X ZVALUE z, *dest;
- X{
- X long n; /* limiting number to multiply by */
- X long p; /* current prime */
- X long pp; /* power of prime */
- X long i; /* test value */
- X ZVALUE res, temp;
- X
- X if (zisneg(z) || ziszero(z))
- X math_error("Non-positive argument for lcmfact");
- X if (zisbig(z))
- X math_error("Very large lcmfact");
- X n = (zistiny(z) ? z1tol(z) : z2tol(z));
- X /*
- X * Multiply by powers of the necessary odd primes in order.
- X * The power for each prime is the highest one which is not
- X * more than the specified number.
- X */
- X res = _one_;
- X for (p = 3; p <= n; p += 2) {
- X for (i = 3; (i * i) <= p; i += 2) {
- X if ((p % i) == 0)
- X goto next;
- X }
- X i = p;
- X while (i <= n) {
- X pp = i;
- X i *= p;
- X }
- X zmuli(res, pp, &temp);
- X zfree(res);
- X res = temp;
- Xnext: ;
- X }
- X /*
- X * Finish by scaling by the necessary power of two.
- X */
- X zshift(res, zhighbit(z), dest);
- X zfree(res);
- X}
- X
- X
- X/*
- X * Compute the permutation function M! / (M - N)!.
- X */
- Xvoid
- Xzperm(z1, z2, res)
- X ZVALUE z1, z2, *res;
- X{
- X long count;
- X ZVALUE cur, tmp, ans;
- X
- X if (zisneg(z1) || zisneg(z2))
- X math_error("Negative argument for permutation");
- X if (zrel(z1, z2) < 0)
- X math_error("Second arg larger than first in permutation");
- X if (zisbig(z2))
- X math_error("Very large permutation");
- X count = (zistiny(z2) ? z1tol(z2) : z2tol(z2));
- X zcopy(z1, &ans);
- X zsub(z1, _one_, &cur);
- X while (--count > 0) {
- X zmul(ans, cur, &tmp);
- X zfree(ans);
- X ans = tmp;
- X zsub(cur, _one_, &tmp);
- X zfree(cur);
- X cur = tmp;
- X }
- X zfree(cur);
- X *res = ans;
- X}
- X
- X
- X/*
- X * Compute the combinatorial function M! / ( N! * (M - N)! ).
- X */
- Xvoid
- Xzcomb(z1, z2, res)
- X ZVALUE z1, z2, *res;
- X{
- X ZVALUE ans;
- X ZVALUE mul, div, temp;
- X FULL count, i;
- X HALF dh[2];
- X
- X if (zisneg(z1) || zisneg(z2))
- X math_error("Negative argument for combinatorial");
- X zsub(z1, z2, &temp);
- X if (zisneg(temp)) {
- X zfree(temp);
- X math_error("Second arg larger than first for combinatorial");
- X }
- X if (zisbig(z2) && zisbig(temp)) {
- X zfree(temp);
- X math_error("Very large combinatorial");
- X }
- X count = (zistiny(z2) ? z1tol(z2) : z2tol(z2));
- X i = (zistiny(temp) ? z1tol(temp) : z2tol(temp));
- X if (zisbig(z2) || (!zisbig(temp) && (i < count)))
- X count = i;
- X zfree(temp);
- X mul = z1;
- X div.sign = 0;
- X div.v = dh;
- X ans = _one_;
- X for (i = 1; i <= count; i++) {
- X dh[0] = i & BASE1;
- X dh[1] = i / BASE;
- X div.len = 1 + (dh[1] != 0);
- X zmul(ans, mul, &temp);
- X zfree(ans);
- X zquo(temp, div, &ans);
- X zfree(temp);
- X zsub(mul, _one_, &temp);
- X if (mul.v != z1.v)
- X zfree(mul);
- X mul = temp;
- X }
- X if (mul.v != z1.v)
- X zfree(mul);
- X *res = ans;
- X}
- X
- X
- X/*
- X * Perform a probabilistic primality test (algorithm P in Knuth).
- X * Returns FALSE if definitely not prime, or TRUE if probably prime.
- X * Count determines how many times to check for primality.
- X * The chance of a non-prime passing this test is less than (1/4)^count.
- X * For example, a count of 100 fails for only 1 in 10^60 numbers.
- X */
- XBOOL
- Xzprimetest(z, count)
- X ZVALUE z; /* number to test for primeness */
- X long count;
- X{
- X long ij, ik, ix;
- X ZVALUE zm1, z1, z2, z3, ztmp;
- X HALF val[2];
- X
- X z.sign = 0;
- X if (ziseven(z)) /* if even, not prime if not 2 */
- X return (zistwo(z) != 0);
- X /*
- X * See if the number is small, and is either a small prime,
- X * or is divisible by a small prime.
- X */
- X if (zistiny(z) && (*z.v <= (HALF)(101*101-1))) {
- X ix = *z.v;
- X for (ik = 3; (ik <= 97) && ((ik * ik) <= ix); ik += 2)
- X if ((ix % ik) == 0)
- X return FALSE;
- X return TRUE;
- X }
- X /*
- X * See if the number is divisible by one of the primes 3, 5,
- X * 7, 11, or 13. This is a very easy check.
- X */
- X ij = zmodi(z, 15015L);
- X if (!(ij % 3) || !(ij % 5) || !(ij % 7) || !(ij % 11) || !(ij % 13))
- X return FALSE;
- X /*
- X * Check the gcd of the number and the product of more of the first
- X * few odd primes. We must build the prime product on the first call.
- X */
- X ztmp.sign = 0;
- X ztmp.len = 1;
- X ztmp.v = val;
- X if (primeprod.len == 0) {
- X val[0] = 101;
- X zpfact(ztmp, &primeprod);
- X }
- X zgcd(z, primeprod, &z1);
- X if (!zisunit(z1)) {
- X zfree(z1);
- X return FALSE;
- X }
- X zfree(z1);
- X /*
- X * Not divisible by a small prime, so onward with the real test.
