home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
eispack-1.0-src.tgz
/
tar.out
/
contrib
/
eispack
/
orthes.f
< prev
next >
Wrap
Text File
|
1996-09-28
|
3KB
|
108 lines
subroutine orthes(nm,n,low,igh,a,ort)
c
integer i,j,m,n,ii,jj,la,mp,nm,igh,kp1,low
double precision a(nm,n),ort(igh)
double precision f,g,h,scale
c
c this subroutine is a translation of the algol procedure orthes,
c num. math. 12, 349-368(1968) by martin and wilkinson.
c handbook for auto. comp., vol.ii-linear algebra, 339-358(1971).
c
c given a real general matrix, this subroutine
c reduces a submatrix situated in rows and columns
c low through igh to upper hessenberg form by
c orthogonal similarity transformations.
c
c on input
c
c nm must be set to the row dimension of two-dimensional
c array parameters as declared in the calling program
c dimension statement.
c
c n is the order of the matrix.
c
c low and igh are integers determined by the balancing
c subroutine balanc. if balanc has not been used,
c set low=1, igh=n.
c
c a contains the input matrix.
c
c on output
c
c a contains the hessenberg matrix. information about
c the orthogonal transformations used in the reduction
c is stored in the remaining triangle under the
c hessenberg matrix.
c
c ort contains further information about the transformations.
c only elements low through igh are used.
c
c questions and comments should be directed to burton s. garbow,
c mathematics and computer science div, argonne national laboratory
c
c this version dated august 1983.
c
c ------------------------------------------------------------------
c
la = igh - 1
kp1 = low + 1
if (la .lt. kp1) go to 200
c
do 180 m = kp1, la
h = 0.0d0
ort(m) = 0.0d0
scale = 0.0d0
c .......... scale column (algol tol then not needed) ..........
do 90 i = m, igh
90 scale = scale + dabs(a(i,m-1))
c
if (scale .eq. 0.0d0) go to 180
mp = m + igh
c .......... for i=igh step -1 until m do -- ..........
do 100 ii = m, igh
i = mp - ii
ort(i) = a(i,m-1) / scale
h = h + ort(i) * ort(i)
100 continue
c
g = -dsign(dsqrt(h),ort(m))
h = h - ort(m) * g
ort(m) = ort(m) - g
c .......... form (i-(u*ut)/h) * a ..........
do 130 j = m, n
f = 0.0d0
c .......... for i=igh step -1 until m do -- ..........
do 110 ii = m, igh
i = mp - ii
f = f + ort(i) * a(i,j)
110 continue
c
f = f / h
c
do 120 i = m, igh
120 a(i,j) = a(i,j) - f * ort(i)
c
130 continue
c .......... form (i-(u*ut)/h)*a*(i-(u*ut)/h) ..........
do 160 i = 1, igh
f = 0.0d0
c .......... for j=igh step -1 until m do -- ..........
do 140 jj = m, igh
j = mp - jj
f = f + ort(j) * a(i,j)
140 continue
c
f = f / h
c
do 150 j = m, igh
150 a(i,j) = a(i,j) - f * ort(j)
c
160 continue
c
ort(m) = scale * ort(m)
a(m,m-1) = scale * g
180 continue
c
200 return
end