home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 6
/
AACD06.ISO
/
AACD
/
System
/
Mesa-3.1
/
src
/
eval.c
< prev
next >
Wrap
C/C++ Source or Header
|
2000-01-07
|
83KB
|
2,761 lines
/* $Id: eval.c,v 1.6 1999/11/08 15:30:05 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.1
*
* Copyright (C) 1999 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* eval.c was written by
* Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
* Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
*
* My original implementation of evaluators was simplistic and didn't
* compute surface normal vectors properly. Bernd and Volker applied
* used more sophisticated methods to get better results.
*
* Thanks guys!
*/
#ifdef PC_HEADER
#include "all.h"
#else
#ifndef XFree86Server
#include <math.h>
#include <stdlib.h>
#include <string.h>
#else
#include "GL/xf86glx.h"
#endif
#include "context.h"
#include "eval.h"
#include "macros.h"
#include "mmath.h"
#include "types.h"
#include "vbcull.h"
#include "vbfill.h"
#include "vbxform.h"
#endif
static GLfloat inv_tab[MAX_EVAL_ORDER];
/*
* Do one-time initialization for evaluators.
*/
void gl_init_eval( void )
{
static int init_flag = 0;
GLuint i;
/* Compute a table of nCr (combination) values used by the
* Bernstein polynomial generator.
*/
/* KW: precompute 1/x for useful x.
*/
if (init_flag==0)
{
for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
inv_tab[i] = 1.0 / i;
}
init_flag = 1;
}
/*
* Horner scheme for Bezier curves
*
* Bezier curves can be computed via a Horner scheme.
* Horner is numerically less stable than the de Casteljau
* algorithm, but it is faster. For curves of degree n
* the complexity of Horner is O(n) and de Casteljau is O(n^2).
* Since stability is not important for displaying curve
* points I decided to use the Horner scheme.
*
* A cubic Bezier curve with control points b0, b1, b2, b3 can be
* written as
*
* (([3] [3] ) [3] ) [3]
* c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
*
* [n]
* where s=1-t and the binomial coefficients [i]. These can
* be computed iteratively using the identity:
*
* [n] [n ] [n]
* [i] = (n-i+1)/i * [i-1] and [0] = 1
*/
static void
horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
GLuint dim, GLuint order)
{
GLfloat s, powert;
GLuint i, k, bincoeff;
if(order >= 2)
{
bincoeff = order-1;
s = 1.0-t;
for(k=0; k<dim; k++)
out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
{
bincoeff *= order-i;
bincoeff *= inv_tab[i];
for(k=0; k<dim; k++)
out[k] = s*out[k] + bincoeff*powert*cp[k];
}
}
else /* order=1 -> constant curve */
{
for(k=0; k<dim; k++)
out[k] = cp[k];
}
}
/*
* Tensor product Bezier surfaces
*
* Again the Horner scheme is used to compute a point on a
* TP Bezier surface. First a control polygon for a curve
* on the surface in one parameter direction is computed,
* then the point on the curve for the other parameter
* direction is evaluated.
*
* To store the curve control polygon additional storage
* for max(uorder,vorder) points is needed in the
* control net cn.
*/
static void
horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
GLuint dim, GLuint uorder, GLuint vorder)
{
GLfloat *cp = cn + uorder*vorder*dim;
GLuint i, uinc = vorder*dim;
if(vorder > uorder)
{
if(uorder >= 2)
{
GLfloat s, poweru;
GLuint j, k, bincoeff;
/* Compute the control polygon for the surface-curve in u-direction */
for(j=0; j<vorder; j++)
{
GLfloat *ucp = &cn[j*dim];
/* Each control point is the point for parameter u on a */
/* curve defined by the control polygons in u-direction */
bincoeff = uorder-1;
s = 1.0-u;
for(k=0; k<dim; k++)
cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
i++, poweru*=u, ucp +=uinc)
{
bincoeff *= uorder-i;
bincoeff *= inv_tab[i];
for(k=0; k<dim; k++)
cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
}
}
/* Evaluate curve point in v */
horner_bezier_curve(cp, out, v, dim, vorder);
}
else /* uorder=1 -> cn defines a curve in v */
horner_bezier_curve(cn, out, v, dim, vorder);
}
else /* vorder <= uorder */
{
if(vorder > 1)
{
GLuint i;
/* Compute the control polygon for the surface-curve in u-direction */
for(i=0; i<uorder; i++, cn += uinc)
{
/* For constant i all cn[i][j] (j=0..vorder) are located */
/* on consecutive memory locations, so we can use */
/* horner_bezier_curve to compute the control points */
horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
}
/* Evaluate curve point in u */
horner_bezier_curve(cp, out, u, dim, uorder);
}
else /* vorder=1 -> cn defines a curve in u */
horner_bezier_curve(cn, out, u, dim, uorder);
}
}
/*
* The direct de Casteljau algorithm is used when a point on the
* surface and the tangent directions spanning the tangent plane
* should be computed (this is needed to compute normals to the
* surface). In this case the de Casteljau algorithm approach is
* nicer because a point and the partial derivatives can be computed
* at the same time. To get the correct tangent length du and dv
* must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
* Since only the directions are needed, this scaling step is omitted.
*
* De Casteljau needs additional storage for uorder*vorder
* values in the control net cn.
*/
static void
de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
GLfloat u, GLfloat v, GLuint dim,
GLuint uorder, GLuint vorder)
{
GLfloat *dcn = cn + uorder*vorder*dim;
GLfloat us = 1.0-u, vs = 1.0-v;
GLuint h, i, j, k;
GLuint minorder = uorder < vorder ? uorder : vorder;
GLuint uinc = vorder*dim;
GLuint dcuinc = vorder;
/* Each component is evaluated separately to save buffer space */
/* This does not drasticaly decrease the performance of the */
/* algorithm. If additional storage for (uorder-1)*(vorder-1) */
/* points would be available, the components could be accessed */
/* in the innermost loop which could lead to less cache misses. */
#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
#define DCN(I, J) dcn[(I)*dcuinc+(J)]
if(minorder < 3)
{
if(uorder==vorder)
{
for(k=0; k<dim; k++)
{
/* Derivative direction in u */
du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
v*(CN(1,1,k) - CN(0,1,k));
/* Derivative direction in v */
dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
u*(CN(1,1,k) - CN(1,0,k));
/* bilinear de Casteljau step */
out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
u*(vs*CN(1,0,k) + v*CN(1,1,k));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
/* bilinear de Casteljau step */
DCN(1,0) = CN(1,0,k) - CN(0,0,k);
DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
for(j=0; j<vorder-1; j++)
{
/* for the derivative in u */
DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
/* for the `point' */
DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
/* for the derivative in u */
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
/* derivative direction in u */
du[k] = vs*DCN(1,0) + v*DCN(1,1);
/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
/* bilinear de Casteljau step */
DCN(0,1) = CN(0,1,k) - CN(0,0,k);
DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
for(i=0; i<uorder-1; i++)
{
/* for the derivative in v */
DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
/* for the `point' */
DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
/* for the derivative in v */
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
/* derivative direction in v */
dv[k] = us*DCN(0,1) + u*DCN(1,1);
/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
}
}
}
else if(uorder == vorder)
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* derivative direction in u */
du[k] = vs*(DCN(1,0) - DCN(0,0)) +
v*(DCN(1,1) - DCN(0,1));
/* derivative direction in v */
dv[k] = us*(DCN(0,1) - DCN(0,0)) +
u*(DCN(1,1) - DCN(1,0));
/* last bilinear de Casteljau step */
out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
u*(vs*DCN(1,0) + v*DCN(1,1));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* last bilinear de Casteljau step */
DCN(2,0) = DCN(1,0) - DCN(0,0);
DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
for(j=0; j<vorder-1; j++)
{
/* for the derivative in u */
DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
/* for the `point' */
DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
/* for the derivative in u */
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
}
/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
/* derivative direction in u */
du[k] = vs*DCN(2,0) + v*DCN(2,1);
/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
}
}
/* last bilinear de Casteljau step */
DCN(0,2) = DCN(0,1) - DCN(0,0);
DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
for(i=0; i<uorder-1; i++)
{
/* for the derivative in v */
DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
/* for the `point' */
DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
/* for the derivative in v */
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
}
/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
/* derivative direction in v */
dv[k] = us*DCN(0,2) + u*DCN(1,2);
/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
}
}
#undef DCN
#undef CN
}
/*
* Return the number of components per control point for any type of
* evaluator. Return 0 if bad target.