- X * Make sure the count is limited by the number of odd numbers between
- X * three and the number being tested.
- X */
- X ix = ((zistiny(z) ? z1tol(z) : z2tol(z) - 3) / 2);
- X if (count > ix) count = ix;
- X zsub(z, _one_, &zm1);
- X ik = zlowbit(zm1);
- X zshift(zm1, -ik, &z1);
- X /*
- X * Loop over various "random" numbers, testing each one.
- X * These numbers are the odd numbers starting from three.
- X */
- X for (ix = 0; ix < count; ix++) {
- X val[0] = (ix * 2) + 3;
- X ij = 0;
- X zpowermod(ztmp, z1, z, &z3);
- X for (;;) {
- X if (zisone(z3)) {
- X if (ij) /* number is definitely not prime */
- X goto notprime;
- X break;
- X }
- X if (zcmp(z3, zm1) == 0)
- X break;
- X if (++ij >= ik)
- X goto notprime; /* number is definitely not prime */
- X zsquare(z3, &z2);
- X zfree(z3);
- X zmod(z2, z, &z3);
- X zfree(z2);
- X }
- X zfree(z3);
- X }
- X zfree(zm1);
- X zfree(z1);
- X return TRUE; /* number might be prime */
- X
- Xnotprime:
- X zfree(z3);
- X zfree(zm1);
- X zfree(z1);
- X return FALSE;
- X}
- X
- X
- X/*
- X * Compute the Jacobi function (p / q) for odd q.
- X * If q is prime then the result is:
- X * 1 if p == x^2 (mod q) for some x.
- X * -1 otherwise.
- X * If q is not prime, then the result is not meaningful if it is 1.
- X * This function returns 0 if q is even or q < 0.
- X */
- XFLAG
- Xzjacobi(z1, z2)
- X ZVALUE z1, z2;
- X{
- X ZVALUE p, q, tmp;
- X long lowbit;
- X int val;
- X
- X if (ziseven(z2) || zisneg(z2))
- X return 0;
- X val = 1;
- X if (ziszero(z1) || zisone(z1))
- X return val;
- X if (zisunit(z1)) {
- X if ((*z2.v - 1) & 0x2)
- X val = -val;
- X return val;
- X }
- X zcopy(z1, &p);
- X zcopy(z2, &q);
- X for (;;) {
- X zmod(p, q, &tmp);
- X zfree(p);
- X p = tmp;
- X if (ziszero(p)) {
- X zfree(p);
- X p = _one_;
- X }
- X if (ziseven(p)) {
- X lowbit = zlowbit(p);
- X zshift(p, -lowbit, &tmp);
- X zfree(p);
- X p = tmp;
- X if ((lowbit & 1) && (((*q.v & 0x7) == 3) || ((*q.v & 0x7) == 5)))
- X val = -val;
- X }
- X if (zisunit(p)) {
- X zfree(p);
- X zfree(q);
- X return val;
- X }
- X if ((*p.v & *q.v & 0x3) == 3)
- X val = -val;
- X tmp = q;
- X q = p;
- X p = tmp;
- X }
- X}
- X
- X
- X/*
- X * Return the Fibonacci number F(n).
- X * This is evaluated by recursively using the formulas:
- X * F(2N+1) = F(N+1)^2 + F(N)^2
- X * and
- X * F(2N) = F(N+1)^2 - F(N-1)^2
- X */
- Xvoid
- Xzfib(z, res)
- X ZVALUE z, *res;
- X{
- X unsigned long i;
- X long n;
- X int sign;
- X ZVALUE fnm1, fn, fnp1; /* consecutive fibonacci values */
- X ZVALUE t1, t2, t3;
- X
- X if (zisbig(z))
- X math_error("Very large Fibonacci number");
- X n = (zistiny(z) ? z1tol(z) : z2tol(z));
- X if (n == 0) {
- X *res = _zero_;
- X return;
- X }
- X sign = z.sign && ((n & 0x1) == 0);
- X if (n <= 2) {
- X *res = _one_;
- X res->sign = (BOOL)sign;
- X return;
- X }
- X i = TOPFULL;
- X while ((i & n) == 0)
- X i >>= 1L;
- X i >>= 1L;
- X fnm1 = _zero_;
- X fn = _one_;
- X fnp1 = _one_;
- X while (i) {
- X zsquare(fnm1, &t1);
- X zsquare(fn, &t2);
- X zsquare(fnp1, &t3);
- X zfree(fnm1);
- X zfree(fn);
- X zfree(fnp1);
- X zadd(t2, t3, &fnp1);
- X zsub(t3, t1, &fn);
- X zfree(t1);
- X zfree(t2);
- X zfree(t3);
- X if (i & n) {
- X fnm1 = fn;
- X fn = fnp1;
- X zadd(fnm1, fn, &fnp1);
- X } else
- X zsub(fnp1, fn, &fnm1);
- X i >>= 1L;
- X }
- X zfree(fnm1);
- X zfree(fnp1);
- X *res = fn;
- X res->sign = (BOOL)sign;
- X}
- X
- X
- X/*
- X * Compute the result of raising one number to the power of another
- X * The second number is assumed to be non-negative.
- X * It cannot be too large except for trivial cases.
