home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 6
/
AACD06.ISO
/
AACD
/
System
/
Mesa-3.1
/
src
/
xform.h
< prev
next >
Wrap
C/C++ Source or Header
|
2000-01-07
|
6KB
|
175 lines
/* $Id: xform.h,v 1.1.1.1 1999/08/19 00:55:41 jtg Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.1
*
* Copyright (C) 1999 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef XFORM_H
#define XFORM_H
#include "types.h"
/*
* Transform a point (column vector) by a matrix: Q = M * P
*/
#define TRANSFORM_POINT( Q, M, P ) \
Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] * P[2] + M[12] * P[3]; \
Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] * P[2] + M[13] * P[3]; \
Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14] * P[3]; \
Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15] * P[3];
#define TRANSFORM_POINT3( Q, M, P ) \
Q[0] = M[0] * P[0] + M[4] * P[1] + M[8] * P[2] + M[12]; \
Q[1] = M[1] * P[0] + M[5] * P[1] + M[9] * P[2] + M[13]; \
Q[2] = M[2] * P[0] + M[6] * P[1] + M[10] * P[2] + M[14]; \
Q[3] = M[3] * P[0] + M[7] * P[1] + M[11] * P[2] + M[15];
/*
* Transform a normal (row vector) by a matrix: [NX NY NZ] = N * MAT
*/
#define TRANSFORM_NORMAL( TO, N, MAT ) \
do { \
TO[0] = N[0] * MAT[0] + N[1] * MAT[1] + N[2] * MAT[2]; \
TO[1] = N[0] * MAT[4] + N[1] * MAT[5] + N[2] * MAT[6]; \
TO[2] = N[0] * MAT[8] + N[1] * MAT[9] + N[2] * MAT[10]; \
} while (0)
extern void gl_transform_vector( GLfloat u[4],
const GLfloat v[4],
const GLfloat m[16] );
extern void gl_init_transformation( void );
/* KW: Clip functions now do projective divide as well. The projected
* coordinates are very useful to us because they let us cull
* backfaces and eliminate vertices from lighting, fogging, etc
* calculations. Despite the fact that this divide could be done one
* day in hardware, we would still have a reason to want to do it here
* as long as those other calculations remain in software.
*
* Clipping is a convenient place to do the divide on x86 as it should be
* possible to overlap with integer outcode calculations.
*
* There are two cases where we wouldn't want to do the divide in cliptest:
* - When we aren't clipping. We still might want to cull backfaces
* so the divide should be done elsewhere. This currently never
* happens.
*
* - When culling isn't likely to help us, such as when the GL culling
* is disabled and we not lighting or are only lighting
* one-sided. In this situation, backface determination provides
* us with no useful information. A tricky case to detect is when
* all input data is already culled, although hopefully the
* application wouldn't turn on culling in such cases.
*
* We supply a buffer to hold the [x/w,y/w,z/w,1/w] values which
* are the result of the projection. This is only used in the
* 4-vector case - in other cases, we just use the clip coordinates
* as the projected coordinates - they are identical.
*
* This is doubly convenient because it means the Win[] array is now
* of the same stride as all the others, so I can now turn map_vertices
* into a straight-forward matrix transformation, with asm acceleration
* automatically available.
*/
typedef GLvector4f *(*clip_func)( GLvector4f *vClip,
GLvector4f *vProj,
GLubyte clipMask[],
GLubyte *orMask,
GLubyte *andMask );
typedef void (*dotprod_func)( GLvector4f *out_vec,
GLuint elt,
const GLvector4f *coord_vec,
const GLfloat plane[4],
const GLubyte mask[]);
typedef void (*vec_copy_func)( GLvector4f *to,
const GLvector4f *from,
const GLubyte mask[]);
/* KW: New versions of the transform function allow a mask array
* specifying that individual vector transform should be skipped
* when the mask byte is zero. This is always present as a
* parameter, to allow a unified interface.
*/
typedef void (*transform_func)( GLvector4f *to_vec,
const GLmatrix *mat,
const GLvector4f *from_vec,
const GLubyte *clipmask,
const GLubyte flag );
extern GLvector4f *gl_project_points( GLvector4f *to,
const GLvector4f *from );
extern void gl_transform_bounds3( GLubyte *orMask, GLubyte *andMask,
const GLmatrix *mat,
CONST GLfloat src[][3] );
extern void gl_transform_bounds2( GLubyte *orMask, GLubyte *andMask,
const GLmatrix *mat,
CONST GLfloat src[][3] );
extern dotprod_func gl_dotprod_tab[2][5];
extern vec_copy_func gl_copy_tab[2][0x10];
extern clip_func gl_clip_tab[5];
extern normal_func gl_normal_tab[0xf][0x4];
/* Use of 3 layers of linked 1-dimensional arrays to reduce
* cost of lookup.
*/
extern transform_func **(gl_transform_tab[2]);
extern void gl_transform_point_sz( GLfloat Q[4], const GLfloat M[16],
const GLfloat P[4], GLuint sz );
#define TransformRaw( to, mat, from ) \
( (*gl_transform_tab[0][(from)->size][(mat)->type])( to, mat, from, 0, 0 ), \
(to) )
#define Transform( to, mat, from, mask, cull ) \
( (*gl_transform_tab[cull!=0][(from)->size][(mat)->type])( to, mat, from, mask, cull ), \
(to) )
#endif