*/
static GLint components( GLenum target )
{
switch (target) {
case GL_MAP1_VERTEX_3: return 3;
case GL_MAP1_VERTEX_4: return 4;
case GL_MAP1_INDEX: return 1;
case GL_MAP1_COLOR_4: return 4;
case GL_MAP1_NORMAL: return 3;
case GL_MAP1_TEXTURE_COORD_1: return 1;
case GL_MAP1_TEXTURE_COORD_2: return 2;
case GL_MAP1_TEXTURE_COORD_3: return 3;
case GL_MAP1_TEXTURE_COORD_4: return 4;
case GL_MAP2_VERTEX_3: return 3;
case GL_MAP2_VERTEX_4: return 4;
case GL_MAP2_INDEX: return 1;
case GL_MAP2_COLOR_4: return 4;
case GL_MAP2_NORMAL: return 3;
case GL_MAP2_TEXTURE_COORD_1: return 1;
case GL_MAP2_TEXTURE_COORD_2: return 2;
case GL_MAP2_TEXTURE_COORD_3: return 3;
case GL_MAP2_TEXTURE_COORD_4: return 4;
default: return 0;
}
}
/**********************************************************************/
/*** Copy and deallocate control points ***/
/**********************************************************************/
/*
* Copy 1-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Input: see glMap1f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
GLfloat *gl_copy_map_points1f( GLenum target,
GLint ustride, GLint uorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLint i, k, size = components(target);
if (!points || size==0) {
return NULL;
}
buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
if(buffer)
for(i=0, p=buffer; i<uorder; i++, points+=ustride)
for(k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
GLfloat *gl_copy_map_points1d( GLenum target,
GLint ustride, GLint uorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLint i, k, size = components(target);
if (!points || size==0) {
return NULL;
}
buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
if(buffer)
for(i=0, p=buffer; i<uorder; i++, points+=ustride)
for(k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/*
* Copy 2-parametric evaluator control points from user-specified
* memory space to a buffer of contiguous control points.
* Additional memory is allocated to be used by the horner and
* de Casteljau evaluation schemes.
*
* Input: see glMap2f for details
* Return: pointer to buffer of contiguous control points or NULL if out
* of memory.
*/
GLfloat *gl_copy_map_points2f( GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLfloat *points )
{
GLfloat *buffer, *p;
GLint i, j, k, size, dsize, hsize;
GLint uinc;
size = components(target);
if (!points || size==0) {
return NULL;
}
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = points[k];
return buffer;
}
/*
* Same as above but convert doubles to floats.
*/
GLfloat *gl_copy_map_points2d(GLenum target,
GLint ustride, GLint uorder,
GLint vstride, GLint vorder,
const GLdouble *points )
{
GLfloat *buffer, *p;
GLint i, j, k, size, hsize, dsize;
GLint uinc;
size = components(target);
if (!points || size==0) {
return NULL;
}
/* max(uorder, vorder) additional points are used in */
/* horner evaluation and uorder*vorder additional */
/* values are needed for de Casteljau */
dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
hsize = (uorder > vorder ? uorder : vorder)*size;
if(hsize>dsize)
buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
else
buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
/* compute the increment value for the u-loop */
uinc = ustride - vorder*vstride;
if (buffer)
for (i=0, p=buffer; i<uorder; i++, points += uinc)
for (j=0; j<vorder; j++, points += vstride)
for (k=0; k<size; k++)
*p++ = (GLfloat) points[k];
return buffer;
}
/*
* This function is called by the display list deallocator function to
* specify that a given set of control points are no longer needed.
*/
void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
{
struct gl_1d_map *map1 = NULL;
struct gl_2d_map *map2 = NULL;
switch (target) {
case GL_MAP1_VERTEX_3:
map1 = &ctx->EvalMap.Map1Vertex3;
break;
case GL_MAP1_VERTEX_4:
map1 = &ctx->EvalMap.Map1Vertex4;
break;
case GL_MAP1_INDEX:
map1 = &ctx->EvalMap.Map1Index;
break;
case GL_MAP1_COLOR_4:
map1 = &ctx->EvalMap.Map1Color4;
break;
case GL_MAP1_NORMAL:
map1 = &ctx->EvalMap.Map1Normal;
break;
case GL_MAP1_TEXTURE_COORD_1:
map1 = &ctx->EvalMap.Map1Texture1;
break;
case GL_MAP1_TEXTURE_COORD_2:
map1 = &ctx->EvalMap.Map1Texture2;
break;
case GL_MAP1_TEXTURE_COORD_3:
map1 = &ctx->EvalMap.Map1Texture3;
break;
case GL_MAP1_TEXTURE_COORD_4:
map1 = &ctx->EvalMap.Map1Texture4;
break;
case GL_MAP2_VERTEX_3:
map2 = &ctx->EvalMap.Map2Vertex3;
break;
case GL_MAP2_VERTEX_4:
map2 = &ctx->EvalMap.Map2Vertex4;
break;
case GL_MAP2_INDEX:
map2 = &ctx->EvalMap.Map2Index;
break;
case GL_MAP2_COLOR_4:
map2 = &ctx->EvalMap.Map2Color4;
break;
case GL_MAP2_NORMAL:
map2 = &ctx->EvalMap.Map2Normal;
break;
case GL_MAP2_TEXTURE_COORD_1:
map2 = &ctx->EvalMap.Map2Texture1;
break;
case GL_MAP2_TEXTURE_COORD_2:
map2 = &ctx->EvalMap.Map2Texture2;
break;
case GL_MAP2_TEXTURE_COORD_3:
map2 = &ctx->EvalMap.Map2Texture3;
break;
case GL_MAP2_TEXTURE_COORD_4:
map2 = &ctx->EvalMap.Map2Texture4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
return;
}
if (map1) {
if (data==map1->Points) {
/* The control points in the display list are currently */
/* being used so we can mark them as discard-able. */
map1->Retain = GL_FALSE;
}
else {
/* The control points in the display list are not currently */
/* being used. */
FREE( data );
}
}
if (map2) {
if (data==map2->Points) {
/* The control points in the display list are currently */
/* being used so we can mark them as discard-able. */
map2->Retain = GL_FALSE;
}
else {
/* The control points in the display list are not currently */
/* being used. */
FREE( data );
}
}
}
/**********************************************************************/
/*** API entry points ***/
/**********************************************************************/
/*
* Note that the array of control points must be 'unpacked' at this time.
* Input: retain - if TRUE, this control point data is also in a display
* list and can't be freed until the list is freed.