- X */
- Xvoid
- Xzpowi(z1, z2, res)
- X ZVALUE z1, z2, *res;
- X{
- X int sign; /* final sign of number */
- X unsigned long power; /* power to raise to */
- X unsigned long bit; /* current bit value */
- X long twos; /* count of times 2 is in result */
- X ZVALUE ans, temp;
- X
- X sign = (z1.sign && zisodd(z2));
- X z1.sign = 0;
- X z2.sign = 0;
- X if (ziszero(z2)) { /* number raised to power 0 */
- X if (ziszero(z1))
- X math_error("Zero raised to zero power");
- X *res = _one_;
- X return;
- X }
- X if (zisleone(z1)) { /* 0, 1, or -1 raised to a power */
- X ans = _one_;
- X ans.sign = (BOOL)sign;
- X if (*z1.v == 0)
- X ans = _zero_;
- X *res = ans;
- X return;
- X }
- X if (zisbig(z2))
- X math_error("Raising to very large power");
- X power = (zistiny(z2) ? z1tol(z2) : z2tol(z2));
- X if (zistwo(z1)) { /* two raised to a power */
- X zbitvalue((long) power, res);
- X return;
- X }
- X /*
- X * See if this is a power of ten
- X */
- X if (zistiny(z1) && (*z1.v == 10)) {
- X ztenpow((long) power, res);
- X res->sign = (BOOL)sign;
- X return;
- X }
- X /*
- X * Handle low powers specially
- X */
- X if (power <= 4) {
- X switch ((int) power) {
- X case 1:
- X ans.len = z1.len;
- X ans.v = alloc(ans.len);
- X zcopyval(z1, ans);
- X ans.sign = (BOOL)sign;
- X *res = ans;
- X return;
- X case 2:
- X zsquare(z1, res);
- X return;
- X case 3:
- X zsquare(z1, &temp);
- X zmul(z1, temp, res);
- X zfree(temp);
- X res->sign = (BOOL)sign;
- X return;
- X case 4:
- X zsquare(z1, &temp);
- X zsquare(temp, res);
- X zfree(temp);
- X return;
- X }
- X }
- X /*
- X * Shift out all powers of twos so the multiplies are smaller.
- X * We will shift back the right amount when done.
- X */
- X twos = 0;
- X if (ziseven(z1)) {
- X twos = zlowbit(z1);
- X ans.v = alloc(z1.len);
- X ans.len = z1.len;
- X zcopyval(z1, ans);
- X zshiftr(ans, twos);
- X ztrim(&ans);
- X z1 = ans;
- X twos *= power;
- X }
- X /*
- X * Compute the power by squaring and multiplying.
- X * This uses the left to right method of power raising.
- X */
- X bit = TOPFULL;
- X while ((bit & power) == 0)
- X bit >>= 1L;
- X bit >>= 1L;
- X zsquare(z1, &ans);
- X if (bit & power) {
- X zmul(ans, z1, &temp);
- X zfree(ans);
- X ans = temp;
- X }
- X bit >>= 1L;
- X while (bit) {
- X zsquare(ans, &temp);
- X zfree(ans);
- X ans = temp;
- X if (bit & power) {
- X zmul(ans, z1, &temp);
- X zfree(ans);
- X ans = temp;
- X }
- X bit >>= 1L;
- X }
- X /*
- X * Scale back up by proper power of two
- X */
- X if (twos) {
- X zshift(ans, twos, &temp);
- X zfree(ans);
- X ans = temp;
- X zfree(z1);
- X }
- X ans.sign = (BOOL)sign;
- X *res = ans;
- X}
- X
- X
- X/*
- X * Compute ten to the specified power
- X * This saves some work since the squares of ten are saved.
- X */
- Xvoid
- Xztenpow(power, res)
- X long power;
- X ZVALUE *res;
- X{
- X long i;
- X ZVALUE ans;
- X ZVALUE temp;
- X
- X if (power <= 0) {
- X *res = _one_;
- X return;
- X }
- X ans = _one_;
- X _tenpowers_[0] = _ten_;
- X for (i = 0; power; i++) {
- X if (_tenpowers_[i].len == 0)
- X zsquare(_tenpowers_[i-1], &_tenpowers_[i]);
- X if (power & 0x1) {
- X zmul(ans, _tenpowers_[i], &temp);
- X zfree(ans);
- X ans = temp;
- X }
- X power /= 2;
- X }
- X *res = ans;
- X}
- X
- X
- X/*
- X * Calculate modular inverse suppressing unnecessary divisions.
- X * This is based on the Euclidian algorithm for large numbers.
- X * (Algorithm X from Knuth Vol 2, section 4.5.2. and exercise 17)
- X * Returns TRUE if there is no solution because the numbers
- X * are not relatively prime.
- X */
- XBOOL
- Xzmodinv(u, v, res)
- X ZVALUE u, v;
- X ZVALUE *res;
- X{
- X FULL q1, q2, ui3, vi3, uh, vh, A, B, C, D, T;
- X ZVALUE u2, u3, v2, v3, qz, tmp1, tmp2, tmp3;
- X
- X if (zisneg(u) || zisneg(v) || (zrel(u, v) >= 0))
- X zmod(u, v, &v3);
- X else
- X zcopy(u, &v3);
- X zcopy(v, &u3);
- X u2 = _zero_;
- X v2 = _one_;
- X
- X /*
- X * Loop here while the size of the numbers remain above
- X * the size of a FULL. Throughout this loop u3 >= v3.
- X */
- X while ((u3.len > 1) && !ziszero(v3)) {
- X uh = (((FULL) u3.v[u3.len - 1]) << BASEB) + u3.v[u3.len - 2];
- X vh = 0;
- X if ((v3.len + 1) >= u3.len)
- X vh = v3.v[v3.len - 1];
- X if (v3.len == u3.len)
- X vh = (vh << BASEB) + v3.v[v3.len - 2];
- X A = 1;
- X B = 0;
- X C = 0;
- X D = 1;
- X
- X /*
- X * Calculate successive quotients of the continued fraction
- X * expansion using only single precision arithmetic until
- X * greater precision is required.
