home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 6
/
AACD06.ISO
/
AACD
/
System
/
Mesa-3.1
/
src
/
xform.c
< prev
next >
Wrap
C/C++ Source or Header
|
2000-01-07
|
8KB
|
284 lines
/* $Id: xform.c,v 1.3 1999/11/05 06:43:11 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.1
*
* Copyright (C) 1999 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* $XFree86: xc/lib/GL/mesa/src/xform.c,v 1.4 1999/04/04 00:20:36 dawes Exp $ */
/*
* Matrix/vertex/vector transformation stuff
*
*
* NOTES:
* 1. 4x4 transformation matrices are stored in memory in column major order.
* 2. Points/vertices are to be thought of as column vectors.
* 3. Transformation of a point p by a matrix M is: p' = M * p
*/
#ifdef PC_HEADER
#include "all.h"
#else
#ifndef XFree86Server
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#else
#include "GL/xf86glx.h"
#endif
#include "vb.h"
#include "context.h"
#include "mmath.h"
#include "types.h"
#include "vb.h"
#include "xform.h"
#endif
#ifdef DEBUG
#include "debug_xform.h"
#endif
#ifdef USE_X86_ASM
#include "X86/common_x86asm.h"
#endif
clip_func gl_clip_tab[5];
dotprod_func gl_dotprod_tab[2][5];
vec_copy_func gl_copy_tab[2][0x10];
normal_func gl_normal_tab[0xf][0x4];
transform_func **(gl_transform_tab[2]);
static transform_func *cull_transform_tab[5];
static transform_func *raw_transform_tab[5];
/* Raw data format used for:
* - Object-to-eye transform prior to culling, although this too
* could be culled under some circumstances.
* - Eye-to-clip transform (via the function above).
* - Cliptesting
* - And everything else too, if culling happens to be disabled.
*/
#define TAG(x) x##_raw
#define TAG2(x,y) x##y##_raw
#define IDX 0
#define STRIDE_LOOP for (i=0;i<count;i++, STRIDE_F(from, stride))
#define LOOP for (i=0;i<n;i++)
#define CULL_CHECK
#define CLIP_CHECK
#define ARGS
#include "xform_tmp.h"
#include "clip_tmp.h"
#include "norm_tmp.h"
#include "dotprod_tmp.h"
#include "copy_tmp.h"
#undef TAG
#undef TAG2
#undef LOOP
#undef CULL_CHECK
#undef CLIP_CHECK
#undef ARGS
#undef IDX
/* Culled data used for:
* - texture transformations
* - viewport map transformation
* - normal transformations prior to lighting
* - user cliptests
*/
#define TAG(x) x##_masked
#define TAG2(x,y) x##y##_masked
#define IDX CULL_MASK_ACTIVE
#define STRIDE_LOOP for (i=0;i<count;i++, STRIDE_F(from, stride))
#define LOOP for (i=0;i<n;i++)
#define CULL_CHECK if (mask[i])
#define CLIP_CHECK if ((mask[i] & flag) == 0)
#define ARGS , const GLubyte mask[]
#include "xform_tmp.h"
#include "norm_tmp.h"
#include "dotprod_tmp.h"
#include "copy_tmp.h"
#undef TAG
#undef TAG2
#undef LOOP
#undef CULL_CHECK
#undef CLIP_CHECK
#undef ARGS
#undef IDX
#if 0
#define TAG(x) x##_raw_compacted
#define TAG2(x,y) x##y##_raw_compacted
#define IDX COMPACTED_NORMALS
#define STRIDE_LOOP for (i=0;i<count;i++, STRIDE_F(from, stride))
#define LOOP for (i=0;i<n;i++)
#define CHECK if (flag[i] & VERT_NORM)
#define ARGS
#include "norm_tmp.h"
#undef TAG
#undef TAG2
#undef LOOP
#undef CHECK
#undef ARGS
#undef IDX
#define TAG(x) x##_masked
#define TAG2(x,y) x##y##_masked
#define IDX CULL_MASK_ACTIVE|COMPACTED_NORMALS
#define DUPLICATE_FUNCTIONS
#include "norm_tmp.h"
#undef TAG
#undef TAG2
#undef LOOP
#undef CHECK
#undef ARGS
#undef IDX
#endif
GLvector4f *gl_project_points( GLvector4f *proj_vec,
const GLvector4f *clip_vec )
{
const GLuint stride = clip_vec->stride;
const GLfloat *from = (GLfloat *)clip_vec->start;
const GLuint count = clip_vec->count;
GLfloat (*vProj)[4] = (GLfloat (*)[4])proj_vec->start;
GLuint i;
for (i = 0 ; i < count ; i++, STRIDE_F(from, stride))
{
GLfloat oow = 1.0F / from[3];
vProj[i][3] = oow;
vProj[i][0] = from[0] * oow;
vProj[i][1] = from[1] * oow;
vProj[i][2] = from[2] * oow;
}
proj_vec->flags |= VEC_SIZE_4;
proj_vec->size = 3;
proj_vec->count = clip_vec->count;
return proj_vec;
}
/*
* This is called only once. It initializes several tables with pointers
* to optimized transformation functions. This is where we can test for
* AMD 3Dnow! capability, Intel Katmai, etc. and hook in the right code.
*/
void gl_init_transformation( void )
{
gl_transform_tab[0] = raw_transform_tab;
gl_transform_tab[1] = cull_transform_tab;
init_c_transformations_raw();
init_c_transformations_masked();
init_c_norm_transform_raw();
init_c_norm_transform_masked();
init_c_cliptest_raw();
init_copy0_raw();
init_copy0_masked();
init_dotprod_raw();
init_dotprod_masked();
#ifdef DEBUG
gl_test_all_transform_functions ("default");
gl_test_all_normal_transform_functions ("default");
#endif
#ifdef USE_X86_ASM
gl_init_all_x86_asm ();
#endif
}
/*
* Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
* function is used for transforming clipping plane equations and spotlight
* directions.
* Mathematically, u = v * m.
* Input: v - input vector
* m - transformation matrix
* Output: u - transformed vector
*/
void gl_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
{
GLfloat v0=v[0], v1=v[1], v2=v[2], v3=v[3];
#define M(row,col) m[row + col*4]
u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
#undef M
}
/* Useful for one-off point transformations, as in clipping.
* Note that because the matrix isn't analyzed we do too many
* multiplies, and that the result is always 4-clean.
*/
void gl_transform_point_sz( GLfloat Q[4], const GLfloat M[16],
const GLfloat P[4], GLuint sz )
{
if (Q == P)
return;
if (sz == 4)
{
Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] * P[2] + M[12] * P[3];
Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] * P[2] + M[13] * P[3];
Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14] * P[3];
Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15] * P[3];
}
else if (sz == 3)
{
Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] * P[2] + M[12];
Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] * P[2] + M[13];
Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14];
Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15];
}
else if (sz == 2)
{
Q[0] = M[0] * P[0] + M[4] * P[1] + M[12];
Q[1] = M[1] * P[0] + M[5] * P[1] + M[13];
Q[2] = M[2] * P[0] + M[6] * P[1] + M[14];
Q[3] = M[3] * P[0] + M[7] * P[1] + M[15];
}
else if (sz == 1)
{
Q[0] = M[0] * P[0] + M[12];
Q[1] = M[1] * P[0] + M[13];
Q[2] = M[2] * P[0] + M[14];
Q[3] = M[3] * P[0] + M[15];
}
}