*/
void gl_Map1f( GLcontext* ctx, GLenum target,
GLfloat u1, GLfloat u2, GLint stride,
GLint order, const GLfloat *points, GLboolean retain )
{
GLint k;
if (!points) {
gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
return;
}
/* may be a new stride after copying control points */
stride = components( target );
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
if (u1==u2) {
gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
return;
}
if (order<1 || order>MAX_EVAL_ORDER) {
gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
return;
}
k = components( target );
if (k==0) {
gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
}
if (stride < k) {
gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
return;
}
switch (target) {
case GL_MAP1_VERTEX_3:
ctx->EvalMap.Map1Vertex3.Order = order;
ctx->EvalMap.Map1Vertex3.u1 = u1;
ctx->EvalMap.Map1Vertex3.u2 = u2;
ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Vertex3.Points
&& !ctx->EvalMap.Map1Vertex3.Retain) {
FREE( ctx->EvalMap.Map1Vertex3.Points );
}
ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
ctx->EvalMap.Map1Vertex3.Retain = retain;
break;
case GL_MAP1_VERTEX_4:
ctx->EvalMap.Map1Vertex4.Order = order;
ctx->EvalMap.Map1Vertex4.u1 = u1;
ctx->EvalMap.Map1Vertex4.u2 = u2;
ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Vertex4.Points
&& !ctx->EvalMap.Map1Vertex4.Retain) {
FREE( ctx->EvalMap.Map1Vertex4.Points );
}
ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
ctx->EvalMap.Map1Vertex4.Retain = retain;
break;
case GL_MAP1_INDEX:
ctx->EvalMap.Map1Index.Order = order;
ctx->EvalMap.Map1Index.u1 = u1;
ctx->EvalMap.Map1Index.u2 = u2;
ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Index.Points
&& !ctx->EvalMap.Map1Index.Retain) {
FREE( ctx->EvalMap.Map1Index.Points );
}
ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
ctx->EvalMap.Map1Index.Retain = retain;
break;
case GL_MAP1_COLOR_4:
ctx->EvalMap.Map1Color4.Order = order;
ctx->EvalMap.Map1Color4.u1 = u1;
ctx->EvalMap.Map1Color4.u2 = u2;
ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Color4.Points
&& !ctx->EvalMap.Map1Color4.Retain) {
FREE( ctx->EvalMap.Map1Color4.Points );
}
ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
ctx->EvalMap.Map1Color4.Retain = retain;
break;
case GL_MAP1_NORMAL:
ctx->EvalMap.Map1Normal.Order = order;
ctx->EvalMap.Map1Normal.u1 = u1;
ctx->EvalMap.Map1Normal.u2 = u2;
ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Normal.Points
&& !ctx->EvalMap.Map1Normal.Retain) {
FREE( ctx->EvalMap.Map1Normal.Points );
}
ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
ctx->EvalMap.Map1Normal.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_1:
ctx->EvalMap.Map1Texture1.Order = order;
ctx->EvalMap.Map1Texture1.u1 = u1;
ctx->EvalMap.Map1Texture1.u2 = u2;
ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Texture1.Points
&& !ctx->EvalMap.Map1Texture1.Retain) {
FREE( ctx->EvalMap.Map1Texture1.Points );
}
ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture1.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_2:
ctx->EvalMap.Map1Texture2.Order = order;
ctx->EvalMap.Map1Texture2.u1 = u1;
ctx->EvalMap.Map1Texture2.u2 = u2;
ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Texture2.Points
&& !ctx->EvalMap.Map1Texture2.Retain) {
FREE( ctx->EvalMap.Map1Texture2.Points );
}
ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture2.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_3:
ctx->EvalMap.Map1Texture3.Order = order;
ctx->EvalMap.Map1Texture3.u1 = u1;
ctx->EvalMap.Map1Texture3.u2 = u2;
ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Texture3.Points
&& !ctx->EvalMap.Map1Texture3.Retain) {
FREE( ctx->EvalMap.Map1Texture3.Points );
}
ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture3.Retain = retain;
break;
case GL_MAP1_TEXTURE_COORD_4:
ctx->EvalMap.Map1Texture4.Order = order;
ctx->EvalMap.Map1Texture4.u1 = u1;
ctx->EvalMap.Map1Texture4.u2 = u2;
ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
if (ctx->EvalMap.Map1Texture4.Points
&& !ctx->EvalMap.Map1Texture4.Retain) {
FREE( ctx->EvalMap.Map1Texture4.Points );
}
ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
ctx->EvalMap.Map1Texture4.Retain = retain;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
}
}
/*
* Note that the array of control points must be 'unpacked' at this time.
* Input: retain - if TRUE, this control point data is also in a display
* list and can't be freed until the list is freed.
*/
void gl_Map2f( GLcontext* ctx, GLenum target,
GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
const GLfloat *points, GLboolean retain )
{
GLint k;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
if (u1==u2) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
return;
}
if (v1==v2) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
return;
}
if (uorder<1 || uorder>MAX_EVAL_ORDER) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
return;
}
if (vorder<1 || vorder>MAX_EVAL_ORDER) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
return;
}
k = components( target );
if (k==0) {
gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
}
if (ustride < k) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
return;
}
if (vstride < k) {
gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
return;
}
switch (target) {
case GL_MAP2_VERTEX_3:
ctx->EvalMap.Map2Vertex3.Uorder = uorder;
ctx->EvalMap.Map2Vertex3.u1 = u1;
ctx->EvalMap.Map2Vertex3.u2 = u2;
ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Vertex3.Vorder = vorder;
ctx->EvalMap.Map2Vertex3.v1 = v1;
ctx->EvalMap.Map2Vertex3.v2 = v2;
ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Vertex3.Points
&& !ctx->EvalMap.Map2Vertex3.Retain) {
FREE( ctx->EvalMap.Map2Vertex3.Points );
}
ctx->EvalMap.Map2Vertex3.Retain = retain;
ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
break;
case GL_MAP2_VERTEX_4:
ctx->EvalMap.Map2Vertex4.Uorder = uorder;
ctx->EvalMap.Map2Vertex4.u1 = u1;
ctx->EvalMap.Map2Vertex4.u2 = u2;
ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Vertex4.Vorder = vorder;
ctx->EvalMap.Map2Vertex4.v1 = v1;
ctx->EvalMap.Map2Vertex4.v2 = v2;
ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Vertex4.Points
&& !ctx->EvalMap.Map2Vertex4.Retain) {
FREE( ctx->EvalMap.Map2Vertex4.Points );
}
ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
ctx->EvalMap.Map2Vertex4.Retain = retain;
break;
case GL_MAP2_INDEX:
ctx->EvalMap.Map2Index.Uorder = uorder;
ctx->EvalMap.Map2Index.u1 = u1;
ctx->EvalMap.Map2Index.u2 = u2;
ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Index.Vorder = vorder;
ctx->EvalMap.Map2Index.v1 = v1;
ctx->EvalMap.Map2Index.v2 = v2;
ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Index.Points
&& !ctx->EvalMap.Map2Index.Retain) {
FREE( ctx->EvalMap.Map2Index.Points );
}
ctx->EvalMap.Map2Index.Retain = retain;
ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
break;
case GL_MAP2_COLOR_4:
ctx->EvalMap.Map2Color4.Uorder = uorder;
ctx->EvalMap.Map2Color4.u1 = u1;
ctx->EvalMap.Map2Color4.u2 = u2;
ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Color4.Vorder = vorder;
ctx->EvalMap.Map2Color4.v1 = v1;
ctx->EvalMap.Map2Color4.v2 = v2;
ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Color4.Points
&& !ctx->EvalMap.Map2Color4.Retain) {
FREE( ctx->EvalMap.Map2Color4.Points );
}
ctx->EvalMap.Map2Color4.Retain = retain;
ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
break;
case GL_MAP2_NORMAL:
ctx->EvalMap.Map2Normal.Uorder = uorder;
ctx->EvalMap.Map2Normal.u1 = u1;