- X */
- X while ((vh + C) && (vh + D)) {
- X q1 = (uh + A) / (vh + C);
- X q2 = (uh + B) / (vh + D);
- X if (q1 != q2)
- X break;
- X T = A - q1 * C;
- X A = C;
- X C = T;
- X T = B - q1 * D;
- X B = D;
- X D = T;
- X T = uh - q1 * vh;
- X uh = vh;
- X vh = T;
- X }
- X
- X /*
- X * If B is zero, then we made no progress because
- X * the calculation requires a very large quotient.
- X * So we must do this step of the calculation in
- X * full precision
- X */
- X if (B == 0) {
- X zquo(u3, v3, &qz);
- X zmul(qz, v2, &tmp1);
- X zsub(u2, tmp1, &tmp2);
- X zfree(tmp1);
- X zfree(u2);
- X u2 = v2;
- X v2 = tmp2;
- X zmul(qz, v3, &tmp1);
- X zsub(u3, tmp1, &tmp2);
- X zfree(tmp1);
- X zfree(u3);
- X u3 = v3;
- X v3 = tmp2;
- X zfree(qz);
- X continue;
- X }
- X /*
- X * Apply the calculated A,B,C,D numbers to the current
- X * values to update them as if the full precision
- X * calculations had been carried out.
- X */
- X zmuli(u2, (long) A, &tmp1);
- X zmuli(v2, (long) B, &tmp2);
- X zadd(tmp1, tmp2, &tmp3);
- X zfree(tmp1);
- X zfree(tmp2);
- X zmuli(u2, (long) C, &tmp1);
- X zmuli(v2, (long) D, &tmp2);
- X zfree(u2);
- X zfree(v2);
- X u2 = tmp3;
- X zadd(tmp1, tmp2, &v2);
- X zfree(tmp1);
- X zfree(tmp2);
- X zmuli(u3, (long) A, &tmp1);
- X zmuli(v3, (long) B, &tmp2);
- X zadd(tmp1, tmp2, &tmp3);
- X zfree(tmp1);
- X zfree(tmp2);
- X zmuli(u3, (long) C, &tmp1);
- X zmuli(v3, (long) D, &tmp2);
- X zfree(u3);
- X zfree(v3);
- X u3 = tmp3;
- X zadd(tmp1, tmp2, &v3);
- X zfree(tmp1);
- X zfree(tmp2);
- X }
- X
- X /*
- X * Here when the remaining numbers become single precision in size.
- X * Finish the procedure using single precision calculations.
- X */
- X if (ziszero(v3) && !zisone(u3)) {
- X zfree(u3);
- X zfree(v3);
- X zfree(u2);
- X zfree(v2);
- X return TRUE;
- X }
- X ui3 = (zistiny(u3) ? z1tol(u3) : z2tol(u3));
- X vi3 = (zistiny(v3) ? z1tol(v3) : z2tol(v3));
- X zfree(u3);
- X zfree(v3);
- X while (vi3) {
- X q1 = ui3 / vi3;
- X zmuli(v2, (long) q1, &tmp1);
- X zsub(u2, tmp1, &tmp2);
- X zfree(tmp1);
- X zfree(u2);
- X u2 = v2;
- X v2 = tmp2;
- X q2 = ui3 - q1 * vi3;
- X ui3 = vi3;
- X vi3 = q2;
- X }
- X zfree(v2);
- X if (ui3 != 1) {
- X zfree(u2);
- X return TRUE;
- X }
- X if (zisneg(u2)) {
- X zadd(v, u2, res);
- X zfree(u2);
- X return FALSE;
- X }
- X *res = u2;
- X return FALSE;
- X}
- X
- X
- X#if 0
- X/*
- X * Approximate the quotient of two integers by another set of smaller
- X * integers. This uses continued fractions to determine the smaller set.
- X */
- Xvoid
- Xzapprox(z1, z2, res1, res2)
- X ZVALUE z1, z2, *res1, *res2;
- X{
- X int sign;
- X ZVALUE u1, v1, u3, v3, q, t1, t2, t3;
- X
- X sign = ((z1.sign != 0) ^ (z2.sign != 0));
- X z1.sign = 0;
- X z2.sign = 0;
- X v3 = z2;
- X u3 = z1;
- X u1 = _one_;
- X v1 = _zero_;
- X while (!ziszero(v3)) {
- X zdiv(u3, v3, &q, &t1);
- X zmul(v1, q, &t2);
- X zsub(u1, t2, &t3);
- X zfree(q);
- X zfree(t2);
- X zfree(u1);
- X if ((u3.v != z1.v) && (u3.v != z2.v))
- X zfree(u3);
- X u1 = v1;
- X u3 = v3;
- X v1 = t3;
- X v3 = t1;
- X }
- X if (!zisunit(u3))
- X math_error("Non-relativly prime numbers for approx");
- X if ((u3.v != z1.v) && (u3.v != z2.v))
- X zfree(u3);
- X if ((v3.v != z1.v) && (v3.v != z2.v))
- X zfree(v3);
- X zfree(v1);
- X zmul(u1, z1, &t1);
- X zsub(t1, _one_, &t2);
- X zfree(t1);
- X zquo(t2, z2, &t1);
- X zfree(t2);
- X u1.sign = (BOOL)sign;
- X t1.sign = 0;
- X *res1 = t1;
- X *res2 = u1;
- X}
- X#endif
- X
- X
- X/*
- X * Binary gcd algorithm
- X * This algorithm taken from Knuth
- X */
- Xvoid
- Xzgcd(z1, z2, res)
- X ZVALUE z1, z2, *res;
- X{
- X ZVALUE u, v, t;
- X register long j, k, olen, mask;
- X register HALF h;
- X HALF *oldv1, *oldv2;
- X
- X z1.sign = 0;
- X z2.sign = 0;
- X if (ziszero(z1)) {
- X zcopy(z2, res);
- X return;
- X }
- X if (ziszero(z2)) {
- X zcopy(z1, res);
- X return;
- X }
- X if (zisunit(z1) || zisunit(z2)) {
- X *res = _one_;
- X return;
- X }
- X /*
- X * First see if one number is very much larger than the other.