ctx->EvalMap.Map2Normal.u2 = u2;
ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Normal.Vorder = vorder;
ctx->EvalMap.Map2Normal.v1 = v1;
ctx->EvalMap.Map2Normal.v2 = v2;
ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Normal.Points
&& !ctx->EvalMap.Map2Normal.Retain) {
FREE( ctx->EvalMap.Map2Normal.Points );
}
ctx->EvalMap.Map2Normal.Retain = retain;
ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_1:
ctx->EvalMap.Map2Texture1.Uorder = uorder;
ctx->EvalMap.Map2Texture1.u1 = u1;
ctx->EvalMap.Map2Texture1.u2 = u2;
ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Texture1.Vorder = vorder;
ctx->EvalMap.Map2Texture1.v1 = v1;
ctx->EvalMap.Map2Texture1.v2 = v2;
ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Texture1.Points
&& !ctx->EvalMap.Map2Texture1.Retain) {
FREE( ctx->EvalMap.Map2Texture1.Points );
}
ctx->EvalMap.Map2Texture1.Retain = retain;
ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_2:
ctx->EvalMap.Map2Texture2.Uorder = uorder;
ctx->EvalMap.Map2Texture2.u1 = u1;
ctx->EvalMap.Map2Texture2.u2 = u2;
ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Texture2.Vorder = vorder;
ctx->EvalMap.Map2Texture2.v1 = v1;
ctx->EvalMap.Map2Texture2.v2 = v2;
ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Texture2.Points
&& !ctx->EvalMap.Map2Texture2.Retain) {
FREE( ctx->EvalMap.Map2Texture2.Points );
}
ctx->EvalMap.Map2Texture2.Retain = retain;
ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_3:
ctx->EvalMap.Map2Texture3.Uorder = uorder;
ctx->EvalMap.Map2Texture3.u1 = u1;
ctx->EvalMap.Map2Texture3.u2 = u2;
ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Texture3.Vorder = vorder;
ctx->EvalMap.Map2Texture3.v1 = v1;
ctx->EvalMap.Map2Texture3.v2 = v2;
ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Texture3.Points
&& !ctx->EvalMap.Map2Texture3.Retain) {
FREE( ctx->EvalMap.Map2Texture3.Points );
}
ctx->EvalMap.Map2Texture3.Retain = retain;
ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
break;
case GL_MAP2_TEXTURE_COORD_4:
ctx->EvalMap.Map2Texture4.Uorder = uorder;
ctx->EvalMap.Map2Texture4.u1 = u1;
ctx->EvalMap.Map2Texture4.u2 = u2;
ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
ctx->EvalMap.Map2Texture4.Vorder = vorder;
ctx->EvalMap.Map2Texture4.v1 = v1;
ctx->EvalMap.Map2Texture4.v2 = v2;
ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
if (ctx->EvalMap.Map2Texture4.Points
&& !ctx->EvalMap.Map2Texture4.Retain) {
FREE( ctx->EvalMap.Map2Texture4.Points );
}
ctx->EvalMap.Map2Texture4.Retain = retain;
ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
}
}
void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
{
GLint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = ctx->EvalMap.Map1Color4.Points;
n = ctx->EvalMap.Map1Color4.Order * 4;
break;
case GL_MAP1_INDEX:
data = ctx->EvalMap.Map1Index.Points;
n = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
data = ctx->EvalMap.Map1Normal.Points;
n = ctx->EvalMap.Map1Normal.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = ctx->EvalMap.Map1Texture1.Points;
n = ctx->EvalMap.Map1Texture1.Order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = ctx->EvalMap.Map1Texture2.Points;
n = ctx->EvalMap.Map1Texture2.Order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = ctx->EvalMap.Map1Texture3.Points;
n = ctx->EvalMap.Map1Texture3.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = ctx->EvalMap.Map1Texture4.Points;
n = ctx->EvalMap.Map1Texture4.Order * 4;
break;
case GL_MAP1_VERTEX_3:
data = ctx->EvalMap.Map1Vertex3.Points;
n = ctx->EvalMap.Map1Vertex3.Order * 3;
break;
case GL_MAP1_VERTEX_4:
data = ctx->EvalMap.Map1Vertex4.Points;
n = ctx->EvalMap.Map1Vertex4.Order * 4;
break;
case GL_MAP2_COLOR_4:
data = ctx->EvalMap.Map2Color4.Points;
n = ctx->EvalMap.Map2Color4.Uorder
* ctx->EvalMap.Map2Color4.Vorder * 4;
break;
case GL_MAP2_INDEX:
data = ctx->EvalMap.Map2Index.Points;
n = ctx->EvalMap.Map2Index.Uorder
* ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
data = ctx->EvalMap.Map2Normal.Points;
n = ctx->EvalMap.Map2Normal.Uorder
* ctx->EvalMap.Map2Normal.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = ctx->EvalMap.Map2Texture1.Points;
n = ctx->EvalMap.Map2Texture1.Uorder
* ctx->EvalMap.Map2Texture1.Vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = ctx->EvalMap.Map2Texture2.Points;
n = ctx->EvalMap.Map2Texture2.Uorder
* ctx->EvalMap.Map2Texture2.Vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = ctx->EvalMap.Map2Texture3.Points;
n = ctx->EvalMap.Map2Texture3.Uorder
* ctx->EvalMap.Map2Texture3.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = ctx->EvalMap.Map2Texture4.Points;
n = ctx->EvalMap.Map2Texture4.Uorder
* ctx->EvalMap.Map2Texture4.Vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = ctx->EvalMap.Map2Vertex3.Points;
n = ctx->EvalMap.Map2Vertex3.Uorder
* ctx->EvalMap.Map2Vertex3.Vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = ctx->EvalMap.Map2Vertex4.Points;
n = ctx->EvalMap.Map2Vertex4.Uorder
* ctx->EvalMap.Map2Vertex4.Vorder * 4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
return;
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = ctx->EvalMap.Map1Color4.Order;
break;
case GL_MAP1_INDEX:
*v = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
*v = ctx->EvalMap.Map1Normal.Order;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = ctx->EvalMap.Map1Texture1.Order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = ctx->EvalMap.Map1Texture2.Order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = ctx->EvalMap.Map1Texture3.Order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = ctx->EvalMap.Map1Texture4.Order;
break;
case GL_MAP1_VERTEX_3:
*v = ctx->EvalMap.Map1Vertex3.Order;
break;
case GL_MAP1_VERTEX_4:
*v = ctx->EvalMap.Map1Vertex4.Order;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.Uorder;
v[1] = ctx->EvalMap.Map2Color4.Vorder;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.Uorder;
v[1] = ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.Uorder;
v[1] = ctx->EvalMap.Map2Normal.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.Uorder;
v[1] = ctx->EvalMap.Map2Texture1.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.Uorder;
v[1] = ctx->EvalMap.Map2Texture2.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.Uorder;
v[1] = ctx->EvalMap.Map2Texture3.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.Uorder;
v[1] = ctx->EvalMap.Map2Texture4.Vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
return;
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ctx->EvalMap.Map1Color4.u1;
v[1] = ctx->EvalMap.Map1Color4.u2;
break;
case GL_MAP1_INDEX:
v[0] = ctx->EvalMap.Map1Index.u1;
v[1] = ctx->EvalMap.Map1Index.u2;
break;
case GL_MAP1_NORMAL:
v[0] = ctx->EvalMap.Map1Normal.u1;
v[1] = ctx->EvalMap.Map1Normal.u2;
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map1Texture1.u1;
v[1] = ctx->EvalMap.Map1Texture1.u2;
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map1Texture2.u1;
v[1] = ctx->EvalMap.Map1Texture2.u2;
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map1Texture3.u1;
v[1] = ctx->EvalMap.Map1Texture3.u2;
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map1Texture4.u1;
v[1] = ctx->EvalMap.Map1Texture4.u2;
break;
case GL_MAP1_VERTEX_3:
v[0] = ctx->EvalMap.Map1Vertex3.u1;
v[1] = ctx->EvalMap.Map1Vertex3.u2;
break;
case GL_MAP1_VERTEX_4:
v[0] = ctx->EvalMap.Map1Vertex4.u1;
v[1] = ctx->EvalMap.Map1Vertex4.u2;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.u1;
v[1] = ctx->EvalMap.Map2Color4.u2;
v[2] = ctx->EvalMap.Map2Color4.v1;