- X * If so, then divide as necessary to get the numbers near each other.
- X */
- X oldv1 = z1.v;
- X oldv2 = z2.v;
- X if (z1.len < z2.len) {
- X t = z1;
- X z1 = z2;
- X z2 = t;
- X }
- X while ((z1.len > (z2.len + 5)) && !ziszero(z2)) {
- X zmod(z1, z2, &t);
- X if ((z1.v != oldv1) && (z1.v != oldv2))
- X zfree(z1);
- X z1 = z2;
- X z2 = t;
- X }
- X /*
- X * Ok, now do the binary method proper
- X */
- X u.len = z1.len;
- X v.len = z2.len;
- X u.sign = 0;
- X v.sign = 0;
- X if (!ztest(z1)) {
- X v.v = alloc(v.len);
- X zcopyval(z2, v);
- X *res = v;
- X goto done;
- X }
- X if (!ztest(z2)) {
- X u.v = alloc(u.len);
- X zcopyval(z1, u);
- X *res = u;
- X goto done;
- X }
- X u.v = alloc(u.len);
- X v.v = alloc(v.len);
- X zcopyval(z1, u);
- X zcopyval(z2, v);
- X k = 0;
- X while (u.v[k] == 0 && v.v[k] == 0)
- X ++k;
- X mask = 01;
- X h = u.v[k] | v.v[k];
- X k *= BASEB;
- X while (!(h & mask)) {
- X mask <<= 1;
- X k++;
- X }
- X zshiftr(u, k);
- X zshiftr(v, k);
- X ztrim(&u);
- X ztrim(&v);
- X if (zisodd(u)) {
- X t.v = alloc(v.len);
- X t.len = v.len;
- X zcopyval(v, t);
- X t.sign = !v.sign;
- X } else {
- X t.v = alloc(u.len);
- X t.len = u.len;
- X zcopyval(u, t);
- X t.sign = u.sign;
- X }
- X while (ztest(t)) {
- X j = 0;
- X while (!t.v[j])
- X ++j;
- X mask = 01;
- X h = t.v[j];
- X j *= BASEB;
- X while (!(h & mask)) {
- X mask <<= 1;
- X j++;
- X }
- X zshiftr(t, j);
- X ztrim(&t);
- X if (ztest(t) > 0) {
- X zfree(u);
- X u = t;
- X } else {
- X zfree(v);
- X v = t;
- X v.sign = !t.sign;
- X }
- X zsub(u, v, &t);
- X }
- X zfree(t);
- X zfree(v);
- X if (k) {
- X olen = u.len;
- X u.len += k / BASEB + 1;
- X u.v = (HALF *) realloc(u.v, u.len * sizeof(HALF));
- X while (olen != u.len)
- X u.v[olen++] = 0;
- X zshiftl(u, k);
- X }
- X ztrim(&u);
- X *res = u;
- X
- Xdone:
- X if ((z1.v != oldv1) && (z1.v != oldv2))
- X zfree(z1);
- X if ((z2.v != oldv1) && (z2.v != oldv2))
- X zfree(z2);
- X}
- X
- X
- X/*
- X * Compute the lcm of two integers (least common multiple).
- X * This is done using the formula: gcd(a,b) * lcm(a,b) = a * b.
- X */
- Xvoid
- Xzlcm(z1, z2, res)
- X ZVALUE z1, z2, *res;
- X{
- X ZVALUE temp1, temp2;
- X
- X zgcd(z1, z2, &temp1);
- X zquo(z1, temp1, &temp2);
- X zfree(temp1);
- X zmul(temp2, z2, res);
- X zfree(temp2);
- X}
- X
- X
- X/*
- X * Return whether or not two numbers are relatively prime to each other.
- X */
- XBOOL
- Xzrelprime(z1, z2)
- X ZVALUE z1, z2; /* numbers to be tested */
- X{
- X FULL rem1, rem2; /* remainders */
- X ZVALUE rem;
- X BOOL result;
- X
- X z1.sign = 0;
- X z2.sign = 0;
- X if (ziseven(z1) && ziseven(z2)) /* false if both even */
- X return FALSE;
- X if (zisunit(z1) || zisunit(z2)) /* true if either is a unit */
- X return TRUE;
- X if (ziszero(z1) || ziszero(z2)) /* false if either is zero */
- X return FALSE;
- X if (zistwo(z1) || zistwo(z2)) /* true if either is two */
- X return TRUE;
- X /*
- X * Try reducing each number by the product of the first few odd primes
- X * to see if any of them are a common factor.
- X */
- X rem1 = zmodi(z1, 3L * 5 * 7 * 11 * 13);
- X rem2 = zmodi(z2, 3L * 5 * 7 * 11 * 13);
- X if (((rem1 % 3) == 0) && ((rem2 % 3) == 0))
- X return FALSE;
- X if (((rem1 % 5) == 0) && ((rem2 % 5) == 0))
- X return FALSE;
- X if (((rem1 % 7) == 0) && ((rem2 % 7) == 0))
- X return FALSE;
- X if (((rem1 % 11) == 0) && ((rem2 % 11) == 0))
- X return FALSE;
- X if (((rem1 % 13) == 0) && ((rem2 % 13) == 0))
- X return FALSE;
- X /*
- X * Try a new batch of primes now
- X */
- X rem1 = zmodi(z1, 17L * 19 * 23);
- X rem2 = zmodi(z2, 17L * 19 * 23);
- X if (((rem1 % 17) == 0) && ((rem2 % 17) == 0))
- X return FALSE;
- X if (((rem1 % 19) == 0) && ((rem2 % 19) == 0))
- X return FALSE;
- X if (((rem1 % 23) == 0) && ((rem2 % 23) == 0))
- X return FALSE;
- X /*
- X * Yuk, we must actually compute the gcd to know the answer
- X */
- X zgcd(z1, z2, &rem);
- X result = zisunit(rem);
- X zfree(rem);
- X return result;
- X}
- X
- X
- X/*
- X * Compute the log of one number base another, to the closest integer.