v[3] = ctx->EvalMap.Map2Color4.v2;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.u1;
v[1] = ctx->EvalMap.Map2Index.u2;
v[2] = ctx->EvalMap.Map2Index.v1;
v[3] = ctx->EvalMap.Map2Index.v2;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.u1;
v[1] = ctx->EvalMap.Map2Normal.u2;
v[2] = ctx->EvalMap.Map2Normal.v1;
v[3] = ctx->EvalMap.Map2Normal.v2;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.u1;
v[1] = ctx->EvalMap.Map2Texture1.u2;
v[2] = ctx->EvalMap.Map2Texture1.v1;
v[3] = ctx->EvalMap.Map2Texture1.v2;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.u1;
v[1] = ctx->EvalMap.Map2Texture2.u2;
v[2] = ctx->EvalMap.Map2Texture2.v1;
v[3] = ctx->EvalMap.Map2Texture2.v2;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.u1;
v[1] = ctx->EvalMap.Map2Texture3.u2;
v[2] = ctx->EvalMap.Map2Texture3.v1;
v[3] = ctx->EvalMap.Map2Texture3.v2;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.u1;
v[1] = ctx->EvalMap.Map2Texture4.u2;
v[2] = ctx->EvalMap.Map2Texture4.v1;
v[3] = ctx->EvalMap.Map2Texture4.v2;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.u1;
v[1] = ctx->EvalMap.Map2Vertex3.u2;
v[2] = ctx->EvalMap.Map2Vertex3.v1;
v[3] = ctx->EvalMap.Map2Vertex3.v2;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.u1;
v[1] = ctx->EvalMap.Map2Vertex4.u2;
v[2] = ctx->EvalMap.Map2Vertex4.v1;
v[3] = ctx->EvalMap.Map2Vertex4.v2;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
}
}
void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
{
GLint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = ctx->EvalMap.Map1Color4.Points;
n = ctx->EvalMap.Map1Color4.Order * 4;
break;
case GL_MAP1_INDEX:
data = ctx->EvalMap.Map1Index.Points;
n = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
data = ctx->EvalMap.Map1Normal.Points;
n = ctx->EvalMap.Map1Normal.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = ctx->EvalMap.Map1Texture1.Points;
n = ctx->EvalMap.Map1Texture1.Order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = ctx->EvalMap.Map1Texture2.Points;
n = ctx->EvalMap.Map1Texture2.Order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = ctx->EvalMap.Map1Texture3.Points;
n = ctx->EvalMap.Map1Texture3.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = ctx->EvalMap.Map1Texture4.Points;
n = ctx->EvalMap.Map1Texture4.Order * 4;
break;
case GL_MAP1_VERTEX_3:
data = ctx->EvalMap.Map1Vertex3.Points;
n = ctx->EvalMap.Map1Vertex3.Order * 3;
break;
case GL_MAP1_VERTEX_4:
data = ctx->EvalMap.Map1Vertex4.Points;
n = ctx->EvalMap.Map1Vertex4.Order * 4;
break;
case GL_MAP2_COLOR_4:
data = ctx->EvalMap.Map2Color4.Points;
n = ctx->EvalMap.Map2Color4.Uorder
* ctx->EvalMap.Map2Color4.Vorder * 4;
break;
case GL_MAP2_INDEX:
data = ctx->EvalMap.Map2Index.Points;
n = ctx->EvalMap.Map2Index.Uorder
* ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
data = ctx->EvalMap.Map2Normal.Points;
n = ctx->EvalMap.Map2Normal.Uorder
* ctx->EvalMap.Map2Normal.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = ctx->EvalMap.Map2Texture1.Points;
n = ctx->EvalMap.Map2Texture1.Uorder
* ctx->EvalMap.Map2Texture1.Vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = ctx->EvalMap.Map2Texture2.Points;
n = ctx->EvalMap.Map2Texture2.Uorder
* ctx->EvalMap.Map2Texture2.Vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = ctx->EvalMap.Map2Texture3.Points;
n = ctx->EvalMap.Map2Texture3.Uorder
* ctx->EvalMap.Map2Texture3.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = ctx->EvalMap.Map2Texture4.Points;
n = ctx->EvalMap.Map2Texture4.Uorder
* ctx->EvalMap.Map2Texture4.Vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = ctx->EvalMap.Map2Vertex3.Points;
n = ctx->EvalMap.Map2Vertex3.Uorder
* ctx->EvalMap.Map2Vertex3.Vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = ctx->EvalMap.Map2Vertex4.Points;
n = ctx->EvalMap.Map2Vertex4.Uorder
* ctx->EvalMap.Map2Vertex4.Vorder * 4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
return;
}
if (data) {
for (i=0;i<n;i++) {
v[i] = data[i];
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = ctx->EvalMap.Map1Color4.Order;
break;
case GL_MAP1_INDEX:
*v = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
*v = ctx->EvalMap.Map1Normal.Order;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = ctx->EvalMap.Map1Texture1.Order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = ctx->EvalMap.Map1Texture2.Order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = ctx->EvalMap.Map1Texture3.Order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = ctx->EvalMap.Map1Texture4.Order;
break;
case GL_MAP1_VERTEX_3:
*v = ctx->EvalMap.Map1Vertex3.Order;
break;
case GL_MAP1_VERTEX_4:
*v = ctx->EvalMap.Map1Vertex4.Order;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.Uorder;
v[1] = ctx->EvalMap.Map2Color4.Vorder;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.Uorder;
v[1] = ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.Uorder;
v[1] = ctx->EvalMap.Map2Normal.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.Uorder;
v[1] = ctx->EvalMap.Map2Texture1.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.Uorder;
v[1] = ctx->EvalMap.Map2Texture2.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.Uorder;
v[1] = ctx->EvalMap.Map2Texture3.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.Uorder;
v[1] = ctx->EvalMap.Map2Texture4.Vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
return;
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ctx->EvalMap.Map1Color4.u1;
v[1] = ctx->EvalMap.Map1Color4.u2;
break;
case GL_MAP1_INDEX:
v[0] = ctx->EvalMap.Map1Index.u1;
v[1] = ctx->EvalMap.Map1Index.u2;
break;
case GL_MAP1_NORMAL:
v[0] = ctx->EvalMap.Map1Normal.u1;
v[1] = ctx->EvalMap.Map1Normal.u2;
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map1Texture1.u1;
v[1] = ctx->EvalMap.Map1Texture1.u2;
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map1Texture2.u1;
v[1] = ctx->EvalMap.Map1Texture2.u2;
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map1Texture3.u1;
v[1] = ctx->EvalMap.Map1Texture3.u2;
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map1Texture4.u1;
v[1] = ctx->EvalMap.Map1Texture4.u2;
break;
case GL_MAP1_VERTEX_3:
v[0] = ctx->EvalMap.Map1Vertex3.u1;
v[1] = ctx->EvalMap.Map1Vertex3.u2;
break;
case GL_MAP1_VERTEX_4:
v[0] = ctx->EvalMap.Map1Vertex4.u1;
v[1] = ctx->EvalMap.Map1Vertex4.u2;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.u1;
v[1] = ctx->EvalMap.Map2Color4.u2;
v[2] = ctx->EvalMap.Map2Color4.v1;
v[3] = ctx->EvalMap.Map2Color4.v2;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.u1;
v[1] = ctx->EvalMap.Map2Index.u2;
v[2] = ctx->EvalMap.Map2Index.v1;
v[3] = ctx->EvalMap.Map2Index.v2;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.u1;
v[1] = ctx->EvalMap.Map2Normal.u2;
v[2] = ctx->EvalMap.Map2Normal.v1;
v[3] = ctx->EvalMap.Map2Normal.v2;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.u1;
v[1] = ctx->EvalMap.Map2Texture1.u2;
v[2] = ctx->EvalMap.Map2Texture1.v1;
v[3] = ctx->EvalMap.Map2Texture1.v2;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.u1;
v[1] = ctx->EvalMap.Map2Texture2.u2;
v[2] = ctx->EvalMap.Map2Texture2.v1;
v[3] = ctx->EvalMap.Map2Texture2.v2;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.u1;
v[1] = ctx->EvalMap.Map2Texture3.u2;
v[2] = ctx->EvalMap.Map2Texture3.v1;
v[3] = ctx->EvalMap.Map2Texture3.v2;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.u1;
v[1] = ctx->EvalMap.Map2Texture4.u2;
v[2] = ctx->EvalMap.Map2Texture4.v1;
v[3] = ctx->EvalMap.Map2Texture4.v2;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.u1;
v[1] = ctx->EvalMap.Map2Vertex3.u2;
v[2] = ctx->EvalMap.Map2Vertex3.v1;
v[3] = ctx->EvalMap.Map2Vertex3.v2;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.u1;
v[1] = ctx->EvalMap.Map2Vertex4.u2;
v[2] = ctx->EvalMap.Map2Vertex4.v1;
v[3] = ctx->EvalMap.Map2Vertex4.v2;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
}
}
void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
{
GLuint i, n;
GLfloat *data;
switch (query) {
case GL_COEFF:
switch (target) {
case GL_MAP1_COLOR_4:
data = ctx->EvalMap.Map1Color4.Points;
n = ctx->EvalMap.Map1Color4.Order * 4;
break;
case GL_MAP1_INDEX:
data = ctx->EvalMap.Map1Index.Points;
n = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
data = ctx->EvalMap.Map1Normal.Points;
n = ctx->EvalMap.Map1Normal.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_1:
data = ctx->EvalMap.Map1Texture1.Points;
n = ctx->EvalMap.Map1Texture1.Order * 1;
break;
case GL_MAP1_TEXTURE_COORD_2:
data = ctx->EvalMap.Map1Texture2.Points;
n = ctx->EvalMap.Map1Texture2.Order * 2;
break;
case GL_MAP1_TEXTURE_COORD_3:
data = ctx->EvalMap.Map1Texture3.Points;
n = ctx->EvalMap.Map1Texture3.Order * 3;
break;
case GL_MAP1_TEXTURE_COORD_4:
data = ctx->EvalMap.Map1Texture4.Points;
n = ctx->EvalMap.Map1Texture4.Order * 4;
break;
case GL_MAP1_VERTEX_3:
data = ctx->EvalMap.Map1Vertex3.Points;
n = ctx->EvalMap.Map1Vertex3.Order * 3;
break;
case GL_MAP1_VERTEX_4:
data = ctx->EvalMap.Map1Vertex4.Points;
n = ctx->EvalMap.Map1Vertex4.Order * 4;
break;
case GL_MAP2_COLOR_4:
data = ctx->EvalMap.Map2Color4.Points;
n = ctx->EvalMap.Map2Color4.Uorder
* ctx->EvalMap.Map2Color4.Vorder * 4;
break;
case GL_MAP2_INDEX:
data = ctx->EvalMap.Map2Index.Points;
n = ctx->EvalMap.Map2Index.Uorder
* ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
data = ctx->EvalMap.Map2Normal.Points;
n = ctx->EvalMap.Map2Normal.Uorder
* ctx->EvalMap.Map2Normal.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_1:
data = ctx->EvalMap.Map2Texture1.Points;
n = ctx->EvalMap.Map2Texture1.Uorder
* ctx->EvalMap.Map2Texture1.Vorder * 1;
break;
case GL_MAP2_TEXTURE_COORD_2:
data = ctx->EvalMap.Map2Texture2.Points;
n = ctx->EvalMap.Map2Texture2.Uorder
* ctx->EvalMap.Map2Texture2.Vorder * 2;
break;
case GL_MAP2_TEXTURE_COORD_3:
data = ctx->EvalMap.Map2Texture3.Points;
n = ctx->EvalMap.Map2Texture3.Uorder
* ctx->EvalMap.Map2Texture3.Vorder * 3;
break;
case GL_MAP2_TEXTURE_COORD_4:
data = ctx->EvalMap.Map2Texture4.Points;
n = ctx->EvalMap.Map2Texture4.Uorder
* ctx->EvalMap.Map2Texture4.Vorder * 4;
break;
case GL_MAP2_VERTEX_3:
data = ctx->EvalMap.Map2Vertex3.Points;
n = ctx->EvalMap.Map2Vertex3.Uorder
* ctx->EvalMap.Map2Vertex3.Vorder * 3;
break;
case GL_MAP2_VERTEX_4:
data = ctx->EvalMap.Map2Vertex4.Points;
n = ctx->EvalMap.Map2Vertex4.Uorder
* ctx->EvalMap.Map2Vertex4.Vorder * 4;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
return;
}
if (data) {
for (i=0;i<n;i++) {
v[i] = ROUNDF(data[i]);
}
}
break;
case GL_ORDER:
switch (target) {
case GL_MAP1_COLOR_4:
*v = ctx->EvalMap.Map1Color4.Order;
break;
case GL_MAP1_INDEX:
*v = ctx->EvalMap.Map1Index.Order;
break;
case GL_MAP1_NORMAL:
*v = ctx->EvalMap.Map1Normal.Order;
break;
case GL_MAP1_TEXTURE_COORD_1:
*v = ctx->EvalMap.Map1Texture1.Order;
break;
case GL_MAP1_TEXTURE_COORD_2:
*v = ctx->EvalMap.Map1Texture2.Order;
break;
case GL_MAP1_TEXTURE_COORD_3:
*v = ctx->EvalMap.Map1Texture3.Order;
break;
case GL_MAP1_TEXTURE_COORD_4:
*v = ctx->EvalMap.Map1Texture4.Order;
break;
case GL_MAP1_VERTEX_3:
*v = ctx->EvalMap.Map1Vertex3.Order;
break;
case GL_MAP1_VERTEX_4:
*v = ctx->EvalMap.Map1Vertex4.Order;
break;
case GL_MAP2_COLOR_4:
v[0] = ctx->EvalMap.Map2Color4.Uorder;
v[1] = ctx->EvalMap.Map2Color4.Vorder;
break;
case GL_MAP2_INDEX:
v[0] = ctx->EvalMap.Map2Index.Uorder;
v[1] = ctx->EvalMap.Map2Index.Vorder;
break;
case GL_MAP2_NORMAL:
v[0] = ctx->EvalMap.Map2Normal.Uorder;
v[1] = ctx->EvalMap.Map2Normal.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ctx->EvalMap.Map2Texture1.Uorder;
v[1] = ctx->EvalMap.Map2Texture1.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ctx->EvalMap.Map2Texture2.Uorder;
v[1] = ctx->EvalMap.Map2Texture2.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ctx->EvalMap.Map2Texture3.Uorder;
v[1] = ctx->EvalMap.Map2Texture3.Vorder;
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ctx->EvalMap.Map2Texture4.Uorder;
v[1] = ctx->EvalMap.Map2Texture4.Vorder;
break;
case GL_MAP2_VERTEX_3:
v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
break;
case GL_MAP2_VERTEX_4:
v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
return;
}
break;
case GL_DOMAIN:
switch (target) {
case GL_MAP1_COLOR_4:
v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
break;
case GL_MAP1_INDEX:
v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
break;
case GL_MAP1_NORMAL:
v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
break;
case GL_MAP1_TEXTURE_COORD_1:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
break;
case GL_MAP1_TEXTURE_COORD_2:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
break;
case GL_MAP1_TEXTURE_COORD_3:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
break;
case GL_MAP1_TEXTURE_COORD_4:
v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
break;
case GL_MAP1_VERTEX_3:
v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
break;
case GL_MAP1_VERTEX_4:
v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
break;
case GL_MAP2_COLOR_4:
v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
break;
case GL_MAP2_INDEX:
v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
break;
case GL_MAP2_NORMAL:
v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
break;
case GL_MAP2_TEXTURE_COORD_1:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
break;
case GL_MAP2_TEXTURE_COORD_2:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
break;
case GL_MAP2_TEXTURE_COORD_3:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
break;
case GL_MAP2_TEXTURE_COORD_4:
v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
break;
case GL_MAP2_VERTEX_3:
v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
break;
case GL_MAP2_VERTEX_4:
v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
}
}
static void eval_points1( GLfloat outcoord[][4],
GLfloat coord[][4],
const GLuint *flags,
GLuint start,
GLfloat du, GLfloat u1 )
{
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & VERT_EVAL_P1)
outcoord[i][0] = coord[i][0] * du + u1;
else if (flags[i] & VERT_EVAL_ANY) {
outcoord[i][0] = coord[i][0];
outcoord[i][1] = coord[i][1];
}
}
static void eval_points2( GLfloat outcoord[][4],
GLfloat coord[][4],
const GLuint *flags,
GLuint start,
GLfloat du, GLfloat u1,
GLfloat dv, GLfloat v1 )
{
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & VERT_EVAL_P2) {
outcoord[i][0] = coord[i][0] * du + u1;
outcoord[i][1] = coord[i][1] * dv + v1;
} else if (flags[i] & VERT_EVAL_ANY) {
outcoord[i][0] = coord[i][0];
outcoord[i][1] = coord[i][1];
}
}
static const GLubyte dirty_flags[5] = {
0, /* not possible */
VEC_DIRTY_0,
VEC_DIRTY_1,
VEC_DIRTY_2,
VEC_DIRTY_3
};
static GLvector4f *eval1_4f( GLvector4f *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint start,
GLuint dimension,
struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLfloat (*to)[4] = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
ASSIGN_4V(to[i], 0,0,0,1);
horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
}
dest->count = i;
dest->start = VEC_ELT(dest, GLfloat, start);
dest->size = MAX2(dest->size, dimension);