- X * This is the largest integer which when the second number is raised to it,
- X * the resulting value is less than or equal to the first number.
- X * Example: zlog(123456, 10) = 5.
- X */
- Xlong
- Xzlog(z1, z2)
- X ZVALUE z1, z2;
- X{
- X register ZVALUE *zp; /* current square */
- X long power; /* current power */
- X long worth; /* worth of current square */
- X ZVALUE val; /* current value of power */
- X ZVALUE temp; /* temporary */
- X ZVALUE squares[32]; /* table of squares of base */
- X
- X /*
- X * Make sure that the numbers are nonzero and the base is greater than one.
- X */
- X if (zisneg(z1) || ziszero(z1) || zisneg(z2) || zisleone(z2))
- X math_error("Bad arguments for log");
- X /*
- X * Reject trivial cases.
- X */
- X if (z1.len < z2.len)
- X return 0;
- X if ((z1.len == z2.len) && (z1.v[z1.len-1] < z2.v[z2.len-1]))
- X return 0;
- X power = zrel(z1, z2);
- X if (power <= 0)
- X return (power + 1);
- X /*
- X * Handle any power of two special.
- X */
- X if (zisonebit(z2))
- X return (zhighbit(z1) / zlowbit(z2));
- X /*
- X * Handle base 10 special
- X */
- X if ((z2.len == 1) && (*z2.v == 10))
- X return zlog10(z1);
- X /*
- X * Now loop by squaring the base each time, and see whether or
- X * not each successive square is still smaller than the number.
- X */
- X worth = 1;
- X zp = &squares[0];
- X *zp = z2;
- X while (((zp->len * 2) - 1) <= z1.len) { /* while square not too large */
- X zsquare(*zp, zp + 1);
- X zp++;
- X worth *= 2;
- X }
- X /*
- X * Now back down the squares, and multiply them together to see
- X * exactly how many times the base can be raised by.
- X */
- X val = _one_;
- X power = 0;
- X for (; zp >= squares; zp--, worth /= 2) {
- X if ((val.len + zp->len - 1) <= z1.len) {
- X zmul(val, *zp, &temp);
- X if (zrel(z1, temp) >= 0) {
- X zfree(val);
- X val = temp;
- X power += worth;
- X } else
- X zfree(temp);
- X }
- X if (zp != squares)
- X zfree(*zp);
- X }
- X return power;
- X}
- X
- X
- X/*
- X * Return the integral log base 10 of a number.
- X */
- Xlong
- Xzlog10(z)
- X ZVALUE z;
- X{
- X register ZVALUE *zp; /* current square */
- X long power; /* current power */
- X long worth; /* worth of current square */
- X ZVALUE val; /* current value of power */
- X ZVALUE temp; /* temporary */
- X
- X if (!zispos(z))
- X math_error("Non-positive number for log10");
- X /*
- X * Loop by squaring the base each time, and see whether or
- X * not each successive square is still smaller than the number.
- X */
- X worth = 1;
- X zp = &_tenpowers_[0];
- X *zp = _ten_;
- X while (((zp->len * 2) - 1) <= z.len) { /* while square not too large */
- X if (zp[1].len == 0)
- X zsquare(*zp, zp + 1);
- X zp++;
- X worth *= 2;
- X }
- X /*
- X * Now back down the squares, and multiply them together to see
- X * exactly how many times the base can be raised by.
- X */
- X val = _one_;
- X power = 0;
- X for (; zp >= _tenpowers_; zp--, worth /= 2) {
- X if ((val.len + zp->len - 1) <= z.len) {
- X zmul(val, *zp, &temp);
- X if (zrel(z, temp) >= 0) {
- X zfree(val);
- X val = temp;
- X power += worth;
- X } else
- X zfree(temp);
- X }
- X }
- X return power;
- X}
- X
- X
- X/*
- X * Return the number of times that one number will divide another.
- X * This works similarly to zlog, except that divisions must be exact.
- X * For example, zdivcount(540, 3) = 3, since 3^3 divides 540 but 3^4 won't.
- X */
- Xlong
- Xzdivcount(z1, z2)
- X ZVALUE z1, z2;
- X{
- X long count; /* number of factors removed */
- X ZVALUE tmp; /* ignored return value */
- X
- X count = zfacrem(z1, z2, &tmp);
- X zfree(tmp);
- X return count;
- X}
- X
- X
- X/*
- X * Remove all occurances of the specified factor from a number.
- X * Also returns the number of factors removed as a function return value.
- X * Example: zfacrem(540, 3, &x) returns 3 and sets x to 20.
- X */
- Xlong
- Xzfacrem(z1, z2, rem)
- X ZVALUE z1, z2, *rem;
- X{
- X register ZVALUE *zp; /* current square */
- X long count; /* total count of divisions */
- X long worth; /* worth of current square */
- X ZVALUE temp1, temp2, temp3; /* temporaries */
- X ZVALUE squares[32]; /* table of squares of factor */
- X
- X z1.sign = 0;
- X z2.sign = 0;
- X /*
- X * Make sure factor isn't 0 or 1.
- X */
- X if (zisleone(z2))
- X math_error("Bad argument for facrem");
- X /*
- X * Reject trivial cases.