dest->flags |= dirty_flags[dimension];
return dest;
}
static GLvector1ui *eval1_1ui( GLvector1ui *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint start,
struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLuint *to = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat tmp;
horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
to[i] = (GLuint) (GLint) tmp;
}
dest->start = VEC_ELT(dest, GLuint, start);
dest->count = i;
return dest;
}
static GLvector3f *eval1_norm( GLvector3f *dest,
GLfloat coord[][4],
GLuint *flags, /* not const */
GLuint start,
struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLfloat (*to)[3] = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
flags[i+1] |= VERT_NORM; /* reset */
}
dest->start = VEC_ELT(dest, GLfloat, start);
dest->count = i;
return dest;
}
static GLvector4ub *eval1_color( GLvector4ub *dest,
GLfloat coord[][4],
GLuint *flags, /* not const */
GLuint start,
struct gl_1d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
GLubyte (*to)[4] = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat fcolor[4];
horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
flags[i+1] |= VERT_RGBA; /* reset */
}
dest->start = VEC_ELT(dest, GLubyte, start);
dest->count = i;
return dest;
}
static GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
GLvector3f *norm_ptr,
GLfloat coord[][4],
GLuint *flags,
GLuint start,
GLuint dimension,
struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*obj)[4] = obj_ptr->data;
GLfloat (*normal)[3] = norm_ptr->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
GLfloat du[4], dv[4];
ASSIGN_4V(obj[i], 0,0,0,1);
de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
map->Uorder, map->Vorder);
CROSS3(normal[i], du, dv);
NORMALIZE_3FV(normal[i]);
flags[i+1] |= VERT_NORM;
}
obj_ptr->start = VEC_ELT(obj_ptr, GLfloat, start);
obj_ptr->count = i;
obj_ptr->size = MAX2(obj_ptr->size, dimension);
obj_ptr->flags |= dirty_flags[dimension];
return obj_ptr;
}
static GLvector4f *eval2_4f( GLvector4f *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint start,
GLuint dimension,
struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*to)[4] = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
horner_bezier_surf(map->Points, to[i], u, v, dimension,
map->Uorder, map->Vorder);
}
dest->start = VEC_ELT(dest, GLfloat, start);
dest->count = i;
dest->size = MAX2(dest->size, dimension);
dest->flags |= dirty_flags[dimension];
return dest;
}
static GLvector3f *eval2_norm( GLvector3f *dest,
GLfloat coord[][4],
GLuint *flags,
GLuint start,
struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLfloat (*to)[3] = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
horner_bezier_surf(map->Points, to[i], u, v, 3,
map->Uorder, map->Vorder);
flags[i+1] |= VERT_NORM; /* reset */
}
dest->start = VEC_ELT(dest, GLfloat, start);
dest->count = i;
return dest;
}
static GLvector1ui *eval2_1ui( GLvector1ui *dest,
GLfloat coord[][4],
const GLuint *flags,
GLuint start,
struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLuint *to = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
GLfloat tmp;
horner_bezier_surf(map->Points, &tmp, u, v, 1,
map->Uorder, map->Vorder);
to[i] = (GLuint) (GLint) tmp;
}
dest->start = VEC_ELT(dest, GLuint, start);
dest->count = i;
return dest;
}
static GLvector4ub *eval2_color( GLvector4ub *dest,
GLfloat coord[][4],
GLuint *flags,
GLuint start,
struct gl_2d_map *map )
{
const GLfloat u1 = map->u1;
const GLfloat du = map->du;
const GLfloat v1 = map->v1;
const GLfloat dv = map->dv;
GLubyte (*to)[4] = dest->data;
GLuint i;
for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
GLfloat u = (coord[i][0] - u1) * du;
GLfloat v = (coord[i][1] - v1) * dv;
GLfloat fcolor[4];
horner_bezier_surf(map->Points, fcolor, u, v, 4,
map->Uorder, map->Vorder);
FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
flags[i+1] |= VERT_RGBA; /* reset */
}
dest->start = VEC_ELT(dest, GLubyte, start);
dest->count = i;
return dest;
}
static GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
const GLuint *flags,
GLuint start )
{
GLfloat (*to)[4] = out->data;
GLfloat (*from)[4] = in->data;
GLuint i;
for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (!(flags[i] & VERT_EVAL_ANY))
COPY_4FV( to[i], from[i] );
out->start = VEC_ELT(out, GLfloat, start);
return out;
}
static GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
const GLuint *flags,
GLuint start )
{
GLfloat (*to)[3] = out->data;
GLfloat (*from)[3] = in->data;
GLuint i;
for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (!(flags[i] & VERT_EVAL_ANY))
COPY_3V( to[i], from[i] );
out->start = VEC_ELT(out, GLfloat, start);
return out;
}
static GLvector4ub *copy_4ub( GLvector4ub *out,
CONST GLvector4ub *in,
const GLuint *flags,
GLuint start )
{
GLubyte (*to)[4] = out->data;
GLubyte (*from)[4] = in->data;
GLuint i;
for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (!(flags[i] & VERT_EVAL_ANY))
COPY_4UBV( to[i], from[i] );
out->start = VEC_ELT(out, GLubyte, start);
return out;
}
static GLvector1ui *copy_1ui( GLvector1ui *out,
CONST GLvector1ui *in,
const GLuint *flags,
GLuint start )
{
GLuint *to = out->data;
CONST GLuint *from = in->data;
GLuint i;
for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
if (!(flags[i] & VERT_EVAL_ANY))
to[i] = from[i];
out->start = VEC_ELT(out, GLuint, start);
return out;
}
/* KW: Rewrote this to perform eval on a whole buffer at once.
* Only evaluates active data items, and avoids scribbling
* the source buffer if we are running from a display list.
*
* If the user (in this case looser) sends eval coordinates
* or runs a display list containing eval coords with no
* vertex maps enabled, we have to either copy all non-eval
* data to a new buffer, or find a way of working around
* the eval data. I choose the second option.
*
* KW: This code not reached by cva - use IM to access storage.
*/
void gl_eval_vb( struct vertex_buffer *VB )
{
struct immediate *IM = VB->IM;
GLcontext *ctx = VB->ctx;
GLuint req = ctx->CVA.elt.inputs;
GLfloat (*coord)[4] = VB->ObjPtr->data;
GLuint *flags = VB->Flag;
GLuint new_flags = 0;
GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
GLuint all_eval = IM->AndFlag & VERT_EVAL_ANY;
/* Handle the degenerate cases.
*/
if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
VB->EarlyCull = 0;
any_eval1 = GL_FALSE;
}
if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
VB->EarlyCull = 0;
any_eval2 = GL_FALSE;
}
/* KW: This really is a degenerate case - doing this disables
* culling, and causes dummy values for the missing vertices to be
* transformed and clip tested. It also forces the individual
* cliptesting of each primitive in vb_render. I wish there was a
* nice alternative, but I can't say I want to put effort into
* optimizing such a bad usage of the library - I'd much rather
* work on useful changes.
*/
if (VB->PurgeFlags) {
if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB->Start;
gl_purge_vertices( VB );
if (!any_eval1 && !any_eval2) return;
} else
VB->IndirectCount = VB->Count;
/* Translate points into coords.
*/
if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
{
eval_points1( IM->Obj, coord, flags, IM->Start,
ctx->Eval.MapGrid1du,
ctx->Eval.MapGrid1u1);
coord = IM->Obj;
}
if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
{
eval_points2( IM->Obj, coord, flags, IM->Start,
ctx->Eval.MapGrid2du,
ctx->Eval.MapGrid2u1,
ctx->Eval.MapGrid2dv,
ctx->Eval.MapGrid2v1 );
coord = IM->Obj;
}
/* Perform the evaluations on active data elements.