- X */
- X if ((z1.len < z2.len) || (zisodd(z1) && ziseven(z2)) ||
- X ((z1.len == z2.len) && (z1.v[z1.len-1] < z2.v[z2.len-1]))) {
- X rem->v = alloc(z1.len);
- X rem->len = z1.len;
- X rem->sign = 0;
- X zcopyval(z1, *rem);
- X return 0;
- X }
- X /*
- X * Handle any power of two special.
- X */
- X if (zisonebit(z2)) {
- X count = zlowbit(z1) / zlowbit(z2);
- X rem->v = alloc(z1.len);
- X rem->len = z1.len;
- X rem->sign = 0;
- X zcopyval(z1, *rem);
- X zshiftr(*rem, count);
- X ztrim(rem);
- X return count;
- X }
- X /*
- X * See if the factor goes in even once.
- X */
- X zdiv(z1, z2, &temp1, &temp2);
- X if (!ziszero(temp2)) {
- X zfree(temp1);
- X zfree(temp2);
- X rem->v = alloc(z1.len);
- X rem->len = z1.len;
- X rem->sign = 0;
- X zcopyval(z1, *rem);
- X return 0;
- X }
- X zfree(temp2);
- X z1 = temp1;
- X /*
- X * Now loop by squaring the factor each time, and see whether
- X * or not each successive square will still divide the number.
- X */
- X count = 1;
- X worth = 1;
- X zp = &squares[0];
- X *zp = z2;
- X while (((zp->len * 2) - 1) <= z1.len) { /* while square not too large */
- X zsquare(*zp, &temp1);
- X zdiv(z1, temp1, &temp2, &temp3);
- X if (!ziszero(temp3)) {
- X zfree(temp1);
- X zfree(temp2);
- X zfree(temp3);
- X break;
- X }
- X zfree(temp3);
- X zfree(z1);
- X z1 = temp2;
- X *++zp = temp1;
- X worth *= 2;
- X count += worth;
- X }
- X /*
- X * Now back down the list of squares, and see if the lower powers
- X * will divide any more times.
- X */
- X for (; zp >= squares; zp--, worth /= 2) {
- X if (zp->len <= z1.len) {
- X zdiv(z1, *zp, &temp1, &temp2);
- X if (ziszero(temp2)) {
- X temp3 = z1;
- X z1 = temp1;
- X temp1 = temp3;
- X count += worth;
- X }
- X zfree(temp1);
- X zfree(temp2);
- X }
- X if (zp != squares)
- X zfree(*zp);
- X }
- X *rem = z1;
- X return count;
- X}
- X
- X
- X/*
- X * Keep dividing a number by the gcd of it with another number until the
- X * result is relatively prime to the second number.
- X */
- Xvoid
- Xzgcdrem(z1, z2, res)
- X ZVALUE z1, z2, *res;
- X{
- X ZVALUE tmp1, tmp2;
- X
- X /*
- X * Begin by taking the gcd for the first time.
- X * If the number is already relatively prime, then we are done.
- X */
- X zgcd(z1, z2, &tmp1);
- X if (zisunit(tmp1) || ziszero(tmp1)) {
- X res->len = z1.len;
- X res->v = alloc(z1.len);
- X res->sign = z1.sign;
- X zcopyval(z1, *res);
- X return;
- X }
- X zquo(z1, tmp1, &tmp2);
- X z1 = tmp2;
- X z2 = tmp1;
- X /*
- X * Now keep alternately taking the gcd and removing factors until
- X * the gcd becomes one.
- X */
- X while (!zisunit(z2)) {
- X (void) zfacrem(z1, z2, &tmp1);
- X zfree(z1);
- X z1 = tmp1;
- X zgcd(z1, z2, &tmp1);
- X zfree(z2);
- X z2 = tmp1;
- X }
- X *res = z1;
- X}
- X
- X
- X/*
- X * Find the lowest prime factor of a number if one can be found.
- X * Search is conducted for the first count primes.
- X * Returns 1 if no factor was found.
- X */
- Xlong
- Xzlowfactor(z, count)
- X ZVALUE z;
- X long count;
- X{
- X FULL p, d;
- X ZVALUE div, tmp;
- X HALF divval[2];
- X
- X if ((--count < 0) || ziszero(z))
- X return 1;
- X if (ziseven(z))
- X return 2;
- X div.sign = 0;
- X div.v = divval;
- X for (p = 3; (count > 0); p += 2) {
- X for (d = 3; (d * d) <= p; d += 2)
- X if ((p % d) == 0)
- X goto next;
- X divval[0] = (p & BASE1);
- X divval[1] = (p / BASE);
- X div.len = 1 + (p >= BASE);
- X zmod(z, div, &tmp);
- X if (ziszero(tmp))
- X return p;
- X zfree(tmp);
- X count--;
- Xnext:;
- X }
- X return 1;
- X}
- X
- X
- X/*
- X * Return the number of digits (base 10) in a number, ignoring the sign.
- X */
- Xlong
- Xzdigits(z1)
- X ZVALUE z1;
- X{
- X long count, val;
- X
- X z1.sign = 0;
- X if (zistiny(z1)) { /* do small numbers ourself */
- X count = 1;
- X val = 10;
- X while (*z1.v >= (HALF)val) {
- X count++;
- X val *= 10;
- X }
- X return count;
- X }
- X return (zlog10(z1) + 1);
- X}
- X
- X
- X/*
- X * Return the single digit at the specified decimal place of a number,
- X * where 0 means the rightmost digit. Example: zdigit(1234, 1) = 3.
- X */
- XFLAG
- Xzdigit(z1, n)
- X ZVALUE z1;
- X long n;
- X{
- X ZVALUE tmp1, tmp2;
- X FLAG res;
- X
- X z1.sign = 0;
- X if (ziszero(z1) || (n < 0) || (n / BASEDIG >= z1.len))
- X return 0;
- X if (n == 0)
- X return zmodi(z1, 10L);
- X if (n == 1)
- X return zmodi(z1, 100L) / 10;
- X if (n == 2)
- X return zmodi(z1, 1000L) / 100;
- X if (n == 3)
- X return zmodi(z1, 10000L) / 1000;
- X ztenpow(n, &tmp1);
- X zquo(z1, tmp1, &tmp2);
- X res = zmodi(tmp2, 10L);
- X zfree(tmp1);
- X zfree(tmp2);
- X return res;
- X}
- X
- X
- X/*
- X * Find the square root of a number. This is the greatest integer whose
- X * square is less than or equal to the number. Returns TRUE if the
- X * square root is exact.
- X */
- XBOOL
- Xzsqrt(z1, dest)
- X ZVALUE z1, *dest;
- X{
- X ZVALUE try, quo, rem, old, temp;
- X FULL iquo, val;
- X long i,j;
- X
- X if (z1.sign)
- X math_error("Square root of negative number");
- X if (ziszero(z1)) {
- X *dest = _zero_;
- X return TRUE;
- X }
- X if ((*z1.v < 4) && zistiny(z1)) {
- X *dest = _one_;
- X return (*z1.v == 1);
- X }
- X /*
- X * Pick the square root of the leading one or two digits as a first guess.
- X */
- X val = z1.v[z1.len-1];
- X if ((z1.len & 0x1) == 0)
- X val = (val * BASE) + z1.v[z1.len-2];
- X
- X /*
- X * Find the largest power of 2 that when squared
- X * is <= val > 0. Avoid multiply overflow by doing
- X * a careful check at the BASE boundary.
- X */
- X j = 1<<(BASEB+BASEB-2);
- X if (val > j) {
- X iquo = BASE;
- X } else {
- X i = BASEB-1;
- X while (j > val) {
- X --i;
- X j >>= 2;
- X }
- X iquo = bitmask[i];
- X }
- X
- X for (i = 8; i > 0; i--)
- X iquo = (iquo + (val / iquo)) / 2;
- X if (iquo > BASE1)
- X iquo = BASE1;
- X /*
- X * Allocate the numbers to use for the main loop.
- X * The size and high bits of the final result are correctly set here.
- X * Notice that the remainder of the test value is rubbish, but this
- X * is unimportant.
- X */
- X try.sign = 0;
- X try.len = (z1.len + 1) / 2;
- X try.v = alloc(try.len);
- X try.v[try.len-1] = (HALF)iquo;
- X old.sign = 0;
- X old.v = alloc(try.len);
- X old.len = 1;
- X *old.v = 0;
- X /*
- X * Main divide and average loop
- X */
- X for (;;) {
- X zdiv(z1, try, &quo, &rem);
- X i = zrel(try, quo);
- X if ((i == 0) && ziszero(rem)) { /* exact square root */
- X zfree(rem);
- X zfree(quo);
- X zfree(old);
- X *dest = try;
- X return TRUE;
- X }
- X zfree(rem);
- X if (i <= 0) {
- X /*
- X * Current try is less than or equal to the square root since
- X * it is less than the quotient. If the quotient is equal to
- X * the try, we are all done. Also, if the try is equal to the
- X * old try value, we are done since no improvement occurred.
- X * If not, save the improved value and loop some more.
- X */
- X if ((i == 0) || (zcmp(old, try) == 0)) {
- X zfree(quo);
- X zfree(old);
- X *dest = try;
- X return FALSE;
- X }
- X old.len = try.len;
- X zcopyval(try, old);
- X }
- X /* average current try and quotent for the new try */
- X zadd(try, quo, &temp);
- X zfree(quo);
- X zfree(try);
- X try = temp;
- X zshiftr(try, 1L);
- X zquicktrim(try);
- X }
- X}
- X
- X
- X/*
- X * Take an arbitrary root of a number (to the greatest integer).
- X * This uses the following iteration to get the Kth root of N:
- X * x = ((K-1) * x + N / x^(K-1)) / K
- X */
- Xvoid
- Xzroot(z1, z2, dest)
- X ZVALUE z1, z2, *dest;
- X{
- X ZVALUE try, quo, old, temp, temp2;
- X ZVALUE k1; /* holds k - 1 */
- X int sign;
- X long i, k, highbit;
- X SIUNION sival;
- X
- X sign = z1.sign;
- X if (sign && ziseven(z2))
- X math_error("Even root of negative number");
- X if (ziszero(z2) || zisneg(z2))
- X math_error("Non-positive root");
- X if (ziszero(z1)) { /* root of zero */
- X *dest = _zero_;
- X return;
- X }
- X if (zisunit(z2)) { /* first root */
- X zcopy(z1, dest);
- X return;
- X }
- X if (zisbig(z2)) { /* humongous root */
- X *dest = _one_;
- X dest->sign = (HALF)sign;
- X return;
- X }
- X k = (zistiny(z2) ? z1tol(z2) : z2tol(z2));
- X highbit = zhighbit(z1);
- X if (highbit < k) { /* too high a root */
- X *dest = _one_;
- X dest->sign = (HALF)sign;
- X return;
- X }
- X sival.ivalue = k - 1;
- X k1.v = &sival.silow;
- X k1.len = 1 + (sival.sihigh != 0);
- X k1.sign = 0;
- X z1.sign = 0;
- X /*
- X * Allocate the numbers to use for the main loop.
- X * The size and high bits of the final result are correctly set here.
- X * Notice that the remainder of the test value is rubbish, but this
- SHAR_EOF
- echo "End of part 11"
- echo "File calc2.9.0/zfunc.c is continued in part 12"
- echo "12" > s2_seq_.tmp
- exit 0
-