*/
if (req & VERT_INDEX)
{
GLvector1ui *in_index = VB->IndexPtr;
GLvector1ui *out_index = &IM->v.Index;
if (ctx->Eval.Map1Index && any_eval1)
VB->IndexPtr = eval1_1ui( out_index, coord, flags, IM->Start,
&ctx->EvalMap.Map1Index );
if (ctx->Eval.Map2Index && any_eval2)
VB->IndexPtr = eval2_1ui( out_index, coord, flags, IM->Start,
&ctx->EvalMap.Map2Index );
if (VB->IndexPtr != in_index) {
new_flags |= VERT_INDEX;
if (!all_eval)
VB->IndexPtr = copy_1ui( out_index, in_index, flags, IM->Start );
}
}
if (req & VERT_RGBA)
{
GLvector4ub *in_color = VB->ColorPtr;
GLvector4ub *out_color = &IM->v.Color;
if (ctx->Eval.Map1Color4 && any_eval1)
VB->ColorPtr = eval1_color( out_color, coord, flags, IM->Start,
&ctx->EvalMap.Map1Color4 );
if (ctx->Eval.Map2Color4 && any_eval2)
VB->ColorPtr = eval2_color( out_color, coord, flags, IM->Start,
&ctx->EvalMap.Map2Color4 );
if (VB->ColorPtr != in_color) {
new_flags |= VERT_RGBA;
if (!all_eval)
VB->ColorPtr = copy_4ub( out_color, in_color, flags, IM->Start );
}
VB->Color[0] = VB->Color[1] = VB->ColorPtr;
}
if (req & VERT_NORM)
{
GLvector3f *in_normal = VB->NormalPtr;
GLvector3f *out_normal = &IM->v.Normal;
if (ctx->Eval.Map1Normal && any_eval1)
VB->NormalPtr = eval1_norm( out_normal, coord, flags, IM->Start,
&ctx->EvalMap.Map1Normal );
if (ctx->Eval.Map2Normal && any_eval2)
VB->NormalPtr = eval2_norm( out_normal, coord, flags, IM->Start,
&ctx->EvalMap.Map2Normal );
if (VB->NormalPtr != in_normal) {
new_flags |= VERT_NORM;
if (!all_eval)
VB->NormalPtr = copy_3f( out_normal, in_normal, flags, IM->Start );
}
}
if (req & VERT_TEX_ANY(0))
{
GLvector4f *tc = VB->TexCoordPtr[0];
GLvector4f *in = tc;
GLvector4f *out = &IM->v.TexCoord[0];
if (any_eval1) {
if (ctx->Eval.Map1TextureCoord4)
tc = eval1_4f( out, coord, flags, IM->Start,
4, &ctx->EvalMap.Map1Texture4);
else if (ctx->Eval.Map1TextureCoord3)
tc = eval1_4f( out, coord, flags, IM->Start, 3,
&ctx->EvalMap.Map1Texture3);
else if (ctx->Eval.Map1TextureCoord2)
tc = eval1_4f( out, coord, flags, IM->Start, 2,
&ctx->EvalMap.Map1Texture2);
else if (ctx->Eval.Map1TextureCoord1)
tc = eval1_4f( out, coord, flags, IM->Start, 1,
&ctx->EvalMap.Map1Texture1);
}
if (any_eval2) {
if (ctx->Eval.Map2TextureCoord4)
tc = eval2_4f( out, coord, flags, IM->Start,
4, &ctx->EvalMap.Map2Texture4);
else if (ctx->Eval.Map2TextureCoord3)
tc = eval2_4f( out, coord, flags, IM->Start,
3, &ctx->EvalMap.Map2Texture3);
else if (ctx->Eval.Map2TextureCoord2)
tc = eval2_4f( out, coord, flags, IM->Start,
2, &ctx->EvalMap.Map2Texture2);
else if (ctx->Eval.Map2TextureCoord1)
tc = eval2_4f( out, coord, flags, IM->Start,
1, &ctx->EvalMap.Map2Texture1);
}
if (tc != in) {
new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
if (!all_eval)
tc = copy_4f( out, in, flags, IM->Start );
}
VB->TexCoordPtr[0] = tc;
}
{
GLvector4f *in = VB->ObjPtr;
GLvector4f *out = &IM->v.Obj;
GLvector4f *obj = in;
if (any_eval1) {
if (ctx->Eval.Map1Vertex4)
obj = eval1_4f( out, coord, flags, IM->Start,
4, &ctx->EvalMap.Map1Vertex4);
else
obj = eval1_4f( out, coord, flags, IM->Start,
3, &ctx->EvalMap.Map1Vertex3);
}
if (any_eval2) {
if (ctx->Eval.Map2Vertex4)
{
if (ctx->Eval.AutoNormal && (req & VERT_NORM))
obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
4, &ctx->EvalMap.Map2Vertex4 );
else
obj = eval2_4f( out, coord, flags, IM->Start,
4, &ctx->EvalMap.Map2Vertex4);
}
else if (ctx->Eval.Map2Vertex3)
{
if (ctx->Eval.AutoNormal && (req & VERT_NORM))
obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
3, &ctx->EvalMap.Map2Vertex3 );
else
obj = eval2_4f( out, coord, flags, IM->Start,
3, &ctx->EvalMap.Map2Vertex3 );
}
}
if (obj != in && !all_eval)
obj = copy_4f( out, in, flags, IM->Start );
VB->ObjPtr = obj;
}
if (new_flags) {
GLuint *oldflags = VB->Flag;
GLuint *flags = VB->Flag = VB->EvaluatedFlags;
GLuint i;
GLuint count = VB->Count;
if (!flags) {
VB->EvaluatedFlags = (GLuint *) MALLOC(VB->Size * sizeof(GLuint));
flags = VB->Flag = VB->EvaluatedFlags;
}
if (all_eval) {
for (i = 0 ; i < count ; i++)
flags[i] = oldflags[i] | new_flags;
} else {
GLuint andflag = ~0;
for (i = 0 ; i < count ; i++) {
if (oldflags[i] & VERT_EVAL_ANY)
flags[i] = oldflags[i] | new_flags;
andflag &= flags[i];
}
}
}
}
void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
{
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
if (un<1) {
gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
return;
}
ctx->Eval.MapGrid1un = un;
ctx->Eval.MapGrid1u1 = u1;
ctx->Eval.MapGrid1u2 = u2;
ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
}
void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
GLint vn, GLfloat v1, GLfloat v2 )
{
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
if (un<1) {
gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
return;
}
if (vn<1) {
gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
return;
}
ctx->Eval.MapGrid2un = un;
ctx->Eval.MapGrid2u1 = u1;
ctx->Eval.MapGrid2u2 = u2;
ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
ctx->Eval.MapGrid2vn = vn;
ctx->Eval.MapGrid2v1 = v1;
ctx->Eval.MapGrid2v2 = v2;
ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
}
void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
{
GLint i;
GLfloat u, du;
GLenum prim;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
switch (mode) {
case GL_POINT:
prim = GL_POINTS;
break;
case GL_LINE:
prim = GL_LINE_STRIP;
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
return;
}
/* No effect if vertex maps disabled.
*/
if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
return;
du = ctx->Eval.MapGrid1du;
u = ctx->Eval.MapGrid1u1 + i1 * du;
/* KW: Could short-circuit this to avoid the immediate mechanism.
*/
RESET_IMMEDIATE(ctx);
gl_Begin( ctx, prim );
for (i=i1;i<=i2;i++,u+=du) {
gl_EvalCoord1f( ctx, u );
}
gl_End(ctx);
}
void gl_EvalMesh2( GLcontext* ctx,
GLenum mode,
GLint i1, GLint i2,
GLint j1, GLint j2 )
{
GLint i, j;
GLfloat u, du, v, dv, v1, u1;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
/* No effect if vertex maps disabled.
*/
if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
return;
du = ctx->Eval.MapGrid2du;
dv = ctx->Eval.MapGrid2dv;
v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
u1 = ctx->Eval.MapGrid2u1 + i1 * du;
RESET_IMMEDIATE(ctx);
switch (mode) {
case GL_POINT:
gl_Begin( ctx, GL_POINTS );
for (v=v1,j=j1;j<=j2;j++,v+=dv) {
for (u=u1,i=i1;i<=i2;i++,u+=du) {
gl_EvalCoord2f( ctx, u, v );
}
}
gl_End(ctx);
break;
case GL_LINE:
for (v=v1,j=j1;j<=j2;j++,v+=dv) {
gl_Begin( ctx, GL_LINE_STRIP );
for (u=u1,i=i1;i<=i2;i++,u+=du) {
gl_EvalCoord2f( ctx, u, v );
}
gl_End(ctx);
}
for (u=u1,i=i1;i<=i2;i++,u+=du) {
gl_Begin( ctx, GL_LINE_STRIP );
for (v=v1,j=j1;j<=j2;j++,v+=dv) {
gl_EvalCoord2f( ctx, u, v );
}
gl_End(ctx);
}
break;
case GL_FILL:
for (v=v1,j=j1;j<j2;j++,v+=dv) {
/* NOTE: a quad strip can't be used because the four */
/* can't be guaranteed to be coplanar! */
gl_Begin( ctx, GL_TRIANGLE_STRIP );
for (u=u1,i=i1;i<=i2;i++,u+=du) {
gl_EvalCoord2f( ctx, u, v );
gl_EvalCoord2f( ctx, u, v+dv );
}
gl_End(ctx);
}
break;
default:
gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
return;
}
}